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NOTES AND QUERIES

WHO INVENTED CANTOR'S BACK-AND-FORTH ARGUMENT?
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One reads that Peano's postulates are really Dedekind's and Dedekind's chains are
really Frege's and Newton's method was known to Archimedes. As Paul J. Campbell has
noted [1978, 85], "the history of mathematics is rife with a variety of misattributions,
whose continued propagation by oral and written tradition is variously due to widespread
ignorance of the historical facts, accepted convention, or just plain complication of the
situation." This paper raises the question: Who Invented Cantor's Back-And-Forth Argu-
ment?

Cantor's Back-And-Forth Argument (BAF) has emerged as a vital technique in the
theory of models. Not to be confused with his Diagonal Argument, which is used most
frequently to prove that there are more real numbers than rationale, Cantor's BAF argu-
ment is best known for its use in proving the isomorphism of any two countable, dense
linear orders (without endpoints). It is a well-entrenched belief among set-theorists and
model-theorists that BAF is due to Cantor, who first introduced it to prove that result.
Indeed, Cantor is sometimes called "the father of the back and forth argument" (see, e.g.,
[Barwise 1973,5-6]), and is frequently cited for proving the isomorphism theorem using
BAF (see, e.g., [Dickmann 1985, 348]; [Roitman 1990, 123]; [Shapiro 1991,160]; and
van Dalen [1983, 132]). Such citations, as in the case of most folkloric attributions,
however, fan to provide precise bibliographic references.

Many years ago, while in graduate school, I discovered a proof of the isomorphism
theorem that did not require the BAF technique. Since this simplification was surprising to
several logicians, I pursued the matter a bit at that time. That led me to look up Cantor's
famous proof. I was shocked to discover that Cantor did the proof "my way," not using
the BAF technique which has become associated with him. So, at that time, two facts were
surprising: (1) the isomorphism result did not require BAF; and (2) Cantor did not use
BAF himself, at least not where he supposedly introduced it (namely, in the two-part
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[1895-97] Beiträge zur Begründung der transfiniten Mengenlehre; see the Phüip E.B.
Jourdain translation, [Cantor 1915,1955 reprint, 123-127]).

More recently, I have investigated the matter further and have a few more details to
report. The first occurrence of the use of the BAF argument I have been able to find is in
Hausdorff s Grundzüge der Mengenlehre written in [1914],1 where (pp. 99-100) he uses
it to prove Cantor's result There is some (perhaps slight) evidence in the book that
Hausdorff wished to offer a more convincing proof than Cantor had. The difficulty with
the "One-Way Argument" (and why it is "surprising'' that it works) is that the "onto" part
of the proof seems to break down. At first glance, it appears that a One-Way Argument
establishes only that one of the two ordered sets can be made isomorphic to a subset of the
other set. In his book, Hausdorff first establishes that theorem using the One-Way
construction. Then, after proving that one set can be made isomorphic to a subset of the
other one, Hausdorff introduces the BAF argument to prove full isomorphism from one
set to the other. This suggests to me that he found the BAF method more convincing than
Cantor's One-Way Argument

Hausdorff was widely read, and it was well-known that the original proof of the
theorem we have been discussing was due to Cantor. Thus, it is possible that readers of
that book (and of Hausdorff s later Mengenlehre [1927; 1935,50-51]) may have assumed
that BAF originated with Cantor.

These speculations are preliminary. The main purpose of this note is to interest others
in these topics so that more conclusive results can be obtained. Here are some questions
that need to be answered: (1) Who really introduced "Cantor's" Back-And-Forth Argu-
ment?; (2) Did Cantor use it somewhere else?; (3) How did Cantor's name come to be
associated with it (supposing someone else pioneered it)?; and (4) exactly when is BAF
dispensable in favor of a One-Way Argument?2

The appendix that follows presents the ideas behind BAF and the One-Way Argument,
together with proofs of the isomorphism theorem.

iThe dedication page of Hausdorff s book says: "Dem Schöpfer der Mengenlehre Herrn Georg
Cantor in dankbarer Verehrung gewidmet [Dedicated With Grateful Reverence To The Creator of Set
Theory, Mr. Georg Cantor]." I wish to thank Michael Losonsky far his translation of the crucial
passages of Hausdorff s book from äie German.

2This question cannot be given a definitive answer until it is more precisely formulated. For
simple cases, where the two sets involved are taken to be well-ordered, it seems that there will
always be a least element having the property in question. This suggests that it may be the case that
many other proofs using BAF can be simplified in favor of One-Way arguments, but the question
needs to be better defined before it admits of a precise answer.
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APPENDIX

The purpose of BAF is to create a "shoelace" effect between two sets in order to "tie
them together." More formally, the idea is to define two functions, say/and/', such that /
goes "forth" from X to Y (i.e.,/: X -* Y) and / ' goes "back" from Y to X (i.e.,/': Y-+ X).
Piecing them together creates a one-to-one correspondence, h, between the sets X and Y. If,
in addition, the resulting function, h, preserves the order relation(s) on each of the two sets,
then the function is an isomorphism.

The problem with defining only one function/from a countable dense linear order X
(without endpoints) to another one, Y, is that for the proof to succeed/must be an onto
function, a surjection. Whereas, if/goes "back" from Y to X, it is clear that both sets must
be "used up" at the same time (formally, by recursion).

Another issue is whether the so-called simplification of BAF to a One-Way argument
is really simpler. Some persons may argue that even though BAF construction is more
complicated than simply defining a function with the requisite properties one way, the
resultant BAF proof is clearer, easier to understand, and therefore simpler. If this is so, it
would not always be a "reduction" to show that a BAF argument could be turned into a
One-Way argument If the above speculation about Hausdorff s motivation for introducing
the BAF construction has any merit, then perhaps this was his position.

BAF ARGUMENT

Following is an informal exposition of the BAF to prove that any two countable dense
linear orders are isomorphic.

Consider X and У to be any two countable dense linear orders without endpoints. The
elements of the sets can be arranged in two lists, where the order of elements in the lists is
indicated by the number of prime marks appended to the letter 'JC' or у , such that the first
element in the list has one prime mark, the next one has two prime marks, etc.:

У-/г' v* r"' V м 1Л— \X ,X ,Л , Л , .../

Start out by letting xo = x ' and yo = у '. Then go "forth" to Y and take the next y in the
list, which is >% *. y" now becomes y\, which is greater than or less than yo. Suppose yi <
yo. Then choose an x less than XQ, and make this x\. (If y\ is greater than yo, then choose an
x greater than XQ to be xi.)

Now, go "back" to X and take the first element left in
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{х\х0,хт; x "",...} -

We know it cannot be x ' because x ' is ло, but it could be x ", Let the first element left in
this set be x^. xi is either greater than each of XQ and x\, less than both of them, or in
between them. Choose а у from

such that this у bears the same relation to yo and yi as *2 does to XQ and xi. This у then
becomes уг.

Go "forth" again to Y, get the next у not yet taken, call this уз, and then choose an x
such that this x bears the same relation to the three x's already taken as 373 does to the three
priory's.

The above method constitutes a recursive definition of the two sequences <XQ, XI, x% x$,
...> and (yo» уь Уг> Уз,-) such that the function h defined from Xto У, where h(xn) = yn, is
the isomorphism we wanted.

ONE-WAY ARGUMENT

The One-Way Argument creating an isomorphism is similar to the above construction
in one direction, except that we explicitly take "the first" value satisfying the given prop-
erty.

We define g:X~* Fas follows, and then prove the onto part: Let g(x') = y ', just to fix

the initial points. Then, if x" <x', let g(x") = thefirsty suchthaty <y'{or ifx" > х',Ы

g(x") = the first y such that у>у*). For any x n (i.e. x followed by n primes), g(xn) = the
first у among

such maty bears the same relation to all of g(x% g(x"),.«, gix"'1), as xn bears to all of JC ',

Л> ) . . - 5 Л .

The claim is that g is an isomorphism, as h is. It was easier to see that h is an isomor-
phism because the back-and-forth character of tibe construction ensured that the elements of
Xand У would be "used up together," i.e., that A is a surjection.

Suppose at least that one element of У is missed. Take the first such element, y™, such

that y™ is not the image of any x in X under g. This means that all of у ', у ",..., У"~l are
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images of x's under g. Suppose that it takes &-many JC'S to cover these m-\ elements of Y,
where k is at least as large as m-i. That creates £+1 "slots", one of which y™ fits into. For
example, one slot exists between the next-to largest and the largest element among g(x %
g(x "),..., g(x*)> and another exists past the largest element (since there are no endpoints).
Not only does y7* fit into one of these slots, but it is the first such element available that fits.
For example, suppose y™ is between g(x') and g(x "). Then, as soon as an x is reached that

is between x ' and x ", g of that x will equal ym. Át some point an x will be encountered that
fits into that slot (by denseness), and it will be mapped to y™. Therefore g is surjective,
which is what we wanted to show.
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