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Submetries vs. submersions

Luis Guijarro and Gerard Walschap

Abstract

We study submetries between Alexandrov spaces and show how
some of the usual features of Riemannian submersions fail due to the
lack of smoothness.

1. Introduction and main results

Riemannian submersions are one of the main tools used in Riemannian geo-
metry. On the one hand, they are a basic component of the structure of
certain metrics: for example, the metric projection of an open manifold with
nonnegative sectional curvature onto its soul is a Riemannian submersion.
On the other, every known positively curved manifold admits a (possibly
different) positively curved metric obtained from a submersion from some
Lie group.

In [1], Berestovskii introduced a purely metric version of Riemannian
submersions: a map π : X → B between metric spaces is a submetry if for
every p ∈ X, any closed ball B(p, r) of radius r centered at p maps onto
the ball B(π(p), r). The increasing use of Gromov-Hausdorff distance in
Riemannian geometry is lending growing relevance to this concept. In [2] it
was proved that submetries between Riemannian manifolds are C1,1 Rieman-
nian submersions; thus, new features of submetries appear only under the
presence of some type of singularities, whether in the base or the domain of π.

This note has several purposes: first, we give examples that show how
some of the well known splitting theorems for Riemannian submersions fail
in the context of submetries (recall that a submersion π : M → B is said
to split if M is locally a metric product and π is projection onto one of the
factors). Among these, we exhibit a submetry from a sphere with a locally
flat metric everywhere except for a codimension one singular set (in contrast,
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a Riemannian submersion from a compact flat manifold always splits). This
motivates a further study, in sections 4 and 5, of how metric singularities
interfere with the fiber structure of submetries. One highlight of the latter
section is the fact that extremal sets cannot be oblique with respect to the
horizontal-vertical structure that a submetry introduces in the total space.
Finally, we turn to some splitting theorems.

Throughout the paper, Alexandrov spaces will be finite dimensional,
and |pq| stands for the distance d(p, q) between the points p and q. For
convenience of the reader, we have included a preliminary section with some
of the main results in [8] that will be used in the rest of the paper.

This work was initiated during the workshop “Manifolds with nonnega-
tive sectional curvature” that was held at the American Institute of Math-
ematics on September 2007. The authors want to thank the Institute for
the excellent working conditions that made this research possible. We would
also like to thank A. Lytchak for his constructive criticism.

2. Structure of submetries between Alexandrov spaces

In this section we collect several results that will be needed in what follows,
starting with lifts. Recall that if γ̄ : [0, a] → B is a geodesic (i.e, shortest
curve), a geodesic lift γ : [0, a] → X is a geodesic such that π ◦ γ = γ̄. Its
existence and uniqueness has been proved in for instance, [2], although only
for the case in which γ̄ is the unique geodesic between its endpoints. It is,
however, easily shown that this latter condition is not necessary, although
at the cost of losing uniqueness of the lift; a more general version of this
lemma appears as Lemma 4.4 in [7], but we include one here for the reader’s
convenience.

Lemma 1 (Existence of geodesic lifts). Let π : X → B denote a submetry
between finite dimensional Alexandrov spaces. For any unit speed geodesic
γ̄ : [0, a] → B, and any p ∈ π−1(γ̄(0)), there is a geodesic lift γ : [0, a] → X
of γ̄ starting at p, with length equal to that of γ̄.

Proof. We will construct γ as a limit of piecewise geodesics. For any
integer n ≥ 0, choose a subdivision of [0, a] with points tni = i · a/n and
denote by p̄n

i the points γ̄(tni ). Construct a sequence of points {pn
i } in X

by letting pn
0 = p and pn

i be a point in the fiber over p̄n
i such that |pn

i−1p
n
i |

coincides with |p̄n
i−1p̄

n
i |; let γn be the curve obtained by connecting each

pn
i with its successor pn

i+1. Ascoli-Arzela’s theorem ensures the existence of
some subsequence converging to a curve γ : [0, a] → X, which is clearly a
lift of γ̄. Because of the semicontinuity of length under limits of curves, and
the fact that π is a submetry, we obtain that the length of γ agrees with
that of γ̄. �
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It is also clear that the lift constructed is horizontal, meaning that its
direction at each time lies in the sets Hγ(t) defined later in this section.

Non-uniqueness of liftings occurs for instance in the canonical submetry
that sends the double disk D(Δ) to the disk Δ: any geodesic connecting two
points in the boundary of Δ can be lifted in two different ways to D(Δ).

Next, we recall some results of Lytchak about the structure of general
submetries between Alexandrov spaces [8]. Denote by π : X → B a sub-
metry between two Alexandrov spaces. We will assume all along that X, B
are complete, although some of the statements in this section apply locally.
Unless stated otherwise, the dimensions of X and B are n+k and n respec-
tively.

Alexandrov geometry provides differentiable tools for further study of
submetries. The term “differentiable” must, of course, be understood in a
metrical sense:

Definition 1. Let f : X → Y be a map between Alexandrov spaces. f is
said to be differentiable at p ∈ X if the maps f t agreeing with f : (tX, p) →
(tY, f(p)) converge, in the Gromov-Hausdorff sense, to some limit map Dpf :
TpX → Tf(p)Y as t → ∞. In this case, the limit map Dpf is called the
derivative of f at p.

Reference [8] deals with more general spaces, but in the Alexandrov case
the above definition suffices. Observe also that in this situation, TpX is
actually the Euclidean cone C(Σp) over the space Σp of directions at p, and
similarly for Tf(p)Y .

Definition 2. A homogeneous submetry between Euclidean cones is a sub-
metry g : C(Σ) → C(S) commuting with dilations; i.e, g(tp) = tg(p), t ∈ R.

The following key feature of the differentials of submetries is found in [8]:

Proposition 1. Submetries are differentiable at any point p ∈ X, and its
derivative Dpπ : TpX → Tπ(p)B is a homogeneous submetry.

In light of this property, the following result of Lytchak’s thesis [8] is of
paramount importance, as it mimics the usual splitting of tangent spaces
into horizontal and vertical subspaces:

Proposition 2. Let Σ, S denote two arbitrary Alexandrov spaces with cur-
vature ≥ 1. If f : C(Σ) → C(S) is a homogeneous submetry between their
Euclidean cones, then

1. The fiber over 0 is a totally convex subcone C(V ) of C(Σ) where V is
a totally convex subset of Σ.
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2. The cone C(H) over the polar set H ⊂ Σ to V (that is, the set of points
in Σ at distance at least π/2 from V) agrees with the cone over the set
of horizontal directions; i.e, those directions h ∈ Σ with |f(h)| = |h|.
Furthermore, H is a totally convex subset of Σ.

3. d(V, H) = π/2, and for any x ∈ Σ \ (V ∪ H) there is precisely one
minimal geodesic between H and V that passes through x.

We remind the reader that in Alexandrov geometry, a totally convex set
is one which contains all minimal geodesics whose endpoints lie in the set.
An easy mistake to make would be to assume that the space of directions
at some p ∈ X is necessarily the spherical join of the horizontal and the
vertical spaces. This is not the case, as the following example shows:

Example 1. Let X be the Euclidean cone over CP
2 with its Fubini-Study

metric, and choose any ray from the vertex, γ : [0,∞) → X. Its associated
Busemann function bγ is a submetry onto [0,∞). At the vertex, the hori-
zontal space is a point, while its vertical space is a CP

1. However its space
of directions is the whole CP

2 (see also section (6.4) in [9]).

In order to overcome this difficulty, the following result from Lytchak is
needed:

Proposition 3. Let f : C(Σ) → C(S) be a homogeneous submetry, x ∈
C(Σ) \ (

C(V ) ∪ C(H)
)
. Then there is a unique pair h ∈ C(H), v ∈ C(V )

with x = h + v and 〈h, v〉 = 0. In fact such pair is formed by the projections
of x on C(H) and C(V ); furthermore f(x) = f(h).

The next construction, which appears at several points in [8], will be
needed to describe extremal sets:

Definition 3. Let A ⊂ H , B ⊂ V two sets. We denote by P (A, B) the set
of all points that belong to the image of geodesics connecting points of A to
points of B, with the convention P (A, ∅) = A, P (∅, B) = B.

The following facts are straightforward:

• If A and B are totally geodesic in H and V , then P (A, B) is totally
geodesic in the space of directions Σp;

• P (H, V ) = Σp.

We finish this section wtih a few minor observations:

Corollary 1. Let π : X → B be a submetry with connected fibers. If p ∈ X
has space of directions of diameter less than π/2, then the fiber through p
coincides with p.

Proof. This is an immediate consequence of Proposition 2. �
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It should be observed that the situation of the corollary can occur in
practice; for instance, let B be the spherical suspension of CP

n, and f :
S2n+1 → CP

n the Hopf map. Then the suspension of f gives a submetry
f̄ : S2n+2 → B whose fiber over a vertex point of B is a “vertex” point of
S2n+2 when seen as a suspension of S2n+1.

Corollary 2. If b ∈ B is a regular point of B (i.e, if the space of directions
Σb is isometric to the unit sphere Sn−1), then for any p ∈ Fb, we have a
metric splitting Σp = Sn−1 ∗Ap, for a positively curved Alexandrov space Ap

formed by the unit vertical directions at p.

Proof. This follows from Proposition 2 and the well known fact that any
Alexandrov space with both curvature ≥ 1 and diameter = π is a spherical
suspension (see [3] for instance). �

3. Examples

In this section, we show by means of examples that some of the well known
facts concerning Riemannian submersions do not hold for submetries.

3.1. The “flat” Hopf fibration

The usual Hopf fibration S3 → S2 is a Riemannian submersion when S3 and
S2 are given the round metrics of constant curvature 1 and 4 respectively.
We will modify the metric on S3 to obtain an Alexandrov metric with the
following characteristics:

• The metric is locally isometric to a flat metric everywhere except in a
hypersurface, where it lacks smoothness;

• It projects to a metric in S2 for which the Hopf map f : S3 → S2 is a
submetry.

Recall that the sphere S3 can be written as the union of two solid tori:
the set of points with x2

0 + x2
1 ≤ 1/2, and those with x2

2 + x2
3 ≤ 1/2. Clearly

each one of these tori is a union of Hopf fibers. Each torus is diffeomorphic
to S1 × D2, where D2 is the unit disc in the plane R2, and the circles
x0 = x1 = 0, and x2 = x3 = 0 correspond to S1 × {0}. The boundary
identification given by (x0, x1, x2, x3) �→ (x2, x3, x0, x1) along the Clifford
torus gives the three dimensional sphere.

To construct the flat metric, take two tori S1×D2 with the standard flat
product metric. This yields two nonnegatively curved Alexandrov spaces
with isometric boundaries under the identification that switches the S1 fac-
tors in the boundary. Thus, by Petrunin’s gluing theorem [11], the metric
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on S3 obtained by gluing the boundaries is an Alexandrov metric with non-
negative curvature. It is clear that the ”Hopf” action z(z1, z2) = (zz1, zz2)
on each factor is still by isometries, thus providing a submetry π : S3 → S2

as claimed.
It is interesting to observe that nonetheless, along the smooth part of

the submetry, the usual O’Neill’s A-tensor does not vanish: if X is the
unit vector tangent to the S1 factor, and ∂r, ∂θ are the polar coordinate
vectors in D2, then the Hopf fiber is tangent to X + r∂θ, and its orthogonal
complement is spanned by Y1 = rX − ∂θ, Y2 = ∂r. An easy computation
shows that

AY1Y2 =
1

2

〈−X, X + r∂θ〉
1 + r2

(X + r∂θ) = − 1

2(1 + r2)
(X + r∂θ) .

In the absence of singularities, a flat metric in a compact total space
implies flatness of the base and global vanishing of the A tensor (see for
example [4] and [13]). However, the presence of the metric singularity along
the Clifford torus excludes this behavior.

3.2. Totally geodesic fibers are not always isometric

Given a Riemannian submersion, recall that any curve in the base space in-
duces a diffeomorphism between the fibers over the endpoints, obtained by
assigning to each point p in the initial fiber the endpoint of the horizontal lift
through p of the curve. These maps are called holonomy diffeomorphisms. If
the fibers of a Riemannian submersion are totally geodesic, then the holon-
omy diffeomorphisms between fibers are isometries. This is no longer true
for submetries, as our next example shows:

Consider the action of Z on R2 × R = C × R given by

m(z, t) = (e
imπ

2 z, t + m), m ∈ Z, z ∈ C, t ∈ R.

Let M denote the quotient space by this action; it clearly inherits a flat
metric. The action of R by translations on the second factor of C × R

commutes with that of Z, and hence induces an isometric action on M . The
quotient space B is isometric to a euclidean cone over a circle of length π/2,
and there is a submetry π : M → B. The fibers of π are totally geodesic
in M ; however, they are not isometric: the one corresponding to the vertex
of the cone has length 1, while all the others have length 4. These statements
are easier to visualize by observing that M is just the mapping cylinder of
the rotation of the plane by an angle π/2 with its flat metric, while the fibers
of π correspond to the subsets obtained from the vertical factor.
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4. Quasigeodesics and submetries

Quasigeodesics are natural substitutes for geodesics in Alexandrov spaces.
Our aim in this section is to determine the extent to which the behaviour
of horizontal geodesics in submersions carries over to quasigeodesics in sub-
metries. The reader can consult [11] or [12] for the necessary definitions.

First of all, observe that if a quasigeodesic γ : I → X is horizontal at one
point, it does not necessarily stay horizontal at every point. For example,
consider the submetry from the square R = [0, 1] × [0, 1] onto [0, 1] given
by projection onto one factor; the boundary of R is a quasigeodesic, but at
the corners changes from horizontal to vertical and vice versa. On the other
hand, some properties do hold in this more general setting:

Proposition 4. The image of a horizontal quasigeodesic is a quasigeodesic
in the base B.

Proof. Let γ : I → X be a horizontal quasigeodesic; denote by γ̄ = π ◦ γ
its projection, which is clearly parametrized by arc length if γ is. We will
use the characterization of quasigeodesics given on page 171 of [12]: γ̄ is a
quasigeodesic iff there is an inequality

∠(ᾱ′(0), γ̄+(0)) ≥ ∠̃k(|γ̄(0)q̄|, |γ̄(t)q̄|, t)
for all small t > 0 and q̄ ∈ B; here, ᾱ is a shortest geodesic between γ̄(0)
and q̄, γ̄+(0) is the right tangent vector of γ̄ at 0, and ∠̃k is the comparison
angle at γ̄(0) in a space of constant curvature k, where k is a lower curvature
bound for X and B. Since ᾱ is minimal, it may be horizontally lifted to a
geodesic α starting at γ(0) because of lemma 1.

We claim that the angle between the lifts equals the original angle; i.e,
for horizontal directions x, y ∈ Σγ(0), ∠(x, y) = ∠(Dπx, Dπy). To see this,
recall that by Proposition 2, there exists a minimal geodesic c : [0, 1] → H
in H joining x and y, and the set {tc(s) | t ≥ 0, s ∈ [0, 1]} in the cone C(H)
is an isometrically imbedded flat wedge. We may then define x+y to be the
midpoint of the segment joining 2x and 2y. Even though this point depends
on the choice of c, one always has that |x + y|2 = |x|2 + |y|2 + 2〈x, y〉. Now,
by a result of Lang and Schroeder [6], for any v ∈ C(Σγ(0)X), 〈v, x + y〉 ≤
〈v, x〉+ 〈v, y〉. But by Proposition 2, w is horizontal if and only if 〈v, w〉 ≤ 0
for all v ∈ V , so that x + y is horizontal whenever x and y are. Finally, the
angle between x and y has as cosine (|x + y|2 − |x|2 − |y|2)/(2|x||y|), and
since all lengths are preserved under Dπ, it equals the angle between the
projected vectors, as claimed.

Thus, in X,

∠(α′(0), γ+(0)) = ∠(ᾱ′(0), γ̄+(0)), |γ(t)q| ≥ |γ̄(t)q̄|,
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where the last inequality is due to π being distance nonincreasing. Hence

∠̃k(|γ(0)q|, |γ(t)q|, t) ≥ ∠̃k(|γ̄(0)q̄|, |γ̄(t)q̄|, t),
and the result follows since

∠(α′(0), γ+(0)) ≥ ∠̃k(|γ(0)q|, |γ̄(t)q|, t)
because γ is a quasigeodesic. �

5. Extremal subsets and submetries

Many of the differences between submersions and submetries seem to arise
from the presence of “singular” sets in Alexandrov spaces. The appropriate
version of singularity in this context is that of extremal set, introduced by
Perelman and Petrunin in [10]. In this section, we examine how such sets
are situated in relation to the fibers of the submetry. We refer the reader
to [12] and the above reference for the definitions and lemmas used in this
section:

5.1. Images of extremals are extremals

We generalize Proposition 4.1 in [10] from isometric quotients to general
submetries.

Proposition 5. Let E ⊂ X an extremal set. Then Ē := π(E) is extremal
in B.

Proof. Since B itself is extremal, we may assume that Ē is a proper subset
of B. Let q̄ be a point in B, and suppose that p̄ is a point in Ē at minimal
distance from q̄. Consider any p ∈ E in the preimage of p̄, and choose
some point q over q̄ such that |pq| = |p̄q̄|. Then the distance function d(q, ·)
from q has a minimum at p when restricted to E, and for any sequence pi

in E converging to p,

lim sup
pi→p

|qpi| − |qp|
|ppi| ≤ 0

by the definition of extremality. If p̄i is a sequence of points in Ē approach-
ing p̄, then after choosing pi over p̄i approaching p, using that |q̄p̄i| ≤ |qpi|
and the above inequality, we get

lim sup
p̄i→p̄

|q̄p̄i| − |q̄p̄|
|p̄p̄i| ≤ lim sup

pi→p

|qpi| − |qp|
|ppi| · |ppi|

|p̄p̄i| ≤ 0.

�
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Observe that the converse is not true: if Ē ⊂ B is extremal, it does not,
in general, follow that π−1(Ē) has that same property. For instance, take
the action of Zk on R2 where the generator of Zk acts by a rotation with
angle 2π/k; if k > 1, then the orbit space B is a cone of angle 2π/k, and
thus its vertex 0̄ is extremal. R2, however, is extremal-free.

5.2. There are no slanted extremals

Recall that for a submetry π : X → B, directions at points of X split into
horizontal and vertical components. Recall also that given any point p in an
extremal set E ⊂ X, there is a well defined subset ΣpE ⊂ Σp of directions
tangent to E at p. A very natural question arises: how is ΣpE placed with
regard to π?

It is easy to construct examples where ΣpE is entirely horizontal or
vertical:

• Let K be a Euclidean cone over any positively curved Riemannian
manifold of diameter less than π/2, and define X = K ×B, for B any
Riemannian manifold. The only nontrivial extremal set in X is the
product of the vertex of K with B. It is clear that the projection onto
B is a submetry and E is horizontal.

• For the same X, choose now the projection onto K to be the submetry:
E is now a fiber, hence vertical.

• The above cases do not cover all the possibilities for extremals. After
all, the total space X is itself an extremal. But the situation can
even mix horizontal and vertical directions without any intermediate
behaviour. For instance, let X denote the product C0(CP

2)×C0(CP
2)

of the Euclidean cone over CP
2 with itself, and π the projection onto

the first factor. Then the set (C0(CP
2) × {0}) ∪ ({0} × C0(CP

2)) is
extremal, but is neither horizontal nor vertical for the submetry π.

The following lemma is a particular case of our main structure result,
but since it illustrates its proof, we state it separately:

Lemma 2. Let Xbe a spherical suspension over an Alexandrov space Y with
curvature ≥ 1. If E is a connected extremal set in X, then E is either one
of the cone points or a spherical suspension over some extremal subset of Y .

Proof. Assume E is not a cone point; we need to show that for any other
p ∈ E, the geodesic γ : [0, π] → X connecting the poles through p is
contained in E. Recall that according to [12], a set is extremal iff for any
q ∈ X, a gradient curve of the distance function d(q, ·) from q starting at a
point of E remains in E. But the gradient curves of the distance functions
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from the poles are precisely the meridians. Thus we obtain that γ[0, π] ⊂ E
as desired. Denote by A the set consisting of the midpoints γ(π/2) of all
meridians γ that pass through points of E; then A is contained in Y , which is
totally geodesic. By looking at gradient curves from points in Y we conclude
that A has to be extremal in Y as claimed. �
Theorem 1 (Structure of extremal directions). Let π : X → B, E, ΣpE be
as above, and set HE = H ∩ ΣpE, V E = V ∩ ΣpE.

1. If HE = ∅, then ΣpE is vertical; an analogous statement holds for V E.

2. HE and V E are extremal in H and V respectively.

3. There is an inclusion ΣpE ⊂ P (HE, V E).

4. Each connected component of ΣpE is either horizontal, vertical, or
contained in P (H1, V1) for some connected extremal sets H1, V1 in H
and V respectively.

Proof. The starting point is that if E is extremal in an Alexandrov space,
then its space of directions ΣpE is extremal in Σp. Another useful fact is that
if e = x + u is the horizontal-vertical decomposition of e ∈ ΣpE, then the
geodesic in Σ connecting x/|x| to u/|u| must be contained in ΣpE whenever
x, u �= 0, since such a geodesic is a gradient curve for the distance function
from x/|x| or u/|u| respectively. Combining these with the splitting of Σp

into horizontal and vertical directions implies most of the statements.
For instance, choose some e ∈ ΣpE with e = h + u its decomposition.

If HE = ∅, then h must vanish, since otherwise the observation in the first
paragraph shows that h/|h| ∈ ΣpE. Thus e ∈ V E. The case with V E = ∅
is proved in a similar way.

Assume now that HE �= ∅, and let h ∈ H . Let e = y + u ∈ ΣpE be
the point in ΣpE closest to h. Then either e = u or e = y since otherwise
by the above observation, y would be a point in ΣpE closer to h than e.
If there were a point z in H at distance larger than π/2 from h, we would
get a contradiction: a geodesic from u to h forms an angle dH(h, z) with a
geodesic from u to z, negating the extremality of E. Therefore the closest
point to any h ∈ H can be taken at H . Since this set is totally convex, HE
is extremal in H . Once again, the argument for V E is entirely similar.

Next assume that w ∈ ΣpE. Write w = h+v; if h or v vanish, then clearly
w ∈ P (HE, V E). We may therefore assume that w lies in the interior of
some geodesic between H and V . As before, such a geodesic remains in ΣpE
and therefore ΣpE ⊂ P (HE, V E). Finally the last statement is obvious,
since each connected component of an extremal set is itself extremal. �
Theorem 2. Let E ⊂ X an extremal set, and π : X → B a submetry.
Then E is not slanted with respect to π.
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Proof. This is clear from the previous theorem since the argument shows
that any point in E must admit tangent directions that are either horizontal
or vertical. �

Corollary 3. Let E be a connected extremal set of dimension one in an
Alexandrov space X. Then at each of its points E is either horizontal or
vertical with respect to any submetry from X.

Proof. Otherwise E would have some point p with a slanted direction,
and hence the above theorem would force E to have dimension two or greater.

�
In fact, as stated earlier there are one-dimensional extremal sets with

both horizontal and vertical pieces. An easy argument shows that they are
countable at most.

5.3. The restriction of a submetry to an extremal set

Recall that extremal sets with their induced metrics are no longer Alexan-
drov spaces in general. In spite of this, they are nonetheless well behaved
with respect to submetries. We make this more explicit in the following
result, which is a particular case of the more general theorem 4.3 in [7]:

Theorem 3. Let E be an extremal subset of an Alexandrov space X, and
π : X → B a submetry. Assume that for every p ∈ E and for every direction
v̄ ∈ Σπ(p)Ē there is a v ∈ ΣpE with Dpπ(v) = v̄. Then π|E : E → Ē is a
submetry when E and Ē are given their induced metrics.

Proof. Let p ∈ E, r > 0. If γ : [0, r] → E is a curve in E with �(γ) ≤ r,
then �(π ◦ γ) ≤ r and π ◦ γ is contained in Ē. Hence π(BE(p, r)) ⊂ BĒ(p̄, r)
where the balls are being taken in the relative metrics.

For the opposite inclusion, let q̄ ∈ Ē be some point with dĒ(p̄, q̄) = r;
we want to show that there is some unit speed curve γ : [0, r] → X entirely
contained in E, and such that γ(0) = p, γ(r) ∈ π−1(q̄). This will be con-
structed using piecewise quasigeodesics whose limit will result in the desired
curve. To accomplish this, observe that the hypothesis on Dπ combined
with Theorem 1 shows that any tangent direction to Ē at some point p̄′ can
be lifted horizontally and tangential to any point p′ in E over p̄′.

Given a positive integer n, consider the partition 0 = t0 < · · · < ti =
i
n
r < · · · < tn = r. We construct γn as follows:

• Let γn(0) = p; lift a unit speed shortest Ē-curve between p̄ and q̄ to
p, and denote it by α. By Theorem 1, α′

+(0) is tangent to E;
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• On the interval [t0, t1], let γn coincide with the (necessarily unit speed)
quasigeodesic from p tangent to α′

+(0); by extremality of E, this curve
can be taken entirely contained in E (see for instance section 5.1
in [12]);

• To extend γn to [t1, t2], take a Ē-geodesic in B between π ◦ γ(t1)
and q̄, and lift it horizontally to γn(t1). Again, its right velocity vector
is tangent to E by Theorem 1, and we may follow a quasigeodesic from
γn(t1) and contained in E to construct γn : [t1, t2] → X;

• Iterate this procedure on each subinterval of the partition; after n steps
we obtain a curve γn defined over all the interval [0, r].

There is a subsequence of the γn(which we still denote by γn) that con-
verges to some γ : [0, r] → X. Clearly γ is entirely contained in E, since
extremal sets are closed. Thus, there are only two facts that remain to be
established: firstly that the length of γ does not exceed r, and secondly
that γ connects p to the fiber over q̄. For the first one, observe that the
length of each γn does not exceed r, so that �(γ) ≤ r.

In order to prove that γ(r) is in π−1(q̄), set γ̄ = π ◦ γ, and observe that
we have d(γ(t), π−1(q̄)) ≤ dĒ(γ̄(t), q̄). We will use Petrunin’s first variation
formula for extremal sets (see [11]), in order to show that the right hand side
equals zero when t = r. So let γ̄n = π ◦ γn; since at each ti, γ̄′

n is tangent to
a shortest geodesic from γ̄n(ti) to q̄, we have that for t ∈ [ti, ti+1],

|γ̄n(t)q̄|E = |γ̄n(ti)q̄|E − (t − ti) + o(t − ti),

and in particular

|γ̄n(ti+1)q̄|E = |γ̄n(ti)q̄|E − r

n
+ o

(1

n

)
.

Writing out the above for i = 0, . . . , n − 1, we obtain

|γ̄n(r)q̄|E = |γ̄n(0)q̄|E − r + n · o
(1

n

)
= n · o

(1

n

)
.

Taking the limit as n → ∞ now implies that γ̄(r) = q̄, as desired. �

The hypothesis on Dπ is necessary: otherwise let X = [0, 1]× [0, 1], B =
[0, 1], and π be the projection onto the first factor. Then the boundary E
of X is extremal, but at the point (0, 1/2), say, balls of radius r < 1/2 in E
are mapped to the point 0.
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6. A splitting theorem for bounded curvature

Recall that for length spaces (X, dX) and (Y, dY ), the product metric d on
X × Y is defined by

d2((x1, y1), (x2, y2)) = d2
X(x1, x2) + d2

Y (y1, y2), xi ∈ X, yi ∈ Y.

One feature of the product metric is that the projections πX : X × Y → X
and πY : X × Y → Y are submetries for which the horizontal space of
one is the vertical space of the other: formally, for each (x, y) ∈ X × Y ,
πX : π−1

Y (πY (x, y)) → X and πY : π−1
X (πX(x, y)) → Y are isometries. For

arbitrary length spaces, this does not characterize the product metric, how-
ever:

Example 2. Consider the metric d̃ on X × Y , where

d̃((x1, y1), (x2, y2)) = dX(x1, x2) + dY (y1, y2).

It is easily checked that the projections are submetries. For example, given
x ∈ X, y ∈ Y , if B denotes the closed ball of radius r in X centered at x,
and B̃ the closed ball of the same radius in X × Y centered at (x, y), then
B × {y} ⊂ B̃, so that B ⊂ πX(B̃). Since πX does not increase distances,
πX(B̃) = B, and πX is a submetry. Clearly, the horizontal space at a point
is the fiber of πY through that point.

For metrics with curvature bounded both above and below, however, this
property does characterize a product metric:

Proposition 6. Let d denote a metric on X × Y with (local) prolongation
of shortest arcs, and with curvature bounded above and below. Then d is the
product metric iff the projections onto each factor are submetries such that
for each (x, y) ∈ X×Y , πX : π−1

Y (πY (x, y))→ X and πY : π−1
X (πX(x, y))→ Y

are isometries.

Proof. The condition is clearly necessary, so assume that d is a metric for
which the projections are submetries. By a result of Nikolaev (see e.g. [3]
Theorem 10.10.13), boundedness of curvature implies that X × Y is a C3-
manifold and d is the distance function associated to a Riemannian metric
〈, 〉 of class C1,α for all α < 1. Identifying T(x,y)(X × Y ) ∼= TxX × TyY via
(πX∗, πY ∗), we have |(u, 0)| = |u| for u ∈ TxX since (u, 0) is πX -horizontal,
and similarly |(0,v))| = |v| for v ∈ TyY . Furthermore, 〈(u, 0), (0,v)〉=0 by
orthogonality of horizontal and vertical subspaces. Thus,

|(u,v)|2 = 〈(u, 0) + (0,v), (u, 0) + (0,v)〉 =

= |(u, 0)|2 + |(0,v)|2 + 2〈(u, 0), (0,v)〉 = |u|2 + |v|2,
which is the definition of the Riemannian product metric. �
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Similar problems occur when attempting to generalize other results for
Riemannian submersions to the submetry setting: for example, it is known
that the only complete warped products of nonnegative curvature are metric
products. This fails for Alexandrov spaces whose curvature is not bounded
above, as can be seen by considering a sharp cone [0,∞) ×f S1, where
f(t) = αt, 0 < α < 1.

Another property of Riemannian submersions that does not carry over to
submetries is uniqueness of horizontal lifts, as was pointed out in Section 2.
For yet another example, consider the ray in the base space of the submetry
[0,∞)×f S1 → [0,∞) from above. It has infinitely many lifts at the vertex
of the cone.
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