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1. INTRODUCTION

Today almost everybody knows the importance of mathematics in
contemporary civilization. But we have much less knowledge concerning
the nature, structure and regularities of the development of mathematics,
the reasons for its effectiveness, its differentiae and resemblances in
relation to other sciences, etc» Answers to these questions may be given in
different ways. In recent years, along with the informal analysis of
mathematics that included historical studies and assessments of the great
mathematicians (Struik; Renyi; Kitcher; Steiner; Wilder), precise recon-
structions of mathematical theories have become more influential (Balzer;
Schreiber). This direction tries to answer the above-mentioned questions by
means of the analysis of the static and dynamic properties of recon-
structions (models) of a theory. It takes mathematics as an extremely
complex conceptual system that may be studied oh the basis of
mathe=matical logic, model theory, set theory, etc. Following this path
with standard and structuralist approaches, it has obtained many important
and interesting results» But neither those approaches nor their union
(Pearce & Rantala) exhausts all sides of scientific knowledge systems. In
order to develop these approaches and to overcome their limitations a
structural-naming approach has been proposed (Bürgin & Kuznetsov,
19BŐU - 1987), In it a scientific knowledge system is taken as an ensemble
of scientific theories and a scientific theory is treated as a hierarchical
complex system. Ön the highest level of the hierarchy of the latter are
situated logico-linguistic* model-representation, pragmatic-procedural, and
problem-heuristieal subsystems as well as the subsystem of ties between the
previous subsystems» The construction and analysis of these subsystems of
mathematical models for us in an essential way the tools and methods of the
theory of named set (Bürgin 1984). In this paper we give only the basic
concepts and results of this theory necessary for the structural-naming
analysis of some features of subsystems of mathematical theories. It opens
the way for the informal description and formal modeling of the principal
aspects of the development of set theory.
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2. THE MAIN CONSTRUCTIONS AND RESULTS OF THE THEORY OF

NAMED SETS

It is necessary to stress that in the theory of named sets the concept
of name is considered in a much broader sense than usual. Any semiotic
construction which plays the role of symbol, referring expression,
definition, description, model, etc., for internal or external entities of our
consciousness may function as a name. A name in the sense of the theory of
named sets exists only in conjunction with the entities baptized (named,
modeled, defined, represented, explained, described, etc.) by this name. It
does not exclude the situation of a void name, i.e., a name which does not
baptize any existent object. In an extension of the concept of entity, we
include on a par with material amd ideal objects and their properties the
relations between them, operations on objects, their properties and
relations, processes with objects and so forth. The opposition between a
name and the entity that is named is relative. An entity baptized in some
situations by means of a name may function in other situations as the name
of other objects. For example, the conceptual model of an object plays the
role of the specific name of this object and at the same time the model is an
entity named by means of its logico-linguistic description.

The construction of a named set is a general and exact explication of
the above-mentioned situations that are typical and extend to every element,
level, and step in scientific knowledge and cognition. Generally speaking,
scientific knowledge as a conceptual system consists of a very complex
multilevel net of named sets. Above all, the process of correspondence
between one basic entity and other entities which represent the first one in
some way may be treated like the correspondence of entities to their names.
In such a case, the problem of the analysis of the basic properties of entities
is transformed into the problem of the analysis of the properties of their
corresponding names. An analogous reduction of the analysis of entities to
the analysis of their specific names (in a broad sense) characterizes the
theoretical level of cognition in every scientific field.

William Shakespeare was absolutely correct insisting, "What's in a
name? That which we call a rose by any other name would smell as sweet."
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We have, however, to take into consideration that in science we must call
things by their right names. Choosing the right names (in the sense of the
theory of named sets) determines almost everything in scientific cognition.
H. Poincaré wrote about this very vividly: "and now one is amazed at the
power of a single word. There is an object about which it had been possible
to say nothing before it was baptized. But we have a name to this object and
a miracle happens. How does this happen? By giving a name to this object
we implicitly assert that the object exists (i.e. it is free from contradictions)
and that it is fully determined" (Poincaré).

For the exact definition of a named set let us fix three families of sets
(or of classes): ENS, SET, and COL and their morphisms. The collections of
all objects (i.e., sets and/or classes) from these families are denoted as,
respectively, ObENS, ObSET, and ObCOL. The collections of all mor-
phisms (i.e. mappings of sets (classes) or relations between them) from
these families are denoted, respectively as MorENS, MorSET, and
MorCOL. In addition, the following conditions are satisfied: (1) ObENS,
ObSET Ç ObCOL; (2) MorENS, MorSET Q MorCOL; (3) the collection
MorCOL is closed relative to product, i.e., if the mappings a : A -+ В and
ß: В -* С (relations a c A " B , ß £ B x C ) belong to MorCOL, where A,
В, С € ObCOL, then their product aß also belongs to MorCOL. Some
subclass M Q MorCOL is distinguished. It may be done arbitrarily by
means of different conditions on the class M to define the constructions
necessary for the problems under consideration.

DEFINITION 1. A named set (with respect to M £ MorCOL) is a
triple X = (X, a, I) where X € ObENS, I £ ObSET, a : X — I (<x Ç X*I)

and a e M.

Well-known special cases of named sets are ordinary sets, multisets
(Knuth), fuzzy sets (Zadeh), L-sets (Salii; Goguen), and so on.

The set X is called the support of Xand is denoted by SÇX); the set /
is called the name set or set of names of Xand is denoted by N(A); the set
Nf (X) = {a e 11 3x e S(X) & ((x, a) e a)} is called the set of non-void
(factual) names of the named set X; the map (relation) a is called the
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naming map (relation) of X and is denoted by n(X); cc(x) is called the full
name of x in Xand any a €oc (x) is called a {partial) name of л; in X. For
example, for an arbitrary element x from the fuzzy set A, the name of x is
the degree of membership PA( X ) of the element x in the fuzzy set A, i.e.
the value of the membership function цд on the element x.

A named set X is called: (a) normalized if Nf (X) = NpO, i.e. if the
naming relation npO maps X onto /; (b) functional if the naming relation
n(X) is a mapping; (c) singly named if for any x, y € S(X), oc(x) = a(y)
and a = npO is a mapping; (d) individualized if different elements from
S PO have different full names in the named set X, i.e., for any x, y €
Sp0, x * y implies a(x) * a(y).

DEFINITION 2. A morphism of a named set X = (X, a, I) into а
named set У- (Y, ß, J) is a pair Ф = (f,g) where/is a morphism in ENS
from X into Y, g is a morphism in SET from / into J and ccg = fß is valid
in COL, i.e. the following diagram is commutative:

g
I > j

a î î ß
X > Y

If Ф = (f, g) : X -о У and W - (h, к) : У-> Ъ are morphisms of

named sets, then the product of morphisms Ф and V is defined as Ф¥ -
( f h , g k ) : X - Z.

THEOREM 1. (Bürgin 1984). //ENS, SET, and COL ШЧ? categories,
then the totality NSET consisting of all named sets and their morphisms is a
category.

Let X = (X, a, I) and У= (Y, ß, J) be named sets.
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DEFINITION 3. If X = Y and a = ßy where y: J -> I, then Xis called
a right extension of У and У is called a right restriction of X. If I = J
and a = 5ß where 5: X -* Y, then Xis called a left extension of У and У
is called a fc/î restriction of X If X = Y and I = J and a Q ß, then У is
called an inner extension of X

DEFINITION 4. A named set of second order with respect to H £
MorNSET is a triple X= ( X, А, У) where X, У ^ ObNSET, A € H.

DEFINITION 5: If X = (X, A, J) and T/ = (t i , В, 14>) are named
sets of second order, then the morphism Ф: Х-+ U is a pöír of mappings
(Ф\ , <E>2), where Ф1: X -• If and Ф2". У -^ 14/ belong to the category
NSET.

THEOREM 2. The named sets of the second order and their
morphisms form a category N^ SET.

Note that the named sets of more than second order are introduced
analogously.

3. SOME EXAMPLES OF NAMED SETS

We shall give some examples of arithmetical named sets and relations
between them.

From the time of Euclid every mathematical concept has functioned
(implicitly) as a named set. Indeed, usually an important step of
constructing a mathematical concept was giving a definite name to it. After
this baptism (naming), the content of the concept was explicated by means
of a definition. In fact, the definition is a description of a set of elements
which form the support of the named set associated with the mathematical
concept. Such a definition may also be viewed as a name of the concept.
This is evident from Euclid's definition of the natural numbers. According
to him, the unit is the unity by means of which any existing thing is
considered united, and a number is a set consisting of units. In other words,

8
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a number is presented as a collection of units which has a definite
denomination (name) from a distinguished class of words - the so-called
numerals (for example, "two", "three", "five", and so on).

It is important that the fixing of the number of elements in a set by
means of notches and the designation of this number by means of a word -
a numeral - are rather different processes. In the first case, there is only
one sign (for example, a notch) substituting for a single object. Hence, the
main problem is the construction of a one-to-one correspondence between
the number of these notches and the number of objects. In the second case,
in the course of baptising a number, it is necessary to find some specific
denomination for each distinguished set. This problem is more complex
than the first one. Several thousands of years more were taken for its
solution than for the solution of the first problem (see Klix). In fact, the
solution of the second problem led to the formation of the named set
corresponding to the natural number concept, i.e., a concept belonging to
the abstract level of thinking. The solution of the first problem was
obtained on the level of sense perception by means of constructing a one-
to-one correspondence between objects given by the senses.

In addition, the totality of all numbers corresponding to a specific
named set is also represented by a named set. Its support consists of
collections of units, and elements of the named set are designations (names)
of numbers. In turn, this named set has its own name - "the natural
numbers". It is necessary to stress that in this and analogous cases the
denotation of numbers through the use of numerals (for example, "ten"),
simultaneously plays the roles of the name of a totality of units and of the
name of the named set corresponding to a given number. The same
situation characterizes other mathematical concepts.

Thus, returning to the concept of number, we have to keep in mind
that there is a difference between the denotation of a number and the
concept of number, viz., the denotation of a number is an element from the
named set, but the concept of number is the named set which includes the
class of denotations of numbers as its named set. The contemporary set-
theoretic view of natural numbers presents them as specific named sets.
Generally, the name of a number may be taken either from natural
languages or from mathematical languages (enumerations). In the latter
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case the support of the corresponding named set is the class of all
equivalent finite sets. As before, denotations of numbers are simultaneously
names of classes of equivalent sets and names of those named sets which
correspond to these numbers. Every number has many names from various
languages - both from natural (English, Russian, etc.) and from artificial
ones (different enumerations). In addition, different definitions of numbers
are in fact specific names (in the sense of the theory of named sets) of
numbers.

A marvellous example of the last situation is demonstrated by the
different definitions of 'prime number'. According to D. Zagier (Zagier),
a number is called 'prime' if it is not equal to 1 and is not divisible by any
other natural number. This definition is proposed by specialists in number
theory. However, other mathematicians sometimes use other definitions.
Thus, for specialists in function theory, a prime number is an integral zero
of the analytical function

sin — -
1 _ ———

sinf

For an algebraist, a prime number is "the characteristic of a finite field" or
"a point in the spectrum of Z" or a "nonarchimedean valuation". For a
specialist in combinatorics, prime numbers are defined by the recurrance
formula

n+l
Irt« ( *• 4. V

-log (- + I
1 . i v, i"1/

- Г

where [x] is the integer part of the number x. Finally, logicians have
recently defined prime numbers as the positive values of a very complex
polynomial.

One of the simplest examples of morphisms of named sets is the
conversion of numbers from one numeration to another one. This situation
is depicted in the following diagram:

10
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«2» ; • " 1 0 "

The named set corresponding to the decimal representation of the number
2 is on the left and the named set connected with the binary representation
of the number 2 is on the right in this diagram.

4. THE SUBSYSTEMS OF A MATHEMATICAL THEORY

The logico-linguistic subsystem. The basic level of this subsystem
consists of the concepts connected with a mathematical theory. Their
structure and properties are disclosed by means of various named sets,
examples of which (for the concept of number) were given above. The
symbolic forms of the expressions for some concepts (terms) used for the
construction of alphabets (vocabularies) of theory languages are elements
of the second level of the logico-linguistic subsystem. Symbolic forms have
played a very important role in mathematics since the time of François
Viète. For example, one of the forms for representing the number concept
is connected with numerals as elements of some enumeration. The third
level of the subsystem consists of the construction rules for expressions of
the [theory] languages that are built from the elements of the second level.
The fourth level includes various languages treated as systems of
expressions built from symbols of alphabets in accordance with con-
struction rules. In fact, any mathematical theory contains a family of
languages. Ususally its presence is not taken explicitly into consideration.
For example, in the theory of differentiable manifolds we find various
logical languages (languages of predicate calculi of the first and higher
orders, languages of set theory and category theory, natural languages
including specific terms of the theory such as "real number", "manifold",
"bundle", etc.). The classification of languages may be grounded on their
role in the main subsystems of a mathematical theory. In accordance with
this, we can distinguish assertorie, model, procedural, algorithmic,

11
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axiological, erotetical, and other languages. All these languages as systems
of expression are elements of the logico-linguistic subsystem, but their
semantics are defined by means of other subsystems. The model-
representation subsystem defines the semantics for model languages, the
pragmantic-procedural subsystem for procedural, algorithmic, or axio-
logical ones, the problem-heuristical subsystem for erotetic, heuristical,
etc. On the basis of various principles, each of these languages may be
subdivided into sublanguages.

The fifth level of the logico-linguistic subsystem contains rules for
transforming expressions from the theory's languages. In accordance with
the classification of languages there are many kinds of rules of
transformation - for example, deduction, the best known of whose rules
are modus tollens and modus ponens.

The sixth level - which is sometimes divided into two levels -
contains formal calculi. The properties of calculi are primarily studied for
assertorie languages. Any calculus is a named set %j= (A, d, T ) where A
is an axiom system, T is the set of theorems of the given calculus, and d
corresponds to rules which have been used in the process of deducing these
theorems. Ordinary formal calculi, i.e. calculi for assertorie languages, are
constructed by means of deduction rules. The seventh level of the logico-
linguistic subsystem contains the tower of calculi introduced for the
depiction of dynamic aspects of formal theories (Maslov).

The model-representation subsystem. Its first level consists of
various names for entities from the object field of a theory. The second
level contains names of properties and relations between entities studied by
the theory. It also includes more complex constructions describing these
properties and relations. The most important of such constructions is an
abstract property. It has the form of a named set (U, p, L), where U is the
universe of entities considered, p is a partial mapping, and L is the scale of
a property (Bürgin, 1985). L is a partially ordered set.

It is often necessary in mathematical theories to treat on the same
level both properties of entities and their names and more complex
conceptual structures like properties of initial properties, properties of
relations, properties of properties of properties, etc. In order to reflect
this, the object field of a mathematical theory has to include names of

12
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objects, names of their properties and relations between them, and abstract

properties together with their scales. The concept of a set scale у(Ю

provides the possibility for a precise description of this state of affairs
(Bürgin & Kuznetsov, 1986b). This concept is a development of N.
Bourbaki's set scale given in (Bourbaki) and of the concept of universes
used in nonstandard analysis (Davis). Elements of these set scales are parts
of the third level of the model-representation subsystem and are the
supports of models which are constructed in this subsystem.

The fourth level of the model-representation subsystem contains
basic abstract entities defined on the supports of models. The choice of
basic properties depends on axiological judgements.

The fifth level consists of models. In the structural-naming recon-
struction their general form takes the named set M= (v (D), f, L). Here D
is the set consisting of the names of the objects studied, the names of their
properties and relations between them, the names of names, etc.; the names
of abstract properties and relations corresponding to properties and
relations of objects, to properties of their properties, etc.; and names of
ideal entities like truth values, v Ф) is the set scale with basis D. This set
scale includes D and all its elements, functions from D into D, functions
defined on these functions; the set of all subsets of D; and so on. In
principle, the connections between elements from the support of 74 and
properties of these elements are described by means of functions./? defined
on the basis or on a set from some higher level of the set scale. These
functions take values in some partially ordered scales Ц , which are scales
of properties of elements from the domains of the functions considered. As
a matter of convenience, all of these are distinguished from the set scale
Y (D). As all functions are defined on the same support - the set scale v (D)
- it is possible to substitute for them one function/taking values in the
direct product of the scales L = Li * ... * Ln .

The functions included in a model may be distinguished on the
ground of level of constructivity. For example, it is natural to consider
functions given by means of descriptions in natural or mathematical non-
algorithmic languages as descriptive ones. If the presentation of a function
is realized in some algorithmic language, then its values may be found by

13
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means of a computational procedure. It is natural to call these functions
computational ones. We may characterize different kinds of models
according to the kinds of functions included in the models and the
additional conditions on these functions. For example, if the functions
included in a model satisfy the axioms of the theory, then one may talk
about actual models, and so on. The complex structure of the fifth level of
the hierarchy of the model-representation subsystem is reflected in the
sixth and subsequent levels connected with the laws of different orders.

The problem-heuristical subsystem. Its structure is similar to the
structure of the logico-linguistic subsystem. But instead of assertorie
languages, it uses translational, heuristical and other languages for
representing problems, questions, tasks, hypotheses, and heuristical
methods of construction. It contains also calculi and algebras of problems,
questions, hypotheses, etc. (Bürgin & Kuznetsov, 1987). It is necessary to
stress that the problem-heuristical subsystems of the majority of
mathematical theories are less developed and formalized than their logico-
linguistic subsystems.

The pragmatic-procedural subsystem. It consists of two subsystems:
the operation and the axiological. The concepts of operation, algorithm,
procedure, and process occupy the central place in the first subsystem, as
concepts of judgement and norm do in the second one. The problem-
heuristical subsystem is closely connected with other subsystems. For
example, only the introduction of the zero in the positional system of
numeration allowed the situation to be overcome in which the repre-
sentation and designation of numbers and their counting and recording
were absolutely disjoint activities. Both activities and the ability to use
those activities, were independent of one another (Knuth). The last analysis
shows that our manner of doing arithmetical operations is closely
connected with our way of representing numbers in these operations.

Another important concept from the pragmatic-procedural sub-
system is that of algorithm. On the basis of an understanding of this
concept it is possible to analyze it as a named set (X, A, Y), where X is the
set of objects processed by the algorithm, Y the results produced by the
algorithms (natural numbers, words, etc.), and A is the function (mapping)
realized by the algorithm.

14
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Note that in addition to the truth value applied to the assertions of a
mathematical theory, there are other judgements in it such as the adequacy
of models, the complexity of algorithms, and so forth.

The subsystem of ties. It unites all the subsystems considered above.
Examples of the connections of these elements are the interpretations of
languages and calculi in models; the correspondence between algorithms
and procedures on the one hand and those processes on the other presented
in the pragmatic-procedural subsystem; the determination of the properties
of various elements from the main subsystems, and so on.

5. SOME ASPECTS OF THE DEVELOPMENT OF SET THEORY

We shall consider an application of the structural-naming recon-
struction of a mathematical theory to an informal analysis of the structure
and history of set theory. Some of its elements belong among the first
mathematical concepts. For example, the concept of natural number
appeared as an abstraction of definite properties of real families of
mathematical objects. The words "set", "class", "collection", etc. were used
in mathematics at all times and by all peoples. Descriptions such as "finite"
and "infinite" existed in ancient Greece and were connected with problems
such as the structure of space (is it infinitely divisible?) or of motion (the
sophistic paradox of "the arrow"). As a result, different notions of infinity
appeared. In ancient Greece, in addition, the following important problems
were considered: Do infinite sets exist, and if so, then how - actually or
potentially? Many procedures and algorithms known in antiquity and the
middle ages have a set-theoretic character. As examples we can take the
proof of the infinitude of the set of prime numbers or the exhaustion
method of Eudoxus and Archimedes.

Thus, when set theory was beginning to take form as a separate
mathematical field, elements of all its subsystems were already present in
mathematics. The process of the creation of an explicit set theory was
impossible before the main object of this theory - a set - was abstracted as
a mathematical concept. That is why the starting point of set theory is the
work of G. Cantor, where the first intuitive definition of a set is given, i.e.,

15
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the concept of a set was introduced into mathematics. According to Cantor,
we understand by a set a whole M bringing together definite distinguishable
objects m of our contemplation or our thought (they will be called
"elements" of the set M) (Cantor). By introducing the concept of set> the
formation of the language of "naive" set theory was begun. This language,
with some of its concepts and constructions changed, has been included as
an informal (empirical) sublanguage in modern set theory and other
mathematical theories.

Besides the concept of set (and the other terms "finite", "infinite",
"element", etc., that were used earlier) in the linguistic resources of
"naive" set theory, a number of new terms were introduced. They are
symbolic forms of such concepts as "membership" ("membership
relation"), "inclusion" ("inclusion relation"), "one-to-one correspondence",
"power" or "cardinality", "equivalence", "countable", "uncountable",
"transfinite number", and so on. The rules of construction from these and
other mathematical terms involved words from natural languages and
symbols for expressions from "naive" set theory as well as rules of
prepositional deduction in this theory. These rules that were used in fact
fact already existed at the end of the nineteenth century.

From the very beginning of the development of set theory, its
evolution was not restricted to the logico-linguistic subsystem but took
place in all other subsystems and components as well.

Considering the model-representation subsystem, we see that its
central component - models - have been taken from virtually all contem-
porary mathematics: sets of naturals were taken from arithmetic and
number theory; sets of reals and multidimensional spaces were extracted
from analysis and geometry; and so on. For Cantor, the initial models were
trigonometric series and those number sets that appear in their study.

Connections between the logico-linguistic and the model-repre-
sentation subsystems in the more general case are represented by named
sets of models. In other words, for any axiomatic set theory T (for
example, Zermelo-Fraenkel set theory or Godel-Bernays set theory), it is
possible to link a named set Мт to its models. Its support S(MT) is a
collection of all sets that form a model Tt of the theory T (in the sense of
mathematical logic). The set of names N(MT) of Мт consists all expressions
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from the language of the theory T that denote sets, i.e. that name elements
from ft. For a set theory, elements from !M are usually regarded as sets or
classes. The naming relation п(Мт) attaches to elements from !M their
names in N(MT). The axioms of T either show how to build names from
other names (for example, the axiom of union or the axiom of choice) or
determine the relations between such names (for example Martin's axiom
or the continuum hypothesis). In this way S(MT) belongs to the model-
representation subsystem, N(MT) belongs to the logico-linguistic sub-
system, and п(Мт) is an element of the the subsystem of ties. This way of
constructing models was used by K. Godei (Godei) for proving the con-
sistency of the continuum hypothesis with other set-theoretical axioms and
by P. Cohen (Cohen) for proving the independence of the continuum
hypothesis. On the other hand, to any class ÜÄ of models its theory Th£ (M)
can be applied. This theory consists of expressions from the logical
language Z that are valid in all models in Ш1. In this way many results in
algebra can be obtained. In set theory such an approach is usually applied
only in stages - first, using the axioms of T, the named set Мт is is
constructed and only afterwards is its set of names (i.e. the axioms of T)
extended by propositions valid in the model S(MT). It is also connected
with the results of K. Godei and P. Cohen mentioned above.

The formation of the pragmatic-procedural subsystem of set theory
was followed by the construction of many new methods and algorithms for
processing sets. Examples include the diagonal method of Cantor that was
used to prove the uncountability of the continuum; Cantonan enumerations
of finite and infinite totalities of countable sets; the procedures for
establishing a one-to-one correspondence between the real line R and n-
dimensional spaces W for an arbitrary n; the different algorithms for
constructing "derivative" sets; the forcing that was proposed by Cohen for
proving the independence of the continuum hypothesis and was later used
for proving the [relative] independence of a number of hypotheses from
transfinite arithmetic, infinitary combinatorics, general topology, measure
theory, universal algebra, and model theory (Barwise).

In the process of the development of set theory, there appeared
separate descriptions that belong to the axiological part of the pragmatic-
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procedural subsystem. To such descriptions as "finite" and "infinite" were
added "equivalent", "countable", "constructive", "set of cardinality a", etc.
The terms corresponding to these belong to the axiological language of set
theory. The axiological part was further developed so that a strict
mathematical form for existing and new descriptions was given. However it
soon became clear that the values of such descriptions were not always
univalent. As an example, "countability" is not an exact characterization of
sets but depends upon the model of set theory that is under consideration
(the so-called Skolem paradox (Skolem)). In the same way, constractibility
means one thing in descriptive set theory and quite another in intuitionism
and other branches of constructive mathematics, where constructivity is
algorithmical. The latter kind of constructivity depends greatly on the
construction used for the algorithm. For example, by means of the usual
recursive algorithms (like Turing machines), sets from the arithmetical
hierarchy at a higher level than £i are not computable and so are not
constructive. Taking a class of sufficiently powerful superrecursive
algorithms (like inductive Turing machines), however, we can make these
sets computable, and so constructive (Bürgin, 1983).

Active development of the problem-heuristical subsystem of set
theory was inspired by the existence in set theory of a lot of unsolved
problems, tasks, and questions. By the way, many statements of set theory
(for example, the Cantor-Bernstein theorem and the continuum hypothesis)
began as hypotheses.

One of the main characteristics of any mathematical theory is its
consistency. It is generally thought that theories which do not satisfy this
condition must be excluded from scientific knowledge as anomalies. That is
why mathematicians reacted negatively when errors were found in "naive"
set theory in the form of contradictions. These contradictions were
regarded as paradoxes. All of them may be considered as problems of the
existence in "naive" set theory of empty names (in the sense of the theory
of named sets), i.e. expressions of the language of set theory that name
(designate) sets whose existence contradicts other facts of set theory (set-
theoretical paradoxes) or logical laws (semantic paradoxes).

Even at the time when the first paradoxes were found, set theory in
its still incomplete and imperfect form had demonstrated its power and
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fruitfulness for mathematics as a whole. Hence, after finding these
paradoxes many mathematicians expended great efforts to "save" set
theory. To do that, they limited it in such a way as to exclude known
paradoxes. Transformations connected with this effort occurred primarily
in the logico-linguistic and the pragmatic-procedural subsystems of set
theory. The appearance of some important trends in mathematics depended
on the nature of these changes: classical or axiomatic, intuitionistic or
constructive, each of them in its turn subdivided into more specialized
trends and directions.

6. MAIN DIRECTIONS IN THE DEVELOPMENT OF SET THEORY

In classical approaches to set theory the main device chosen for
excluding paradoxes was construction of strictly formalized assertorie
languages for set theory and the selection of axioms on the one hand which
were "foolproof in avoiding the paradoxes and on the other hand
sufficiently "powerful" to obtain the existing mathematical results in all of
the main fields. In this way, axiomatic systems with their own languages
were proposed. The most popular ones were the axiomatizations of
Zermelo-Fraenkel, Gödel-Bernays, Russell, and von Neumann.

Note that in von Neumann's set-theoretic system (as well as in
others), the central idea of a function is determined by the axioms. The
possibility of considering this axiomatization as a set-theoretical one is
based on the fact that in classical mathematics sets and functions are
supposed to be equally fundamental. That means that each of them may be
expressed in terms of the other. When the concept of a set is taken as a
basis (for example in the systems of Zermelo-Fraenkel and Gödel-
Bernays), then functions are represented by subsets of direct products of
sets, so they became derivative constructions with respect to sets. In the
case when a function is chosen as the main concept (as in the system of von
Neumann), then any set may be represented by its characteristic function
(the function equal to one for elements of this set and equal to zero for all
other elements, i.e. those elements that do not belong to this set). It will be
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shown below that such kinds of relations are represented by morphisms of
the named sets in models of the corresponding theories.

Afterwards, however, doubts appeared as to the possibility of the full
mutual expressibility of the concepts of set and function. One of the
arguments that shows the impossibility of reducing functions to sets is the
following: set-theoretical representations of functions do not express
"operational" or "transformational" aspects of the concept of function
(Goldblatt). In other words, while sets express the static side of
mathematical objects, functions explicate their dynamic side. Each of these
sides is inseparably linked with the other. This shows, in particular, that
functions do not exist without sets (functions always have domains and
codomains) and sets at the same time are defined by the functions that
separate those sets.

The mathematical construction that most completely reflects this
inseparable unity of the static and dynamic sides of any mathematical object
(and thus the unity of sets and functions) is the named set. It is important to
note that ordinary sets (for example, in standard axiomatizations) are
special kinds of named sets - just the singly named sets, i.e. the named sets
in which all elements of the support have a common name. Thus, if we
return to Cantor's definition of a set, then the name "M" of the whole set
may be taken as such a common name. More strictly, each element of M
will have the name "an element of the set NT', i.e. all elements from M will
possess the common name that is determined by their membership in M. In
axiomatic systems, similar common names are constructed from a
collection of initial names by means of those rules that are given in the
language and that are formulated in the axioms of the system. For
example, the empty set has a special (individual) name 0 or the name {x | x
* x}, i.e. the name "the set of objects that are unequal to themselves". As
there are no such objects, the set of such objects is empty. Further, if Л and
В are names of sets, then A U В and А П В are the names of their union
and intersection. The existence of these sets is guaranteed by the axioms of
union, or subsets and of pairing in the given system (such as Zermelo-
Fraenkel set theory). The name of a single element set generally has the
form {0}.
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In some generai sense, all set-theoretical axioms may be divided into
constructive (deterministic) and nonconstructive ones, depending on
whether the names obtained by means of an axiom denote only one set or
not. From this viewpoint, the axioms of pairing, union, power set, and
subsets are constructive, while the axiom of choice will be noncon-
structive because more than one set is extracted from it (named). This
suffices to explain the negative attitude of some mathematicians towards
this axiom and the higher value given to those proofs that do not use the
axiom of choice.

The appearance of a direction such as descriptive set theory within
the classical approach is connected with the above understanding of
constructibility (Lusin; Ljapunov).

This approach originates in the demand to limit attention only to
those sets that may be "calculated", "effectively constructed", "determined",
etc. In other words, the names that are given to sets must have a procedural
character, i.e. each name must uniquely determine the process of
constructing the set with the assigned name (although in reality the process
may be unrealizable) and thus must determine the set.

In this way, the difference between the standard classical and the
descriptive approaches is determined by their orientation. The first is
oriented by assertorie languages of the logico-linguistic subsystem. Mean-
while, the second (descriptive set theory) is oriented by a procedural
language (in a generalized sense) that is used for describing set con-
struction. Corresponding procedures are included in the pragmatic-
procedural subsystem of set theory. Constructivism goes much farther still
in its orientation to the pragmatic-procedural subsystem, the most radical
versions of which do not use the concept of set (even as a name) at all. The
main concept of this approach is an algorithm or, in other words, a
constructive representation of functions (Markov & Nagorny). In fact
algorithms are viewed in this treatment as the names of functions in the
usual sense. That is why this approach is an analogue of those classical
approaches in set theory in which the basis is taken to be the concept
fonction and not a set. In constructive mathematics the term "set" is
frequently not used at all, but in fact when it talks about alphabets, strings
of letters (symbols), and words and about abstraction of potential
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realizability, the concept of set (more precisely of multiset) is used
implicitly. It should be noted that in the intensional approach to
understanding functions in constructive mathematics, algorithms play the
role of functions. At the same time, computable (algorithmic) functions
reflect the extensional approach.

In recursive mathematics, which has a constructive direction, the
concepts of function^ algorithm (as partial recursive function) and set exist
in the language at the same time. For example, recursively enumerable,
recursive, and productive sets and recursive, partial recursive, and
primitive recursive functions are studied there.

In intuitionism the leading role is played not by the logico-linguistic
subsystem but by the model-representation and the pragmatic-procedural
subsystems. According to L. Brouwer (see Fraenkel & Bar-Hillel), mathe-
matics is not a theory (in the usual way of understanding a system of
propositions and the rules for constructing them, i.e., as a formal calculus
from the logico-linguistic subsystem), but an important part of human
activity (reflected in the pragmatic-procedural subsystem) that is concen-
trated on one form of our perception (represented by the model-
representation subsystem), and in which the natural numbers are taken as
the principal initial model.

One more direction in the development is alternative set theory. In
alternative set theory, on the one hand, the expressive means of the set
theory are considerably limited. These means are determined to some
extent by the axioms of the theory, and in alternative set theory they are
fewer and less powerful as compared to those of the usual axiomatic set
theories. On the other hand, these limitations are partly compensated for by
the introduction of new concepts (such as semiset, proper semiset, coding
pair, codable classes, etc.) (Vopenka). An important feature of this
approach is the possibility of building models for alternative set theory
using only finite sets from other set theories (for example, from Gödel-
Bernays or Zermelo-Fraenkel set theory). At the same time, the existence
of infinite sets in those theories that were considered previously in the
paper is either postulated (as in the Zermelo-Fraenkel system by the axiom
of infinity) or is deduced from postulates (in intuitionism from the

22



Modern Logic co

principle of the a priori existence of the infinite set of natural numbers and
in constructivism from the principle of potential realizability).

All of the set-theoretical directions and approaches considered above
(even those that do not explicitly include the concept of set) start from the
two premises that follow. According to the first, any element either
belongs to a given set or does not. The second premise states that any two
elements from one and the same set are distinguishable. Altering the first
premise led to the new rapidly-developing direction - fuzzy set theory
(Zadeh). According to its founder L. Zadeh, a fuzzy subset A of the
universe U is a pair [А, Мд], where M A* U -• [0,1] is the membership
function of the fuzzy subset.

Denial of the second premise has also led to the appearance of a new
set-theoretical construction that came to be called a "multiset". It has many
interesting and important applications in combinatorics and the theory of
programming. By an informal definition given by Donald Knuth (Knuth),
a multiset is in many ways analogous to an ordinary set, but differs from
ordinary sets in that a multiset may include identical indiscernible elements.
This allows a number of copies of any element to be in a multiset and so
this number becomes important.

Without necessary details we note two principal points. Firstly, any
ordinary set may be regarded as a special case of a fuzzy set (when the
membership function takes only two values from the interval [0,1], either 1
or 0), as well as of a multiset (when it includes only one copy of any of its
elements). Secondly, both fuzzy sets and multisets are particular cases of
named sets. In fact, according to Zadeh, fuzzy sets result if the class
(algebraic category) to which the support of the associated named set
belongs consists of arbitrary sets. At the same time, the class of the sets of
names consists of a single object, namely the interval [0,1]. Arbitrary maps
of sets are considered as morphisms in the first class and as arbitrary
binary relations on the interval [0,1] in the second class.

In accordance with Knuth's definition as given above, a multiset may
be obtained if only total functions are taken as naming relations and the
following axiom is added: in an arbitrary named set X = (X, a, I) any

23



Volume 2, no. 1 (September 1991)

two elements from the support X = S(X) are discernible iff they have
different names in the set N(X) = I of names.

In this way, modern set-theoretical study is tied up with the
subsystems of set theory. In this study, the resources of language are
modified (for instance, a concept or urelement is introduced, i.e. of
elements of sets that are not sets themselves); the notion of membership is
made more precise or more general; or an abstraction of the identity
elements is reconsidered); new operations and procedures are proposed
(games and computations on sets, forcing, or ways of constructing
nonstandard models); new axioms are introduced (the axiom of
determinateness or Martin's axiom); and new models are elaborated
(nonstandard or constructive) (Barwise).

7. CONSTRUCTIONS FROM THE THEORY OF NAMED SETS AS A MEANS

OF DESCRIBING THE DEVELOPMENT OF SET THEORY

Stages in the development of set theory may be described by means
of some constructions in the theory of named sets. We shall limit ourselves
to an informal level of description using only definitions 2 and 3.

The passage from "naive" set theory to axiomatic systems reduced
the class of names for sets, making them more formal; that is, the named
sets of models of set theory were genuinely restricted. A restriction was
required because of the discovery of paradoxes in "naive" set theory. These
paradoxes indicated the existence in "naive" set theory of empty names, i.e.
names to which, according to logical laws, no sets in the named sets of
models of set theory could be applied. Hence, the restriction was
introduced primarily in order to exclude such empty names, although it
should be noted that in the process of restriction some admissible names
were also prohibited.

The passage to descriptive set theory was tied to an internal
restriction of the named sets of models. It was a consequence of a new
reduction in the collection of admissible (correct) names, a result of the
demands of constructivity. Even more severe conditions of constructivity
or effectivity were elaborated in the constructive and intuitionistic
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approaches. This led to still greater internal restrictions on the named sets
of models.

Any interpretation of one set theory Ti in another one T2 (for
example, constructive or alternative theory in classical theory) or a
construction of models for one of these theories by means of another one
(frequently used for consistency proofs) may be represented as a morphism
of named sets

J:MT - M
1 4

Passage from the theory of ordinary sets to the theory of fuzzy sets
or to the theory of multisets is respectively connected with right extensions
of the named set of models by the introduction of new admissible names
and left extensions of the named set of models at the expense of the
appearance of new models. Analogous extensions provide a passage to the
theory of named sets, which has the widest object field and a more
extensive class of models.

8. CONCLUSION

1. In spite of its brevity, the structural-naming analysis given above
of "naive" set theory uncovered the main subsystems that must be present
in any scientific theory. From this viewpoint, all of these subsystems of set
theories continued their historical development. The various paths taken in
its development gave support to the elaboration of one or another
subsystem. Nevertheless, each proposed variant of set theory contains all of
the subsystems necessary for a mathematical theory. These variants are
connected by different ties and relations (historico-genetic, logical, lin-
guistic, model-theoretic, and so on). They form a theory-net (Balzar &
Sneed), in which the elements are individual set theories.

2. The concept of set appeared to be very complex and many-sided,
leading to the construction of many set theories. Consequently the term "set
theory" acquired at least two meanings in modern mathematics. In a wider
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sense, set theory is viewed as a mathematical field where sets are studied as
the central objects. In a narrow sense, set theory is some completely or
partially formalized mathematical theory. It may be capable of saying a
good deal about properties of sets, have a developed system of procedures
for working with sets, and may serve as a basis for all or a specific part of
mathematics. In addition, the theory must be consistent. Examples of such
theories are Zermelo-Fraenkel set theory, the GÖdel-Bernays theory of sets
and classes, Russell's theory of types, von Neumann's axiomatics, Quine's
system, Wang Hao's system, Lorenzen's system, descriptive set theory,
alternative set theory, etc.
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