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1. Why temporal logic?

What is temporal logic? The term "temporal logic" means "logic
that describes knowledge about time".

Is it mathematics for mathematics' sake, or do we really need a
special logic to describe time? The above description of temporal logic
does not explain whether we need such a logic at all. Often a reader who
encounters a technical paper on temporal logic with lots of technical results
and no motivations in it, can get the idea that temporal logic is pure
mathematics, generalization for generalization's sake that mathematicians
are known to do a lot.

Well, there may be some papers on temporal logic whose authors do
exactly this, but one of the main (and successful) goals of the book is to
explain that many results from temporal logic are indeed useful.

At first glance, first order logic is quite sufficient, and no
special logic is needed to describe temporal knowledge. A century of
using traditional logic has shown that first-order logic is, in principle,
sufficient to describe practically any part of human knowledge. In particular,
we can use first order logic to describe practically every statement about
time. For example, the truth of the temporal statement "B will be true" at a
moment of time t can be described as 3s(s >t & Z?,s ) (where Bk means that
В is true at the moment s). This description is what we professors teach the
students in classes on logic and Artificial Intelligence. So why is a special
logic necessary to describe temporal knowledge? This question is raised (and
answered) in the very first chapter of the book.
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First of all, if nothing else, temporal logic is a useful shorthand
for describing knowledge about time. The first hint that first order
logic may not be the best way to describe temporal knowledge comes from
the fact that even reasonably simple phrases, quite understandable to any
native speaker, are translated into clumsy and unreadable formulas of first
order logic. In fact, they can be so unreadable that asking a student to
translate a given statement into plain English becomes a problem requiring
lots of effort (and worth quite a few points on the test). From the viewpoint
of readability, it is definitely desirable to use special notations for the
typical temporal constructions, such as FA for "A will be true", PA "A was
true", etc.

Shorthand is not yet a new logic. We can, of course, call the logic,
enriched by allowing these abbreviations, temporal logic. But if we simply
view these abbreviations as shorthand for longer formulas of first order
logic, we are, in actuality, not yet introducing a new logic.

These "shorthand" denotations do lead to a new logic after all:
they help to uncover new decidable classes by reformulating first
order statements in a prepositional form. It turns out that these new
notations can help us much more than simply giving us a useful shorthand
writing.

This help is of the same type that lies behind other logics that can also
be, in principle, reduced to first order logic, such as model logics, logics of
knowledge and belief, etc. Namely, in traditional logic there is a big gap
between prepositional logic, that is decidable (i.e., for which we can
always check whether a given statement is always true), and a predicate
logic for which no deciding procedure exists (i.e., for which no universally
applicable checking algorithm exists).

If our knowledge is described in terms of propositional formulas, and
we have a query that is also expressed as a formula of propositional logic,
then we can automatically check:

• whether the query follows from our knowledge (so that the answer to
this query is "true"), or

• its negation follows from the knowledge (in this case, the answer to
this query is "no"), or

• neither the query, not its negation follow from the knowledge; in this
case, the answer to the query is "unknown".
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If our knowledge is described by formulas of first order logic, with quanti-
fiers, then no such general algorithm is possible. This does not mean that
the situation is hopeless:

• we can use an automatic theorem prover to try and prove either the
query or its negation;

• We can translate the knowledge and the query into Prolog and try to
use a Prolog compiler; etc.

These methods are often successful, but in general, no algorithm is possible
to check whether the answer to the given query should be "true", "false", or
"unknown".

The translation mentioned above translates prepositional formulas of
temporal logic (i.e., formulas that do not use quantifiers) into formulas of
predicate logic that do use quantifiers. Our hope (and help) comes from the
fact that although the resulting formulas do use quantifiers, they use them in
a special way. So, maybe, if we restrict ourselves only to the resulting
special formulas of first order logic, we would be able to find a deciding
algorithm.

This hope turns out to be justified: there are many decidable temporal
logics (i.e., decidable fragments of first order logic).

Even undecidable fragments of temporal logic are often useful.
Moreover, even when the resulting logical fragment is not decidable, it may
still be advantageous to use the shorthand notations of temporal logic rather
than the resulting first order formulas: there often exist heuristics specifi-
cally tailored to the resulting fragment of first order logic that work much
better on this fragment that any known general first order logic heuristics.
For example:

• when we represent a simple temporal knowledge base in Prolog
using the shorthand temporal notations, the resulting logic program can
be quite treatable by a given Prolog implementation, while

• the translation with explicit time leads to properties with additional
arity and to additional rules that not only make Prolog work longer, but
often push the resulting logic program outside the scope of the existing
implementation.

Temporal logic is even more useful than it may seem at first
glance. The difference between simple shorthand knowledge and first-order
translation becomes even more drastic if we take into consideration the fact
that to make the translation adequate, we also need to describe the first order
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theory that describes the moments of time. In some problems, it is suf-
ficient to describe this theory as linear order, but it is often important to
know, e.g., that this order is dense (i.e., that for every two moment of time
t < s, there exists a third moment of time x that lies in between the given
two: t < x < s). We may also want to consider not a simple linear sequence
of events, but all possible alternatives of possible decisions; in this case, we
want branching time.

2. The main problems of temporal logic.

The main problem: in brief. In view of the justification provided
above, the main problem of temporal logic is: to find out what temporal
connectives we can add to the existing propositional logic in order to keep
it decidable (or, at least, to make it easier to decide).

The main problems: a more detailed description. We have just
explained the main idea of temporal logic. When we describe this main
problem in detail, we willsee that this main problem can be described as a
sequence of several important problems. So, in the more detailed descrip-
tion, we will talk about main problems of temporal logic. Let us start this
description:

• First, we want to describe what type of time we want (linear,
branching, etc.).

• Second, we must specify with what logic we want to start.
The simplest choice is to start with the classical propositional logic.

However, other choices are also necessary.

• First, as we have mentioned above, the same need for simpli-
fication leads to other non-classical logics such as modal logic, etc.

• Also, in view of the above, we may want to add some predicate
material to the basic logic that we want to "temporalize".

• Third, we must describe exactly temporal connectives in which we
are interested.

• In some cases, we can simply write down the short list of
connectives having real interest.

• In other cases, we are interested in so many possible temporal
connectives that it is practically impossible to independently analyze
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and implement all of them. In this case, the problem becomes: how to
describe the basic ones, in terms of which we can describe all the others
(and is it possible to find such basic connectives at all)?

• Fourth, we must find out whether the resulting temporal logic is
decidable.

• Finally, we must describe how to decide these statements without
"unfolding" them back into the first order logic. For this, we at least
need to axiomatize the resulting logic, i.e., describe a set of axioms
from which each true statement can be derived. If such a representation
is known, then we will be able to apply automatic theorem provers.

These problems are discussed in different chapters of the book. Let us briefly
describe these problems one by one.

3. What model of time should we use?

Main possible models of time. The main possible models of time
are described in Chapter 2:

• If we want to describe the actual sequence of events, then we must
consider linear time, in which every two events are ordered.

• If, on the other hand, we are interested in control or planning, and
we want to consider several possible alternatives, then we must consider
branching time, in which a moment of time describes not only the
physical time, but also what alternative we have chosen. If the choice
was made at a moment 0, then, dependent on the choice, we will have
different moments of this "model" time that correspond, e.g., to the
physical time t - 1. These moments of "model time" are not ordered, so
we do not have a linear order any more.

For each of these two choices, we also have the choice between continuous
and discrete time:

• If we are interested in the state of the real world, then normally, we
need continuous time that can take any real value.

• If, however, we are describing the dynamics of a discrete system
(e.g., the computer), especially a system that has the internal digital
clock controlling its operations, then we do not need to know the state
at every possible moment of time, because no changes occur between
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the ticks of this clock. We only need to consider moments of time that
corresponding to the first, second, third, etc., ticks. In other words, we
only need to consider integer-valued moments of time.

• When we describe a periodic process with some period T, then
again, we do not need to use all moments of time, because the states of
the process at t and t+T are absolutely identical. For such systems, we
must consider cyclic time.

Possibility of other models of time. These are the major possi-
bilities, but they do not exhaust all possible time models: in other real-life
situations, we have to consider more complicated models of time.

For example, usually, we have only a partial knowledge about the
timing of an event: we do not know its exact moment of time f, but we

know the approximate timing t and the accuracy Л of this approximation.
From this information, we can only conclude that the (unknown) moment

of time t belongs to the interval [Г, t+], where Г = t - A and f = t + A.

In this case, the ordering of events becomes only a partial ordering:

Namely:

• If two events are dated by real numbers t and 5, then either t < s (t

precedes or is simultaneous to s), or s <t (s precedes or is simultaneous

toi)-

• If, on the other hand, two events are characterized by intervals [Г,

f] and [s~, s+], then we have three possibilities:

• the first event definitely precedes or is simultaneous to the
second one (f < s~);

• the second event definitely precedes (or is simultaneous to)
the first event (s+ < Г);

• we do not know which events was first: e.g., if we know

that both events occured around time t = 1, and A = 0.5, then [r,
f] = [s~, s+] = [0.5, 1.5] and we do not know which event was first.

This interval ordering was first considered in [Wiener 1914] and [Wiener

1921]; the serious use of interval ordering for knowledge representation

started with Allen's paper [Allen 1983] (for the latest developments, see,
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e.g., [Allen 1991]). Interval ordering is just one example of possible partial
orderings of time.

4. What logics should we temporalize?

We have already mentioned that the authors' main effort is devoted to
temporalizing (traditional) propositional logic. Often, however, prepo-
sitional logic is not sufficient to describe the desired quantity. In such
situations, more complicated logics are used, such as modal logics, etc.

Metalogics. In some cases, it is important to distinguish between the
logic itself and the metalogic used to make statements about this logic. The
resulting pair of logic and metalogic can be viewed as a two-tier logic.
Temporalization of such logics is described in Chapter 5.

Logics with propositional quantifiers. One of the main appli-
cations of temporal logics is reasoning about programs. Many programs use
recursive constructions in their definitions, and recursions in the way they
work. For example, in a programming language we often have a recursive
definition of a datatype, a formula, etc. It is known that such recursive
definitions are not always describable by propositional (or even sometimes
first order) logic; they require additional constructions such as quantifiers
over propositions or the explicit (smallest) fixed point construction. These
constructions are widely used in the semantics of logic programming (there,
fixed points are a standard tool, and quantifiers over propositions are used in
the propositional case of the so-called circumscription).

For such logics, temporalization problems are analyzed in Chapter 8. In
general, the resulting temporal logics are undecidable, but many of them are,
nevertheless, useful.

Temporalizing the general first order logic is an ideal ob-
jective, but (so far) practically hopeless. Ideally, we would like to use
the full first order logic when talking about time. However, it turns out
that when we add discrete time to first order logic, the resulting theory
becomes so rich that arithmetic can be described in it (see Chapter 4). There
are two main consequences of this richness:

• From the logical viewpoint, the resulting theory becomes not only
undecidable, but incomplete as well.

• From the practical viewpoint, the fact that we can represent an
arbitrary arithmetic formula makes automatic theorem proving practi-
cally hopeless.
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5. In what temporal connectives are we interested?

The simplest connectives. In addition to the above-described F and P,
there are several other important temporal connectives, such as:

• NA ("A is true now"); this statement is true at a moment t iff A is
true for all moments of time from some open interval (r, f) that
contains t.

• U(A, B) ("B will be true until A is true"); this statement is true at a
moment t iff 3s (s > t & А ь & VM (i < и < s -» BJ).

• S(A, B) ("B has been true since A was true"); this statement is true
at a moment t iff 3s (s < t & Als & VM (S < и < t -> ß,„)).

For continuous time, these definitions capture (to a certain extent) the
intuitive meanings of the terms "until" and "since". For discrete time (or, in
general, for time "with gaps"), it may happen that there is no moment of
time s that separates, say, A from B; in this case, more complicated defi-
nitions are needed. Corresponding connectives have been proposed; they are
called Stavi connectives (by the name of their inventor) and denoted by If
and S.

More complicated connectives. Phrases from natural language can
describe very complicated temporal relations. A natural question is: do we
need to design a new temporal logic connective for each such relation, or it
is possible to express all possible temporal connectives in terms of the few
selected ones (just like in classical prepositional logic, where we can ex-
press an arbitrary logical relation in terms of, say, conjunction and
negation)? In other words, is there a small expressively complete set of
connectives?

It turns out (see Chapters 9-13) that:

• For linear continuous time, the connectives "until" and "since" {U
and S) described above are expressively complete.

• For general linearly ordered time, we need to add Stavi's versions of
"until" and "since" to get an expressively complete set.

• In general, there exist logics for which no finite set of temporal
connectives is expressionally complete: e.g., the temporal logic that
describes cyclic time.
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The smallest number of connectives in an expressionally complete set is
called the Henkln dimension (or simply H-dimension, for short) of a
temporal logic. A simple syntactic upper bound for й-dimension is known:
if we can express the corresponding first order theory of time moments by
using only к different variables in each formula, then Я-dimension cannot
exceed K. A warning: this syntactic criterion does not provide us with a
final solution to the problem, because H-dimension may be actually smaller
than k.

Multi-dimensional connectives. The above described temporal connec-
tives F, P, etc., are one-dimensional in the sense that each of the resulting
statements FA, etc., is true or false depending on a single time value t. Not
all possible connectives are one-dimensional: some statements from the
natural language require at least two different moments of time to describe.
For example, to check whether a statement "A was true during a certain time
interval" is true, we must fix two moments of time: the endpoints of that
interval.

In some cases, we can represent the same knowledge using only one-
dimensional properties: e.g., the above description can be reduced to the
knowledge of A,, for different moments of time t. However, in other cases,
such a reduction is impossible: e.g., in planning, we have to consider
several possible future trajectories, and therefore, consider statements of the
type: "by moment t, it was still possible to achieve the given goal by the
year s". Such truly multi-dimensional logics are analyzed in Chapter 7.

It is interesting to mention that if we allow multi-dimensional connec-
tives, then for some (but not for all) temporal logics, it will be possible to
find an expressionally complete set of temporal connectives: e.g., such a set
becomes possible for the theory of cyclic time.

6. When is the resulting temporal logic decidable?

General results. In Chapter 14, a general method of temporalizing
logics is described, and general theorems are proven, that under certain
reasonable conditions:

• if the original logic was decidable, then the resulting temporalized
logic is decidable as well;

• if the original logic was complete, then the resulting temporalized
logic is also complete;
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• temporalization is a conservative extension in the sense that a
statement from the original logic is provable in the temporalization iff
it was originally provable.

Temporalization corresponds, crudely speaking, to adding all possible one-
dimensional temporal connectives. To describe two-dimensional connec-
tives, we can apply temporalization to the temporalized logic; if we apply
temporalization once again, we get 3-D connectives, etc.

Specific results. The results of applying these techniques to main
temporal logics are described in Chapter 15.

Main tool for proving decidability. One of the main tools for
proving decidability of temporalized logic is decidability of weak second
order theory.

7. How to axiomatize a temporal logic?

Different axiomatization techniques are described in Chapter 3. A
general theory that describes these techniques and their results is described in
Chapter 6.

Conclusion.

This book is a wonderful introduction to the area, rich in technical
details, and at the same time, rich in motivations. Many specific problems
of temporal reasoning are promised in the second volume that is still to
come, e.g., interval temporal logic in which the main notion is not "a
property is true at a given moment of time", but rather "a property is true
for all moments of time from a given time interval". Together, these two
volumes will be a must for a logician who has ever been interested in time.
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