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EXISTENCE OF MULTI-PEAK SOLUTIONS
FOR A CLASS OF QUASILINEAR PROBLEMS IN RN

Claudianor O. Alves

Abstract. Using variational methods we establish existence of multi-peak
solutions for the following class of quasilinear problems

−εp∆pu + V (x)up−1 = f(u), u > 0, in RN

where ∆pu is the p-Laplacian operator, 2 ≤ p < N , ε > 0 and f is a

continuous function with subcritical growth.

1. Introduction

Many recent studies have focused on the nonlinear Schrödinger equation

(NLS) ih
∂Ψ
∂t

= −h2∆Ψ + (V (z) + E)Ψ− f(Ψ) for all z ∈ Ω,

where ε > 0, Ω is a domain in RN , not necessarily bounded, with empty or
smooth boundary. This class of equation is one of the main objects of the
quantum physics, because it appears in problems involving nonlinear optics,
plasma physics and condensed matter physics.

Knowledge of the solutions for the elliptic equation

(S)ε

{
−ε2∆u + V (z)u = f(u) in Ω,

u = 0 on ∂Ω,
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has a great importance in the study of standing-wave solutions of (NLS). In re-
cent years, the existence and concentration of positive solutions for general semi-
linear elliptic equations (S)ε for the case N ≥ 3 have been extensively studied, see
for example, A. Floer and A. Weinstein [18], Y. J. Oh [26], P. H. Rabinowitz [27],
X. Wang [30], S. Cingolani and M. Lazzo [14], A. Ambrosetti, M. Badiale and
S. Cingolani [6], C. Gui [21], M. del Pino and P. L. Felmer [15], [16] and their
references.

In [27], by a mountain pass argument, Rabinowitz proves the existence of
positive solutions of (S)ε, for ε > 0 small, whenever

lim inf
|z|→∞

V (z) > inf
z∈RN

V (z) = γ > 0.

Later X. Wang [30] showed that these solutions concentrate at global minimum
points of V as ε tends to 0.

In [15], M. del Pino and P. L. Felmer have found solutions which concentrate
around local minimum of V by introducing a penalization method. More pre-
cisely, they assume that an open and bounded set Λ compactly contained in Ω
satisfies

(V1) 0 < γ ≤ V0 = inf
z∈Λ

V (z) < min
z∈∂Λ

V (z).

Existence of nodal solutions for general semilinear elliptic equations for the
case N ≥ 3 and ε = 1 have been established in T. Bartsch and Z.-Q. Wang
in [10], [11] and T. Bartsch, K.-C. Chang and Z.-Q. Wang in [7], T. Bartsch,
A. Pankov and Z.-Q. Wang in [9]. For the case involving ε > 0 sufficiently
small, some results involving concentration of nodal solutions can be found in
the works of T. Bartsch, M. Clapp and T. Weth [8], T. Bartsch, K.-C. Chang
and Z.-Q. Wang in [7], E. S. Noussair and J. Wei [24], [25] and C. O. Alves and
S. H. M. Soares [4], [5].

The existence of multi-peak solution has been considered in some papers.
In [21], C. Gui showed the existence of a k-peak solution uε for the problem
(S)ε, under the assumptions that infx∈RN V (x) > V0 and there are bounded
domains Ωi; mutually disjoint, such that

inf
x∈Ωi

V (x) < inf
x∈∂Ωi

V (x).

A similar result was also obtained by del M. Pino and P. L. Felmer in [16]
using a different approach. In [19], A. Giacomini and M. Squassina showed the
existence of multi-peak for a class of quasilinear problems, and in [13], D. Cao
and E. S. Noussair have studied the existence of multi-bump standing waves with
a critical frequency, that is, when infx∈RN V (x) = 0.

In all references cited in this paper, the existence of multi-peak solution for
problems involving the p-Laplacian operation with p > 2 was not considered.
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Motivated by this fact, in the present paper we are concerned with the existence
of positive multi-peak solutions for the following class of quasilinear elliptic prob-
lems

(P)ε


−εp∆pu + V (x)up−1 = f(u) in RN ,

u > 0 in RN ,

u ∈ W 1,p(RN )

where ∆pu = div(|∇u|p−2∇u), 2 ≤ p < N , f is a continuous function with
subcritical growth, ε > 0 and V : RN → R is continuous functions with V (x) ≥ 0
for all x ∈ RN . The general hypotheses considered in this work are the following:

(V1) There exists V0 > 0 such that V (x) ≥ V0 for all x ∈ RN .
(V2) There exist k disjoint bounded regions Ω1, . . . , Ωk such that

Mi = min
∂Ωi

V (x) > αi = inf
Ωi

V (x), i = 1, . . . , k.

(f1) There exists p < q < p∗ = Np/(N − p) such that

f(t)
tq−1

→ 0 as t →∞.

(f2) f(t) = o(|t|p−1) as t → 0.
(f3) There exist θ ∈ (p, p∗) and r > 0 such that

θF (t) ≤ tf(t) for all t ≥ r

where F (t) =
∫ t

0
f(τ) dτ .

(f4) The function f(t)/tp−1 is increasing for t ∈ (0,∞),

Motivated by papers [1], [2], [17] and [21], we show the existence of multi-peak
solutions to (P)ε for general case p ≥ 2. Our current framework is different of
those used in [21], because the p-Laplacian is not linear, and in our opinion, some
properties that occur for 2-Laplacian (Laplacian operator) are not standard that
they hold for general case, p ≥ 2, therefore, some modifications are necessary in
the sets that appear in the minimax arguments explored in [21]. The arguments
developed in this paper are variational, and our main result can be seen as
a complement of the study made in [21], in the sense that, we are working
with p-Laplacian operator and show the existence of multiple positive multi-
peak solutions. Moreover, our main result also complete the study made in [28]
which has considering the existence of multi-peak solution for a class of problem
involving the p-Laplacian operator for the case 1 < p ≤ 2.

The our main result is the following

Theorem 1.1. Assume that (V1)–(V2) and (f1)–(f4) occur. Then, for each
Γ ⊂ {1, . . . , k}, there exist ε∗ > 0 such that, for 0 < ε ≤ ε∗, (P)ε has a family
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{uε} of positive solutions verifying the following property for ε small enough:
There exists δ > 0 such that

sup
RN

uε(x) ≥ δ.

There exists Pε,i ∈ Ωi for all i ∈ Γ such that, for each ξ > 0, there exists r > 0
verifying

sup
Bεr(Pε,i)

uε(x) ≥ δ for all i ∈ Γ

and

sup
RN\

S
j∈Γ Bεr(Pε,i)

uε(x) < ξ for all i ∈ Γ.

In the above theorem, if Γ has l elements, we say that uε is a l-peak solution.

2. Penalization and (PS)c condition

In this section, following the approach of del M. Pino and P. L. Felmer [15]
and C. Gui [21], we define a suitable penalization of the functional energy asso-
ciated to (P)ε. To this end, we fix some notations and define some functionals
that will be used in this work.

Hereafter, when h is a mensurable function, we denote by
∫

RN h the following
integral

∫
RN h dx. Moreover, we will use the symbols ‖u‖, |u|r (r > 1) and

‖u‖∞ to denote the usual norms in the spaces W 1,p(RN ), Lr(RN ) and L∞(RN ),
respectively. Moreover, since that we intend to find positive solutions, in all this
paper let us assume that

f(t) = 0 for all t ∈ (−∞, 0].

Using the change variable x = εy, it is immediate to check that problem the
problem (P)ε is equivalent to the following problem

(P̃)ε


−∆pu + V (εx)up−1 = f(u) in RN ,

u > 0 in RN ,

u ∈ W 1,p(RN ).

From now on, we will work with (P̃)ε to get the multi-peak solution associated to
(P)ε. First of all, notice that nonnegative weak solutions of (P̃)ε are the critical
points of the functional I:Eε → R given by

I(u) =
1
p

∫
RN

(|∇u|p + V (εx)|u|p)−
∫

RN

F (u)

where Eε is the space of functions defined by

Eε =
{

u ∈ W 1,p(RN ) :
∫

RN

V (εx)|u|p < ∞
}
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endowed with the norm

‖u‖ε =
( ∫

RN

(|∇u|p + V (εx)|u|p)
)1/p

.

From (V1), it is easy to see that (Eε, ‖·‖ε) is a Banach space and Eε ⊂ W 1,p(RN )
for all ε > 0.

In what follows, let A > 1 and m > 0 verifying f(m)/mp−1 = V0/A and
f̃ , F̃ : R → R the following functions

f̃(s) =

{
f(s) if s ≤ m,

V0

A
sp−1 if s > m,

and F̃ (s) =
∫ s

0

f̃(τ) dτ.

Moreover, we fix Γ ⊂ {1, . . . , k}, Ω =
⋃

j∈Γ Ωj and the functions

ζ(x) =

{
1 for x ∈ Ω,

0 for x /∈ Ω,

(g1) g(x, s) = ζ(x)f(s) + (1− ζ(x))f̃(s)

and

(g2) G(x, s) =
∫ s

0

g(x, t) dt = ζ(x)F (s) + (1− ζ(x))F̃ (s).

From (g1) and (g2),

(g3) θG(x, s) ≤ sg(x, s), x ∈ Ω, s ≥ 0

and

(g4) pG(x, s) ≤ sg(x, s) ≤ V0

A
|s|p, x ∈ RN \ Ω, s ≥ 0.

In what follows, for each ε > 0, we denote by gε(x, s) and Gε(x, s) the
functions given by

gε(x, s) = g(εx, s) and Gε(εx, s) =
∫ s

0

g(εx, τ) dτ

and we set the functional Φε:Eε → R given by

Φε(u) =
1
p

∫
RN

(|∇u|p + V (εx)|u|p)−
∫

RN

Gε(x, u).

Under the conditions (V1), (g1)–(g4), Φε ∈ C1(Eε, R) and its critical points are
nonnegative weak solutions of the quasilinear problem

(A)ε −∆pu + V (εx)|u|p−2u = gε(x, u) in RN .

Notice that positive solutions of the last equation are associated with the positive
solutions of (P̃)ε, because if vε is a positive solution of (A)ε verifying vε(x) ≤ m

in RN \ Ωε with Ωε = Ω/ε, it follows that it is a positive solution to (P̃)ε.
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2.1. The Palais–Smale condition and its consequences. We start this
subsection studying the boundedness of Palais–Smale sequence associated to Φε,
that is, of a sequence {un} ⊂ Eε verifying

(PS) Φε(un) → c and Φ′
ε(un) → 0

for some c ∈ R (shortly {un} is a (PS)c sequence).

Lemma 2.2. Suppose {un} ⊂ Eε is a (PS)c sequence. Then, there exists a
positive constant K, which is independent of ε > 0, that satisfies

‖un‖p
ε ≤ K for all n ∈ N.

Proof. From definition of Palais-sequence, we derive easily

Φε(un)− 1
θ
Φ′

ε(un)un = c + on(1) + on(1)‖un‖ε,

where on(1) → 0. This equality combined with (g3) and (g4) yields

(2.1)
(

1
p
− 1

θ

)
‖un‖p

ε −
∫

RN\Ωε

(F̃ (un)− 1
θ
f̃(un)un) ≤ c + on(1) + on(1)‖un‖ε.

Since f̃ and F̃ verify

F̃ (s)− 1
θ
f̃(s)s ≤

(
1
p
− 1

θ

)
V0

A
|s|p for all s ∈ R,

we obtain, (
1
p
− 1

θ

)(
‖un‖p

ε −
V0

A
|un|pp

)
≤ c + on(1) + on(1)‖un‖ε.

From this, (
1
p
− 1

θ

)(
1− 1

A

)
‖un‖p

ε ≤ c + on(1) + on(1)‖un‖ε

which implies that {un} is bounded. Thereby,

lim sup
n→∞

‖un‖p
ε ≤

(
1
p
− 1

θ

)−1(
1− 1

A

)−1

c,

and, therefore, there exists K > 0, which is independent of ε, such that

‖un‖p
ε ≤ K for all n ∈ N. �
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Proposition 2.3. For each ε > 0, Φε satisfies (PS)c condition for all c ∈ R,
that is, any (PS)c sequence {un} ⊂ Eε has a strongly convergent subsequence
in Eε.

Proof. Let {un} ⊂ Eε be a Palais–Smale sequence. By Lemma 2.2, {un}
is bounded in Eε and for some subsequence, still denoted by {un}, there exists
u ∈ Eε such that

un ⇀ u weakly in Eε and W 1,p(RN ),

un → u in Lq+1
loc (RN ) and Lp

loc(R
N ).

Furthermore, setting ϕn(x) = ηε(x)un(x), we have Φ′
ε(un)ϕn → 0 where ηε ∈

C∞(RN ) is given by

ηε(x) = 1 for all x ∈ Bc
R(0),

ηε(x) = 0 for all x ∈ BR/2(0),

ηε(x) ∈ [0, 1] with Ωε ⊂ BR(0).

This combined with [3, Lemma 1.1] implies that for each γ > 0 fixed, there
exists R = R(ε) > 0 such that∫

{x∈RN :|x|≥R}
(|∇un|p + V (εx)|un|p) ≤ γ for n ∈ N.

The last inequality together with the subcritical growth of gε implies

lim
n→∞

∫
RN

(P 1
n + V (εx)P 2

n) = 0

where

P 1
n = 〈|∇un|p−2∇un − |∇u|p−2∇u,∇un −∇u〉

and

P 2
n = (|un|p−2un − |u|p−2u)(un − u).

Using the same type of arguments found in Jianfu [22, Lemma 4.2] (see also
P. Tolksdorff [29]), it follows that un → u in Eε. �

Next, we study the behavior of a (PS)∗c sequence, that is, a sequence {un} ⊂
W 1,p(RN ) satisfying:

un ∈ Eεn and εn → 0, Φεn(un) → c, ‖Φ′
εn

(un)‖∗εn
→ 0.

The proposition below was proved in [21] for the case p = 2.
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Proposition 2.4. Let {un} be a (PS)∗c sequence. Then there exists a sub-
sequence of {un}, still denoted by itself, a nonnegative integer s, sequences of
points {yn,j} ⊂ RN with j = 1, . . . , s, such that

εnyn,j → xj ∈ Ω and |yn,j − yn,i| → ∞, as n →∞

and ∥∥∥∥un( · )−
s∑

j=1

u0,j( · − yn,j)χεn
( · − yn,j)

∥∥∥∥
εn

→ 0 as n →∞

where χε(x) = χ(x/(−lnε)) for 0 < ε < 1, and χ is a cut-off function which
is 1 for |x| ≤ 1, it is 0 for |x| ≥ 2 and |∇χ| ≤ 2. The function u0,j 6= 0 is a
nonnegative solution for

(2.2) −∆pu + Vju
p−1 = g0,j(x, u), x ∈ RN

where Vj = V (xj) ≥ V0 > 0 and g0,j(x, u) = limn→∞ gε(εnx + εnyn,j , u). More-
over, we have c ≥ 0 and

c =
s∑

j=1

J0,j(u0,j)

where J0,j :W 1,p(RN ) → R denotes the functional given by

J0,j(u) =
1
p

∫
RN

(|∇u|p + Vj |u|p)−
∫

RN

G0,j(x, u)

with G0,j(x, t) =
∫ t

0
g0,j(x, τ) dτ .

Proof. As in the proof of Lemma 2.2, it is easy to check that there exists
K > 0 such that

‖un‖p
εn
≤ K for all n ∈ N.

Thus {un} is bounded in W 1,p(RN ) and we can assume that for some u ∈
W 1,p(RN )

un ⇀ u weakly in W 1,p(RN ),

un → u in Lq+1
loc (RN ) for all q ∈ [1, p∗ − 1)

and
un(x) → u(x) a.e. in RN .

Using the properties (g3)–(g4) together with the definition of the functions gε and
Gε, we derive that c ≥ 0. Moreover, it is immediate to check that ‖un‖εn → 0 if
c = 0. This way, we will consider only the case c > 0.

We claim that there exist positive constants R, a, a subsequence of {un}, still
denoted by itself, and a sequence {yn,1} ⊂ RN such that

(2.3)
∫

BR(yn,1)

|un(x)|p > a.
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Otherwise, by Lions’ Lemma (see [23]), un → 0 in Lq+1(RN ). Using, the as-
sumptions on f , for γ ∈ (0, V0), there exists C > 0 such that

Φ′
εn

(un)un ≥ ‖un‖εn
−

∫
RN

(γ|un|p + C|un|q+1) ≥
(

1− γ

V0

)
‖un‖p

εn
− C|un|q+1

q+1

from where it follows that

0 ≤
(

1− γ

V0

)
‖un‖p

εn
≤ Φ′

εn
(un)un + C|un|q+1

q+1 = on(1).

This leads to c = 0, which is a contradiction. Therefore (2.3) holds. Now, letting
wn(x) = un(x + yn,1), we have that {wn} is a bounded sequence in W 1,p(RN )
and therefore for a subsequence, still denoted by itself, it converges weakly to
u0,1 in W 1,p(RN ). From (2.3), it follows that u0,1 6= 0.

Claim 1. The sequence {εnyn,1} is bounded. Moreover, there exists x1 ∈ Ω
and a subsequence of {εnyn,1}, still denoted by itself, such that εnyn,1 → x1.

In fact, assuming by contradiction that {εnyn,1} is a unbounded sequence,
we can assume without of loss generality, that |εnyn,1| → ∞. Since ε ln ε → 0
as ε → 0 and Ω is a bounded domain, we have εnyn,1 + εnx ∈ RN \ Ω for all
|x| ≤ 2| ln εn| and n large enough. This together with (g4) leads to

Φ′
εn

(un)(un(x)χεn(x− yn,1))

≥
∫

RN

{|∇un(x)|p + V (εnx)|un(x)|p}χεn(x− yn,1)

− 2
| ln εn|

∫
RN

|∇un(x)|p−1|un(x)|

−
∫

RN

g(εnx, un(x))un(x)χεn
(x− yn,1)

≥
∫

RN

{|∇wn(x)|p + V (εnx + εnyn,1)|wn|p}χεn
(x)

−
∫

RN

V0

A
|wn(x)|pχεn

(x) + on(1)

≥
∫

RN

{|∇wn(x)|p + V0(1− 1/A)|wn(x)|p}χεn
(x) + on(1)

≥
∫

RN

|∇u0,1|p + V0(1− 1/A)|u0,1|p + on(1).

Since {un} is (PS)∗c and {‖unχεn
( · − yn,1)‖εn

} is bounded in R, we know that
Φ′

εn
(un)(un(x)χεn

(x− yn,1)) = on(1). Hence, the last inequality leads to∫
RN

(|∇u0,1|p + V0(1− 1/A)|u0,1|p) = 0

which is a contradiction, because u0,1 6= 0. Therefore {εnyn,1} is bounded. From
this, we can assume that for some subsequence, still denote by {wn}, there exists
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x1 ∈ RN such that εnyn,1 → x1. Analogous arguments as above can be used to
prove that x1 ∈ Ω, and the proof of the Claim 1 is over.

Next we outline the proof that u0,1 is a solution of (2.2). To this end, we
need to prove the below limits involving the sequence {wn} and u0,1

Claim 2. There exists a subsequence of {wn}, still denoted by itself, such
that

wn(x) → u0,1(x) a.e. in RN

and
∇wn(x) → ∇u0,1(x) a.e. in RN .

In fact, for each R > 0, let us consider a function φR ∈ C∞
0 (RN ) satisfying

φR(x) = 1 for all x ∈ BR(0),

φR(x) = 0 for all x ∈ Bc
2R(0),

0 ≤ φR(x) ≤ 1 for all x ∈ RN .

Since the sequences {‖wnφR‖εn
} and {‖u0,1φR‖εn

} are bounded in R, we reach
that

Φ′
εn

(un)((wnφR)(x−yn,1)) = on(1) and Φ′
εn

(un)((u0,1φR)(x−yn,1)) = on(1).

Thereby

(2.4)
∫

RN

|∇wn|p−2∇wn∇(wnφR) + V (εnyn,1 + εnx)|wn|pφR

−
∫

RN

g(εnx + εnyn,1, wn)(wnφR) = on(1)

and

(2.5)
∫

RN

|∇wn|p−2∇wn∇(u0,1φR) + V (εnyn,1 + εnx)|wn|p−2wnu0,1φR

−
∫

RN

g(εnx + εnyn,1, wn)(u0,1φR) = on(1).

From (2.4) and (2.5)∫
BR(0)

〈|∇wn|p−2∇wn − |∇u0,1|p−2∇u0,1,∇wn −∇u0,1〉 dx = on(1)

and thus, using well known arguments∫
BR(0)

|∇wn −∇u0,1|p → 0

so that, for some subsequence, still denoted by {wn},

∇wn(x) → ∇u0,1(x) a.e. in BR(0).

Since R > 0 is arbitrary, the proof of the Claim 2 is complete.
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For any φ ∈ C∞
0 (RN ), a direct calculus shows that {‖φ(x − yn,1)‖εn

} is
bounded in R and

Φ′
εn

(un)(φ(x− yn,1)) = on(1).

This yields

(2.6)
∫

RN

|∇wn|p−2∇wn∇φ + V (εnyn,1 + εnx)|wn|p−2wnφ

=
∫

RN

g(εnx + εnyn,1, wn)φ + on(1).

Now, Claim 2 together with the definition of g0,1 leads to∫
RN

|∇u0,1|p−2∇u0,1∇φ + V1|u0,1|p−2u0,1φ =
∫

RN

g0,1(x, u0,1)φ

showing that u0,1 is a nontrivial solution of (2.2). Moreover, from the definition
of g0,1, it follows that u0,1 is nonnegative.

Hereafter, we consider u1
n(x) = un(x) − (u0,1χεn)(x − yn,1). Using the defi-

nition of the function χεn
, a straightforward computation shows that {‖u1

n‖εn
}

is bounded in R and the below limits hold

(2.7)
∫

RN

|u1
n(x + yn,1)− (wn(x)− u0,1(x))|p = on(1)

and

(2.8)
∫

RN

|∇u1
n(x + yn,1)− (∇wn(x)−∇u0,1(x))|p = on(1).

Our goal is to prove that

‖Φ′
εn

(u1
n)‖∗εn

→ 0 and Φεn
(u1

n) → c− J0,1(u0,1).

To this end, we observe that the limits (2.7) and (2.8) imply in the following
limits

Claim 3.

(2.9)
∫

RN

[G(εnx, un(x))−G(εnx, u1
n(x))−G(εnx, (u0,1χεn

)(x−yn,1))] = on(1),

(2.10)
∫

RN

V (εnx)[|u1
n(x)|p − |un(x)|p − |(u0,1χεn)(x− yn,1)|p] = on(1),

(2.11)
∫

RN

V (εnx)|B(u1
n(x))−B(un(x))−B((u0,1χεn

)(x−yn,1))|p/(p−1) = on(1),

(2.12)
∫

RN

[∇u1
n(x)|p − |∇un(x)|p − |∇(u0,1χεn)(x− yn,1)|p] = on(1),

(2.13)
∫

RN

|A(∇u1
n(x))−A(∇un(x))−A(∇(u0,1χεn

)(x−yn,1))|p/(p−1) = on(1),
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where

A(y) = |y|p−2y for all y ∈ RN and B(t) = |t|p−2t for all t ∈ R.

In what follows, we will prove only (2.9), (2.10) and (2,12), because the same
kinds of arguments can be used to prove (2.11) and (2.13).

Proof of (2.9). By a change variable, (2.9) is equivalent to∫
RN

[G(εnx + εnyn,1, wn)−G(εnx + εnyn,1, wn − u0,1χεn
)

−G(εnx + εnyn,1, u0,1χεn)] = on(1).

Since
u0,1χεn

→ u0,1 in W 1,p(RN ),

from (f1)–(f2) follow that given γ > 0 there exist R > 0 and n0 ∈ N such that∣∣∣∣ ∫
|x|≥R

G(εnx + εnyn,1, u0,1χεn)
∣∣∣∣ ≤ γ

6
for all n ≥ n0

and

(2.14)
∣∣∣∣ ∫

|x|≥R

[G(εnx + εnyn,1, wn)−G(εnx + εnyn,1, wn − u0,1χεn
)]

∣∣∣∣ ≤ γ

6

for all n ≥ n0. On the other hand, using the compact Sobolev embeddings, it
follows that there exists n1 ∈ N such that

(2.15)
∫
|x|≤R

|G(εnx + εnyn,1, wn)−G(εnx + εnyn,1, wn − u0,1χεn
)

−G(εnx + εnyn,1, u0,1χεn
)]| ≤ γ

6
for all n ≥ n1.

From (2.14) and (2.15), the proof of (2.9) is complete.

Proof of (2.10). Next, An denotes the following integral

An =
∫

RN

V (εnx)[|u1
n(x)|p − |un(x)|p − |(u0,1χεn)(x− yn,1)|p].

Notice that

An =
∫

RN

V (εnx + εnyn,1)[|u1
n(x + yn,1)|p − |un(x + yn,1)|p − |u0,1χεn

|p]

or equivalently

An =
∫

B2| ln εn|(0)

V (εnx + εnyn,1)[|u1
n(x + yn,1)|p − |wn(x)|p − |u0,1χεn

|p].

Thereby,

An = V (x1)
∫

B2| ln εn|(0)

[|u1
n(x + yn,1)|p − |wn(x)|p − |(u0,1χεn

)(x)|p] + on(1)
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which implies that

An = V (x1)
∫

B2| ln εn|(0)

[|wn(x)− u0,1(x)|p − |wn(x)|p − |u0,1(x)|p] + on(1).

From a result due to Brezis and Lieb [12], we know that∫
RN

[|wn(x)− u0,1(x)|p − |wn(x)|p − |u0,1(x)|p] = on(1).

This combined with the last inequality proves (2.10).

Proof of (2.12). From now on, Bn denotes the following integral

Bn =
∫

RN

[|∇u1
n|p − |∇un|p − |∇(u0,1χεn

)(x− yn,1)|p].

Notice that

Bn =
∫

B2| ln εn|(0)

[|∇u1
n(x + yn,1)|p − |∇wn|p − |∇(u0,1χεn

)|p]

which gives

Bn =
∫

B2| ln εn|(0)

[|∇wn −∇u0,1|p − |∇wn|p − |∇u0,1|p] + on(1).

Since
∇wn(x) → ∇u0,1(x) a.e. in RN ,

by using again Brezis and Lieb [12], we have that∫
RN

[|∇wn −∇u0,1|p − |∇wn|p − |∇u0,1|p] → 0

and this finishes the proof of (2.12).
The same type of arguments explored in the proof of (2.9) can be applied to

show that for any φn ∈ Eεn
with ‖φn‖εn

≤ 1, we have

(2.16)
∫

RN

[g(εnx + εnyn,1, wn(x))− g(εnx + εnyn,1, u
1
n(x + εnyn,1))

− g(εnx + εnyn,1, (u0,1χεn)]φn(x + εnyn,1) = on(1)

uniformly in ‖φn‖Eεn
≤ 1 as n → +∞.

An immediate consequence from (2.9)–(2.13) and (2.16) are the following
limits

Φεn
(u1

n) = Φεn
(un)− Φεn

((u0,1χεn
)(x− yn,1)) + on(1)

and
Φ′

εn
(u1

n) = Φ′
εn

(un)− Φ′
εn

((u0,1χεn
)(x− yn,1)) + on(1).

On the other hand, a direct calculus shows that

Φεn((u0,1χεn)( · − yn,1)) → J0,1(u0,1)
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and
‖Φ′(u0,1χεn

)( · − yn,1)‖∗Eεn
→ 0.

Therefore,

Φεn(u1
n) → c− J0,1(u0,1) and ‖Φ′

εn
(u1

n)‖∗Eεn
→ 0

showing that {u1
n} is a (PS)∗c−J0,1(u0,1)

sequence. Now, the proof follows as in
[21, Proposition 2.2]. �

3. The existence of multi-peak positive solutions

In this section, for each i ∈ Γ, let us denote by Ii:W 1,p(RN ) → R and
Iε,i:W 1,p(Ωε,i) → R the following functionals

Ii(v) =
1
p

∫
RN

(|∇v|p + αi|v|p)−
∫

RN

F (v)

and
Iε,i(v) =

1
p

∫
Ωε,i

(|∇v|p + V (εx)|v|p)−
∫

Ωε,i

F (v).

From (f1)–(f4), it follows that Ii and Iε,i have a ground state solution, that
is, there exist wi ∈ W 1,p(RN ) and wε,i ∈ Eε satisfying

Ii(wi) = µi, I ′i(wi) = 0,

Iε,i(wε,i) = µε,i, I ′ε,i(wε,i) = 0,

where

µi = inf
v∈W 1,p(RN )\{0}

sup
t≥0

Ii(tv) = inf
h∈Γi

sup
t∈[0,1]

Ii(h(t)),

µε,i = inf
v∈W 1,p(Ωε,i)\{0}

sup
t≥0

Iε,i(tv) = inf
h∈Γε,i

sup
t∈[0,1]

Iε,i(h(t)),

Γi = {h ∈ C([0, 1],W 1,p(RN )) : h(0) = 0, Ii(h(1)) < 0},
Γε,i = {h ∈ C([0, 1],W 1,p(Ωε,i)) : h(0) = 0, Iε,i(h(1)) < 0}.

Lemma 3.1. For for each i ∈ Γ, the following limits hold

µε,i → µi as ε → 0.

Proof. The same type of argument developed in [15] and [1] leads to

(3.1) µε,i ≤ µi + o(ε) for all i ∈ Γ.

On the other hand, we can repeat, with some modifications, the arguments used
in the proof of Proposition 2.4 to show that

(3.2) µi ≤ µε,i + o(ε) for all i ∈ Γ.

Therefore, the proof is completed by invoking (3.1) and (3.2). �
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Here and subsequently, without loss of generality, we will consider Γ =
{1, . . . , l} for some 1 ≤ l ≤ k and R > 0 verifying

(3.3) Ii(R−1wi) <
Ij(wi)

2
and Ii(Rwi) < 0 for all i ∈ Γ.

Furthermore, we fix

(3.4) H̃ε(
−→
θ )(z) =

l∑
i=1

θiR(wiχε)(z − xi/ε)

for all
−→
θ = (θ1, . . . , θl) ∈ [1/R2, 1]l, where xi ∈ Ki = {x ∈ Ωi : V (xi) = αi},

the set

Σε = {H ∈ C([1/R2, 1]l, Eε); H = H̃ε on ∂([1/R2, 1]l),

H(
−→
θ )|Ωε,i

6= 0 for all i ∈ Γ and for all
−→
θ ∈ [1/R2, 1]l}

and the number
Sε = inf

H∈Σε

max−→
θ ∈[1/R2,1]l

Φε(H(
−→
θ )).

Since the assumption (V1) implies that d(xi, ∂Ω) > 0 for all i ∈ Γ, we derive

supp
(

uiχε

(
z − xi

ε

))
⊂ Ωε,i = Ωi/ε, for all i ∈ Γ,

for ε small enough. Consequently

Φε(H̃ε(
−→
θ )) =

l∑
i=1

Iε,i(H̃ε(
−→
θ )) for all

−→
θ ∈ [1/R2, 1]l.

Then, H̃ε ∈ Σε, Σε 6= ∅ and Sε is well defined for ε small enough.

Lemma 3.2. For ε small enough, the following property holds: If H belongs
to Σε, then there exists

−→
θ∗ ∈ [1/R2, 1]l such that

I ′ε,i(H(
−→
θ∗ ))H(

−→
θ∗ ) = 0, for all i ∈ Γ.

In particular,
Iε,i(H(

−→
θ∗ )) ≥ µε,i, i = 1, . . . , l.

Proof. The proof follows by using similar arguments found in [1, Lem-
ma 4.1] combined with the fact that for all i ∈ Γ the following limits hold

I ′ε,i(H̃ε(
−→
θ ))H̃ε(

−→
θ ) → I ′(θiRwi)(θiRwi) as ε → 0.

uniformly in
−→
θ ∈ [1/R2, 1]l. �

The next proposition is a key point in our arguments, because it establishes
an important relation among Sε and µi for i = 1, . . . , l.
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Proposition 3.3. The number Sε fulfills the following limit

lim
ε→0

Sε = DΓ where DΓ =
l∑

i=1

µi.

Proof. For each H ∈ Σε, it follows from (g1)–(g2)

Φε(H(
−→
θ )) ≥

l∑
i=1

Iε,i(H(
−→
θ )) for all

−→
θ ∈ [1/R2, 1]l.

Hence, by Lemma 3.2

max−→
θ ∈[1/R2,1]l

Φε(H(
−→
θ )) ≥

l∑
i=1

µε,i.

On the other hand, from Lemma 3.2
l∑

i=1

µε,i =
l∑

i=1

µi + oε(1)

so that
max−→

θ ∈[1/R2,1]l
Φε(H(

−→
θ )) ≥ DΓ + oε(1)

and thus, given η > 0, there exists ε0 > 0 such that

Φε(H(
−→
θ )) ≥ DΓ − η for all ε ∈ (0, ε0),

from where it follows that

(3.5) Sε ≥ DΓ − η for all ε ∈ (0, ε0).

To conclude the proof, it is sufficient to show the following inequality

sup
−→
θ ∈[0,1]l

Φε(H̃ε(
−→
θ )) ≤ DΓ + η for all ε ∈ (0, ε0).

First of all, notice that

Φε((wiχε)( · − xi/ε)) = Ii(wi) + oε(1) = µi + oε(1)

and

lim
ε→0

Φε(t(wiχε)( · − xi/ε))) = Ii(twi) uniformly in t ∈ [0, R] for i = 1, . . . , l.

This way, the function

H̃ε(
−→
θ ) =

l∑
i=1

θiR(wiχε)( · − xi/ε)) for all
−→
θ = (θ1, . . . , θl) ∈ [1/R2, 1]l

satisfies the following estimate

lim sup
ε→0

[
sup

−→
θ ∈[0,1]l

Φε(H̃ε(
−→
θ ))

]
≤ DΓ
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which leads to
sup

−→
θ ∈[0,1]l

Φε(H̃ε(
−→
θ )) ≤ DΓ + η for ε ≈ 0

so that

(3.6) Sε ≤ DΓ + η for ε ≈ 0.

Combining (3.5) with (3.6), we obtain the inequality

|Sε −DΓ| ≤ η for ε ≈ 0,

which proves the lemma. �

Corollary 3.4. For each α > 0, there exists ε0 = ε0(α) > 0 such that

sup
−→
θ ∈[0,1]l

Φε(H̃ε(
−→
θ )) ≤ DΓ +

α

2
for all ε ∈ (0, ε0),

where H̃ε(
−→
θ ) is the function given in (3.4).

Proof. Repeating the same arguments used in the proof of Proposition 3.3,
it follows that

lim sup
ε→0

[
sup

−→
θ ∈[0,1]l

Φε(H̃ε(
−→
θ ))

]
≤ DΓ.

From this, there exists ε0 > 0 such that

sup
−→
θ ∈[0,1]l

Φε(H̃ε(
−→
θ )) ≤ DΓ +

α

2
for ε ∈ (0, ε0),

and the corollary is proved. �

Hereafter, we fix ρ > 0 verifying

lim inf
ε→0

‖H̃ε(
−→
θ )‖ε,i ≥ ρ uniformly in

−→
θ ∈ [1/R2, 1]l and i ∈ Γ,

where

‖u‖ε,i =
( ∫

Ωε,i

|∇u|p + V (εx)|u|p
)1/p

and let us define the set

Zε,i = {u ∈ W 1,p(Ωε,i) : ‖u‖ε,i ≤ ρ/2}.

From definition of H̃ε(
−→
θ ) and Zε,i, there exist positive numbers τ and ε∗ such

that

distε,i(H̃ε(
−→
θ ), Zε,i) > τ for all

−→
θ ∈ [1/R2, 1]l, i ∈ Γ and ε ∈ (0, ε∗),

where distε,i(K, F ) denotes the distance between sets of (W 1,p(Ωε,i), ‖ · ‖ε,i).
Taking the numbers τ and ε ∈ (0, ε∗) as above, we define

Θ = {u ∈ Eε : distε,i(u, Zε,i) ≥ τ for all i ∈ Γ}.
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Moreover, for any c, µ > 0 and 0 < δ < τ/2, we consider the sets

Φc
ε = {u ∈ Eε : Φε(u) ≤ c}

and
Bε,µ = {u ∈ Θ2δ : |Φε(u)− Sε| ≤ µ}

where Θr, for r > 0, denotes the set

Θr = {u ∈ Eε : dist(u, Θ) ≤ r}.

Notice that for each µ > 0, there exists ε1 = ε1(µ) > 0 such that u∗(z) =∑l
i=1(wiχε(z−xi/ε)) ∈ Θ for all ε ∈ (0, ε1). Moreover, since Φε(u∗) =

∑l
i=1 µi+

o(ε) and Sε →
∑l

i=1 µi as ε → 0, we conclude that Bε,µ 6= ∅ for ε sufficiently
small.

In what follows, let us consider BM+1(0) = {u ∈ Eε; ‖u‖ε ≤ M + 1} where
M is a positive constant large enough, independent of ε, verifying

‖H̃ε(
−→
θ )‖ε ≤

M

2
for all

−→
θ ∈ [1/R2, 1]2l.

Moreover, we denote by µ∗ > 0 the following number

µ∗ = min
{

Ii(wi)
4

,
M

4
,
δ

4
; i ∈ Γ

}
.

Proposition 3.5. For each µ > 0 fixed, there exist σo = σo(µ) > 0 and
ε∗ = ε(µ) ≈ 0, such that

‖Φ
′

ε(u)‖∗ε ≥ σo for ε ≥ ε∗ and for all u ∈ (Bε,2µ \Bε,µ) ∩BM+1(0) ∩ ΦDΓ
ε .

Proof. Arguing by contradiction, we assume that there exist εn → 0 and

vn ∈ (Bεn,2µ \Bεn,µ) ∩BM+1(0) ∩ ΦDΓ
εn

such that ‖Φ′
εn

(vn)‖∗εn
→ 0. Since vn ∈ Bεn,2µ and {‖vn‖εn

} is a bounded
sequence, it follows that {Φεn

(vn)} is also bounded. Thus, we may assume

(3.7) Φεn
(vn) → c ∈ (−∞, DΓ],

after extracting a subsequence if necessary. Applying Proposition 2.4, there
exist a integer s, points xi ∈ Ω, sequences {yn,i} ⊂ RN and u0,i functions for
i = 1, . . . , s such that∥∥∥∥vn −

s∑
i=1

u0,i( · − yn,i)χεn( · − yn,i)
∥∥∥∥

εn

→ 0

with

(3.8) εnyn,i → xi for i = 1, . . . , s.
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Since vn ∈ Θ2δ, it follows that s ≥ l and xi ∈ Ωi for i ∈ {1, . . . , l}. On the
other hand, the limit Sεn

→ DΓ combined with (3.8) and (3.7) yields s = l and
xi ∈ Ki for all i = 1, . . . , l. This way,

Φε(vn) → DΓ

showing that vn ∈ Bεn,µ for n large enough, which is a contradiction. �

Proposition 3.6. For each µ ∈ (0, µ∗/2), there exists ε∗ = ε∗(µ) > 0 such
that Φε has a critical point in Bε,µ ∩BM+1(0) ∩ ΦDΓ

ε for all ε ∈ (0, ε∗).

Proof. Arguing again by contradiction, we assume that there exists µ ∈
(0, µ∗/2) and a sequence εn → 0, such that Φεn

has not critical points in
Bεn,µ ∩ BM+1(0) ∩ ΦDΓ

εn
. Since the Palais–Smale condition holds for Φεn

(see
Proposition 2.3), there exists a constant dεn > 0 such that

‖Φ
′

εn
(u)‖∗εn

≥ dεn
for all u ∈ Bεn,µ ∩BM+1(0) ∩ ΦDΓ

εn
.

Moreover, from Proposition 3.5, we also have

‖Φ
′

εn
(u)‖∗εn

≥ σo for all u ∈ (Bεn,2µ \Bεn,µ) ∩BM+1(0) ∩ ΦDΓ
εn

where σo > 0 is independent of εn for n large enough. In what follows, Ψn:Hεn →
R and Qn: ΦDΓ

εn
→ R are continuous functions verifying

Ψn(u) = 1 for u ∈ Bεn,3µ/2 ∩Θδ ∩BM (0),

Ψn(u) = 0 for u /∈ Bεn,2µ ∩BM+1(0),

0 ≤ Ψn(u) ≤ 1 for u ∈ Hεn

and

Qn(u) =

{
−Ψn(u)‖Yn(u)‖−1‖Yn(u)‖ for u ∈ Bεn,2µ ∩BM+1(0),

0 for u /∈ Bεn,2µ ∩BM+1(0),

where Yn is a pseudo-gradient vector field for Φεn onMn = {u ∈ Hεn : Φ′
εn
6= 0}.

Next, we denote by mn
0 the real number given by

mn
0 = sup{Φεn

(u); u ∈ H̃εn
([1/R2, 1])2l \ (Bεn,µ ∩BM (0))}

which verifies lim supn→∞ mn
0 < DΓ, and by K > 0 the real number verifying

|Φεn(u)− Φεn(v)| ≤ K‖u− v‖εn for all u, v ∈ BM+1(0) and for all j ∈ Γ.

From definition of Qn,

‖Qn(u)‖ ≤ 1 for all n ∈ N and u ∈ ΦDΓ
εn

,

consequently, there is a deformation flow ηn: [0,∞)× ΦDΓ
εn

→ ΦDΓ
εn

defined by

dη

dt
= Qn(η), ηn(0, u) = u ∈ ΦDΓ

εn
.
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This flow satisfies the following basic properties:

Φεn(ηn(t, u)) ≤ Φεn(u) for all t ≥ 0 and u ∈ Hεn

and
ηn(t, u) = u for all t ≥ 0 and u /∈ Bεn,2µ ∩BM+1(0).

Claim 1. There exist Tn = T (εn) > 0 and ξ > 0 independent of n, such that

lim sup
n→∞

[
max−→

θ ∈[1/R2,1]l
Φεn

(ηn(Tn, H̃εn
(
−→
θ )))

]
< DΓ − ξ.

In fact, set u = H̃εn(
−→
θ ), d̃εn = min{dεn , σ0}, Tn = σ0µ

2edεn

and η̃n(t) = ηn(t, u).

If u /∈ Bεn,µ ∩BM (0) ∩Θδ, from definition of mn
0 we get

Φεn
(ηn(t, u)) ≤ Φεn

(u) ≤ mn
0 for all t ≥ 0.

On the other hand, if u ∈ Bεn,µ ∩BM (0)∩Θδ, we have to consider the following
cases:

Case 1. η̃n(t) ∈ Bεn,3µ/2 ∩BM (0) ∩Θδ for all t ∈ [0, Tn].

Case 2. η̃n(t0) /∈ Bεn,3µ/2 ∩BM (0) ∩Θδ for some t0 ∈ [0, Tn].
Following the same arguments found in Y. H. Ding and K. Tanaka [17], Case 1

implies that there exists ξ > 0 independent of n such that

Φεn(η̃n(Tn)) ≤ DΓ − ξ.

Related to Case 2, we have the following situations:

(A) There exists t2 ∈ [0, Tn] such that η̃n(t2) /∈ Θδ, and thus for t1 = 0 it
follows that

‖η̃n(t2)− η̃n(t1)‖εn ≥ δ > µ

because η̃(t1) = u ∈ Θ.
(B) There exists t2 ∈ [0, Tn] such that η̃n(t2) /∈ BM (0), so that for t1 = 0

we get

‖η̃n(t2)− η̃n(t1)‖εn
≥ M

2
> µ

because η̃n(t1) = u ∈ B M
2

(0).
(C) η̃n(t) ∈ Θδ ∩ BM (0) for all t ∈ [0, Tn], and there are 0 ≤ t1 ≤ t2 ≤ Tn

such that η̃n(t) ∈ Bεn,3µ/2 \Bεn,µ for all t ∈ [t1, t2] with

|Φεn
(η̃n(t1))− Sεn,Γ| = µ and |Φεn

(η̃n(t2))− Sεn,Γ| = 3µ/2.

Using the definition of K, we have that

‖η̃n(t2)− η̃n(t1)‖εn ≥
µ

2K
.
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The estimates showed in (A)–(C) yield there exists C > 0 such that t2− t1 ≥
Cµ. This combined with some arguments found in [17] gives that there exists
ξ > 0 independent of n such that

lim sup
n→+∞

[
max−→

θ ∈[1/R2,1]l
Φεn(ηn(Tn, H̃ε(

−→
θ ))

]
≤ DΓ − ξ

and the proof of Claim 1 is complete.

Claim 2. The function
−→
θ 7→ ηn(Tn, H̃εn

(
−→
θ )) belongs to Σεn

.

In fact, since ηn(Tn, H̃εn
(
−→
θ )) is a continuous functions in [1/R2, 1]l, we have

to show that

ηn(Tn, H̃εn
(
−→
θ )) = H̃εn

(
−→
θ ) for all

−→
θ ∈ ∂([1/R2, 1]l).

From (3.3),∣∣∣∣Φεn
(H̃εn

(
−→
θ ))−

l∑
j=1

µi

∣∣∣∣ ≥ 2µ∗ for all
−→
θ ∈ ∂([1/R2, 1]l) and n large enough.

Hence, using again the fact that Sεn
→ DΓ as n →∞, there is n0 such that∣∣∣∣Φε(H̃ε(

−→
θ ))− Sε

∣∣∣∣ ≥ µ∗ > 2µ for all
−→
θ ∈ ∂([1/R2, 1]l) and n ≥ n0

which implies that H̃εn
(
−→
θ ) 6∈ Bεn,2µ for all

−→
θ ∈ ∂([1/R2, 1]l) and n ≥ n0. From

this,
ηn(Tn, H̃εn(

−→
θ )) = H̃εn(

−→
θ ) for all

−→
θ ∈ ∂([1/R2, 1]l).

This concludes the proof of the claim.

Combining the definition of Sεn,Γ with Claim 1, and the fact that, for n large
enough, ηε(Tεn , H̃ε(

−→
θ )) belongs to Σεn , we get the inequality

lim sup
n→+∞

Sεn,Γ ≤ DΓ − ξ

which contradicts the Proposition 3.3. �

Here and subsequently, for each ε ∈ (0, ε0), vε denotes the solution given by
Proposition 3.6.

Lemma 3.7. There exist ε̃, µ̃ > 0, such that vε satisfies

max
z∈∂Ωε

vε(z) < m

for all µ ∈ (0, µ̃) and ε ∈ (0, ε̃).

Proof. Arguing by contradiction, we assume that there exist εn, µn → 0
such that

vεn
∈ Bεn,µn

and max
z∈∂Ωεn

vεn
(z) ≥ m for all n ∈ N.
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Hereafter, we set vn(z) = vεn
(z). By Proposition 3.6,

|Φεn(vn)− Sεn | ≤ µn, Φ′
εn

(vn) = 0 and dist(vn,Θ) ≤ 2δ.

Using Proposition 2.4, there exist a integer s, points xi ∈ Ω and u0,i functions
for i = 1, . . . , l such that

(3.9)
∥∥∥∥vn −

s∑
i=1

u0,i( · − yn,i)χεn
( · − yn,i)

∥∥∥∥
εn

→ 0.

and

(3.10) εnyn,i → xi for i = 1, . . . , s.

Since dist(vn,Θ) ≤ 2δ, the limit (3.9) implies that s ≥ l and xi ∈ Ωi for
i ∈ {1, . . . , l}. On the other hand, the limit Sεn

→ DΓ, (3.10) and

|Φεn
(vn)− Sεn

| → 0

imply that s = l and xi ∈ Ki for all i = 1, . . . , l. In what follows, we set
zn ∈ ∂Ωεn verify vn(zn) = maxz∈∂Ωεn

vε(z) and wn(x) = vn(x + zn). Hence,∥∥∥∥wn −
s∑

j=1

u0,j( · + zn − yn,j)χεn( · + zn − yn,j)
∥∥∥∥ → 0.

A direct calculus shows that for each R > 0,∥∥∥∥ s∑
j=1

u0,j( · + zn − yn,j)χεn
( · + zn − yn,j)

∥∥∥∥
W 1,p(BR(0))

→ 0

and, thus
‖wn‖W 1,p(BR(0)) → 0.

Since vn is a solution of (P̃εn
), the function wn is a solution of the following

problem

(A)εn
−∆pwn + V (εnx + εnzn)|wn|p−2u = g(εnx + εnzn, wn) in RN .

Combining Moser iteration technique, the growth of g and the boundedness the
{wn} in Lp∗(RN ), it follows that there exists C > 0 and α ∈ (0, 1) such that

‖wn‖C0,α(B1(0))
≤ C for all n ∈ N

(see [3]). This inequality implies that for some subsequence, still denote by {wn},
we have that

wn → w in C0(B1(0)).

Once
max

z∈∂Ωεn

vεn
(z) ≥ m for all n ∈ N

it follows that wn(0) ≥ m for all n ∈ N and, therefore w(0) ≥ m. Thereby,
there exists R ∈ (0, 1) such that w(x) ≥ m/2 for all x ∈ BR(0). From this, we



Existence of Multi-Peak Solutions 329

deduce that w 6= 0 in W 1,p(BR(0)), which is a contradiction, because wn → 0 in
W 1,p(BR(0)). �

4. Proof of Theorem 1.1

From Lemma 3.7, there exist µ̃, ε0 > 0, such that the solution vε ∈ Bε,µ

given by Proposition 3.6 satisfies

max
z∈∂Ωε

vε(z) < m for all ε ∈ (0, ε0) and all ε ∈ (0, ε0).

Repeating the same arguments found in [15] and [3], we get

vε(x) ≤ m for all x ∈ RN \ Ωε,

and, therefore, vε is a solution for (P̃)ε for all ε ∈ (0, ε0). To finish the proof, we
will show that the family {vε} has the property mentioned in the statement of
the theorem. To this end, we set εn → 0 and vn = vεn . Then, {vn} is a (PS)∗DΓ

sequence verifying

(4.1) dist(vn,Θ) ≤ 2δ for all n ∈ N.

Applying Proposition 2.4, there exists a subsequence of {vn}, still denoted by
itself, a nonnegative integer s , {yn,j}, j = 1, . . . , s and functions u0,j 6= 0 for
i = 1, . . . , s such that

(4.2) εnyn,j → xj ∈ Ω, |yn,j − yn,i| → ∞

and

(4.3)
∥∥∥∥vn −

s∑
j=1

(u0,jχεn
)( · − yn,j)

∥∥∥∥
εn

→ 0

where χε(x) = χ(x/−lnε) for 0 < ε < 1, and χ is a cut-off function which is 1
for |x| ≤ 1, is 0 for |x| ≥ 2 and |∇χ| ≤ 2. From Proposition 2.4, the function
u0,j is a nonnegative solution for

−∆pu + Vju
p−1 = g0,j(x, u), x ∈ RN

where Vj = V (xj) ≥ V0 > 0 and g0,j(x, u) = limn→∞ gε(εnx + εnyn,j , u). More-
over,

(4.4)
l∑

j=1

µj =
s∑

j=1

J0,j(uj)

where J0,j :W 1,p(RN ) → R denotes the functional given by

J0,j(u) =
1
p

∫
RN

(|∇u|p + Vj |u|p)−
∫

RN

G0,j(x, u).
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Repeating the same arguments used in the proof Lemma 3.7, the informations
obtained in (4.1)–(4.4) leads to l = s and xi ∈ Ωi, and so

l∑
j=1

µj =
l∑

j=1

J0,j(u0,j).

This equality implies that xi ∈ Ki for all i = 1, . . . , l, because if for some
i0 ∈ {1, . . . , l} we have xi0 ∈ ∂Ωi, the assumption (V2) leads to V (xi0) > wi0 ,
and thus J0,i0(ui0) > µi0 .

On the other hand, we know that J0,i(ui) ≥ µi for all i = 1, . . . , l then,

l∑
i=1

µi <
l∑

i=1

J0,i(ui),

which is a contradiction. Then xi ∈ Ki and V (xi) = αi for all i = 1, . . . , l, from
where it follows that u0,i is a nontrivial solution of the problem

−∆pu + αiu
p−1 = f(u), x ∈ RN .

Now, we will show that for each ξ > 0, there exist r > 0 and ε∗ > 0 such that

|vn|∞,RN\
S

i∈Γ Br(yεn,i) < ξ for all ε ∈ (0, ε∗).

Moreover, there exists δ > 0 such that

|vn|∞,Br(yεn,i) ≥ δ for all i ∈ Γ.

Considering the function wn,i(x) = vn(x+ yn,i), we have that it is a nonneg-
ative solution and nontrivial of the problem

(A)εn
−∆pwn,i + V (εnx + εnyn,i)|wn,i|p−2u = g(εnx + εnyn,i, wn,i) in RN .

Using (f2) and (g1), there exists δ > 0 satisfying the following inequality

gε(x, t) ≤ V0

2
t for all t ∈ (0, 2δ) and x ∈ RN .

This way,

(4.5) |wn,i|∞,RN ≥ 2δ.

Adapting some arguments found in [3] and [20], for each r > 1, there exists
C > 0 independent of r, such that

|wn,i|∞,RN\Br(0) ≤ C|wn,i|Lp∗ (|x|≥r/2).

By Proposition 2.4, wn → u0,i in W 1,p(RN ), then for each ξ > 0, there is r > 1
and n0 ∈ N such that

|wn,i|∞,RN\Br(0) <
ξ

l
for all n ≥ n0.
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Since

|vn|∞,RN\
S

i∈Γ Br(yn,i) ≤
l∑

i=1

|vn|∞,RN\Br(yn,i) =
l∑

i=1

|wn,i|∞,RN\Br(0)

it follows that
|vn|∞,RN\

S
i∈Γ Br(yn,i) < ξ for all n ≥ n0.

Thereby, for ξ < δ, the last inequality combined with (4.5) yields

|wn,i|∞,Br(0) ≥ δ,

that is,
|vn|∞,Br(yn,i) ≥ δ for all i ∈ Γ.

Defining un(x) = vn(x/εn) and Pn,i = εnyn,i, we get un is a solution of (Pεn
)

verifying
|un|∞,Bεnr(Pn,i) ≥ δ for all i ∈ Γ

and

|un|∞,RN\
S

i∈Γ Bεnr(Pn,i) ≤
l∑

i=1

|un|∞,RN\Bεnr(Pn,i) =
l∑

i=1

|wn,i|∞,RN\Br(0) < ξ,

for all n ≥ n0, finishing the proof of theorem. �

References

[1] C. O. Alves, Existence of multi-bump solutions for a class of quasilinear problems,
Adv. Nonlinear Stud. 6 (2006), 491–509.

[2] , Multiplicity of multi-bump type nodal solutions for a class of elliptic problem
in RN , Topol. Methods Nonlinear Anal. 34 (2009), 231–250.

[3] C. O. Alves and G. M. Figueiredo, Multiplicity of positive solutions for a quasilinear
in RN via penalization method, Adv. Nonlinear Stud. 5 (2005), 531–551.

[4] C. O. Alves and S. H. M. Soares, On the location and profile of spike-layer nodal
solutions to nonlinear Schrödinger equations, J. Math. Anal. Appl. 296 (2004), 563–577.

[5] , Nodal solutions for singularly perturbed equations with critical exponential

growth, J. Differential Equations 234 (2007), 464–484.

[6] A. Ambrosetti, M. Badiale and S. Cingolani, Semiclassical states of nonlinear

Schrödinger equations, Arch. Rational Mech. Anal. 140 (1997), 285–300.

[7] T. Bartsch, K.-C. Chang and Z.-Q. Wang, On the Morse indices of sign changing

solutions of nonlinear elliptic problems, Math. Z. 233 (2000), 655–677.

[8] T. Bartsch, M. Clapp and T. Weth, Configuration spaces, transfer and 2-nodal

solutions of a semiclassical nonlinear Schrödinger equation, Math. Ann. 338 (2007),
147–185.

[9] T. Bartsch, A. Pankov and Z.-Q. Wang, Nonlinear Schrödinger equations with steep
potencial well, Comm. Contemp. Math. 3 (2001), 549–569.

[10] T. Bartsch and Z. Q. Wang, Existence and multiplicity results for some superlinear
elliptic problems in RN , Comm. Partial Differential Equations 20 (1995), 1725–1741.

[11] , Multiple positive solutions for a nonlinearSchrodinger equation, Z. Angew.
Math. Phys. 51 (2000), 366–384.



332 C. O. Alves
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dinger equation, Manuscript Math. 112 (2003), 109–135.

[18] A. Floer and A. Weinstein, Nonspreading wave packets for the cubic Schrödinger

equations with bounded potential, J. Funct. Anal. 69 (1986), 397–408.

[19] A. Giacomini and M. Squassina, Multi-peak solutions for a class of degenerate elliptic

equations, Asymptotic Anal. 36 (2003), 115–147.

[20] L. Gongbao, Some properties of weak solutions of nonlinear scalar field equations, Ann.

Acad. Sci. Fennica Ser. A 14 (1989), 27–36.

[21] C. Gui, Existence of multi-bump solutions for nonlinear Schrodinger equations via vari-
ational method, Comm. Partial Differential Equations 21 (1996), 787–820.

[22] Y. Jianfu, Positive solutions of quasilinear elliptic obstacle problems with critical ex-
ponents, Nonlinear Anal. 25 (1995), 1283–1306.

[23] P. L. Lions, The concentration-compactness principle in the calculus of variation. The
locally compact case, part II, Ann. Inst. H. Poincaré Anal. Non Lineéaire 1 (1984), 223–
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CEP:58109-970, Campina Grande-PB, BRAZIL

E-mail address: coalves@dme.ufcg.edu.br

TMNA : Volume 38 – 2011 – No 2


