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L2 boundedness for maximal commu-

tators with rough variable kernels

Yanping Chen, Yong Ding and Ran Li

Abstract

For b € BMO(R") and k € N, the k-th order maximal commuta-
tor of the singular integral operator 1" with rough variable kernels is
defined by

Tz;k,kf(l“) = Sup
e>0

[ D) - ) )
|z—y|>e |.Z‘ - y|

In this paper the authors prove that the k-th order maximal com-
mutator 7, is a bounded operator on L*(R") if Q satisfies the
same conditions given by Calderén and Zygmund. Moreover, the
L?-boundedness of the k-th order commutator of the rough maximal
operator Mg with variable kernel, which is defined by

Mo f(x) = sup = |2,z = y)l[b) = b(y)[*|f(y)|dy,

>0 T" |z—y|<r

is also given here. These results obtained in this paper are substantial
improvement and extension of some known results.

1. Introduction

Let S™~! be the unit sphere in R" (n > 2) and do be the area element
on S"1. A function © defined on R™ x R" is said to be in L>°(R™) x L?(S™ 1)
for ¢ > 1, if €2 satisfies the following conditions:

(i) for any z, z € R" and A > 0, Q(x, A\z) = Q(z, 2);

y 1
(i) [ oqmnywraisn ) = SUD,egn ([gu [z, 2)]1do ()" < oo,
where 2/ = z/|z|, for any z € R\ {0}.
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If Q € L®(R") x LI(S™!) satisfies
/ 1 Qz,2')do(z") =0 for any z € R", (1.1)
then the singular fntegral operator with variable kernel is defined by
Tf(x) = p.v./ Mf(y) dy.

no =yl
In 1955, Calderén and Zygmund [5] investigated the L? boundedness of
the operator T'. They found that these operators are relevant in the second
order linear elliptic equations with variable coefficients. In [5], Calderén and
Zygmund obtained the following result (see also [6]):

Theorem A (see [5]) If Q€ L®(R™) x LY(S™ 1) for ¢ > 2(n—1)/n and
satisfies (1.1), then there is a constant C' > 0 such that ||T f||r2 < C|| f]| 2.

Remark 1.1 In [5], Calderén and Zygmund showed that the condition
q > 2(n —1)/n is optimal in the sense that the L?*-boundedness of T fails if
qg<2(n-—1)/n.

It is well known that maximal singular integral operators play a key role
in studying the convergence of the singular integral operators almost ev-
erywhere. The mapping properties of the maximal singular integrals with
convolution kernels have been extensively studied (see [25], [15] and [18],
for example). In 1980, Aguilera and Harboure [1] considered the L? bound-
edness of the maximal singular integral operator 7% with variable kernel,
where T™ is defined by

T"f(x) = sup

e>0

[ )= s ),

|.T - yln e>0

e T.f(x) = / 25T =Y) po)ay
) |z—y|>e |x_y|n ‘

Theorem B (see [1]) If Q € L®(R™")x L1(S™™1) forq > 4(n—1)/(2n—1) and
satisfies (1.1), then there is a constant C' > 0 such that | T f||.> < C||f|| 12

In 1985, using spherical harmonic expansions of the kernel, Cowling and
Mauceri [13] proved that the conclusion of Theorem B still holds for ¢ >
2(n — 1)/n. The same conclusion was also obtained by Christ, Duoandi-
koetxea and Rubio de Francia [10] by the method of rotations and mixed
norm estimates in 1986.

Theorem C (see [13] or [10]) If Q € L®(R")x LY(S™ ') forq > 2(n—1)/n
and satisfies (1.1), then T* is a bounded operator on L*(R").

Obviously, the range of ¢ in Theorem C is also optimal by Remark 1.1.
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In the present paper, we will discuss the L?>-boundedness of the maximal
commutator of the singular integral with variable kernel. Let us recall some
background. The commutators of the Hilbert transform were first introduced
by Calderén in [3] and play an important role in the study of the Cauchy
integral along Lipschitz curves (see also [4]). Motivated by the work of
Calderén on commutators, in their famous paper [11] Coifman, Rochberg
and Weiss discussed the commutator [b, 7] generated by a classical Calderén-
Zygmund singular integral operator 7" and a function b, which is defined by

[b, T]f () = b(z)T f(x) = T(bf)(x),
where b € BMO(R"™), that is,

1
|b]] == sup —/|b(y)—bQ|dy<oo
Q| Jg

cube QCR™

with by = Tclz\ fQ b(x)dx. The authors of [11] gave a characterization of
LP-boundedness of the commutators generated by the Riesz transforms R;
(j =1,...,n,). Using this characterization, Coifman, Rochberg and Weiss
got a decomposition theorem of the real Hardy spaces.

These commutators are of interest in harmonic analysis and PDE’s. For
example, the commutators have some important applications in the theory
of non-divergent elliptic equations with discontinuous coefficients (see [2],
8], [9] and [14]). Moreover, there is also an interesting connection be-
tween the nonlinear commutator, considered by Rochberg and Weiss in [24],
and Jacobian mappings of vector functions. They have been applied in the
study of nonlinear partial differential equations (see [19], [21], [12], [23] and
Iwaniec’s nice survey paper [22]).

The commutators of the singular integral operators with variable kernel
arise naturally in the study of PDE’s with variable coefficients. In 1991, to
study interior W22 estimates for nondivergence elliptic second order equa-
tion with discontinuous coefficients, Chiarenza, Frasca and Longo [8] (see
also [9]) proved the L*(R™) boundedness of the commutator for the singular
integral with variable kernel. For & € N, the k-th order commutator of T’
with variable kernel is defined by

. Qz,x —y
Ty f(x) :=1lim b, ---[b, T]] f () =p-V-/ %(b(x)—b(y))kf(y) dy.
T n |z =yl
For simplicity, we denote T} ; by T; below. Clearly, Tj is also a natural
generalization of the commutator of the classical Calderon-Zygmund singular
integral operator with convolution kernel.
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Theorem D (see [8]) If Q € L>®(R™) x C*(S" ') and satisfies (1.1),
then Ty, is a bounded operator on L*(R™) for b € BMO(R™).

Recently, Chen and Ding [7] proved that the conclusion of Theorem D
holds still after removing this stronger smoothness condition assumed on {2
in its second variate.

Theorem E (see [7]) If Q € L>®(R™) x L4(S™1) for ¢ > 2(n—1)/n and
satisfies (1.1), then for b € BMO(R™) and k € N, there is a constant C' > 0
such that || Ty flz2 < ClIBIEN flze-

Theorem E shows that the size condition of {2 in Theorem A is enough
for the L? boundedness of higher order commutator of the singular integral
with rough variable kernel. Inspired by Theorem E, a natural problem is
whether or not the higher order maximal commutator 7, of the singular
integral 7" with rough variable kernel is bounded on L?(R") under the same
conditions of Theorem E, where T}, is defined by

Ly f(x) =sup|[b,---[b,T:]] f ()]

e>0

= sup
e>0

/. > L 0a) ~ b)) )|

Note that the case £ = 0 recaptures the maximal singular integral opera-
tor T with variable kernel.

In this paper we will give a positive answer to the above problem. Our
main result is following:

Theorem 1 Suppose that Q € L>®(R™) x LI(S"Y) for ¢ > 2(n —1)/n
satisfies (1.1). Then for b € BMO(R"™) and k € N, there is a constant
C > 0 such that | Ty, fll2 < ClblE| f]] 2.

It is not difficult to check that the following inequality holds for the
commutator Tj':

Ty f(r) < ‘S;ug |Tb2,;f($)| + Mopi f (), (1.2)
S
where

T = BT = [ S ) b))y

and
Moy f () = sup L |9z, 2 — y)|[b(x) — b(y)[*| £ (y)|dy.

n
r>0 T |lx—y|<r
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The latter is called the k-th order commutator of the maximal operator with
rough variable kernel. Thus, to obtain Theorem 1, it is necessary to discuss
the L?-boundedness of Mq in (1.2). Moreover, the L?-boundedness of
Mgy has its significance and interest independently.

Theorem 2 If Q € L®(R") x LI(S"Y) for ¢ > 2(n — 1)/n. Then for
be BMO(R") and k € N, Mqyy. is a bounded operator on L*(R™).

Remark 1.2 Note that no smoothness is required on €2 in Theorems 1
and 2. In this sense, the results both of Theorems 1 and 2 are new even for
the maximal commutators of singular integrals with convolution kernel.

Remark 1.3 By Remark 1.1, the condition ¢ > 2(n —1)/n in Theorems 1
and 2 are optimal for the L?-boundedness of the higher order commuta-
tors Tp;, and Moy g

Throughout this paper, for convenience, we use the notations L;j or
(K)p alternately to denote the k-th commutators generated by a function b
and a convolution operator L with its integral kernel K. That is,

Lyyf(z):=[b,---[b, L] f(z) = (K)pif(x).

w=~»

The notations and “ V7 denote the Fourier transform and the inverse
Fourier transform, respectively. The letter C' will stand for a positive con-
stant which is independent of the essential variables and not necessarily the
same one in each occurrence. |E| denotes the Lebesgue measure of the mea-
surable set E in R". As usual, for p > 1, p’ = p/(p — 1) denotes the dual
exponent of p.

2. Proof of Theorem 2

In this section, we will give the proof of Theorem 2. In this proof, we
need to use the boundedness of the maximal operator with rough variable
kernel Mg, which is defined by

1
M f(x) = sup — 2z, —y)| | f(y)|dy.
r>0 T |x—y|<r
We hence show first a mapping property of Mq. Note that Mg, is a version of
the Hardy-Littlewood maximal operator with variable kernel. We therefore
write the LP-boundedness of Mg as a theorem, although its proof is simple.

Theorem 3. For 1l <p <max{2,(n+1)/2} and g > p(n—1)/(p— 1)n,
if Qz,2") € L°(R™) x LI(S™1), then there is a constant C' > 0 such that
[Maofl[r < Clf]ze-
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Remark 2.1  If we take p = 2 then ¢ > 2(n —1)/n, which is just the same
kernel condition as in Theorem A.

Before showing Theorem 3, we give some notations and a lemma. For

y' € S™1 the Hardy-Littlewood maximal operator along direction g’ is
defined by

1 r
Mf(x,y) = sup o= | If(fv —ty)|dt,  (z,y) €R" x S"7".

For 1 < p,q < oo, the mixed norm space LP(L9)(R™ x S"!) is defined by
LP(L9)(R™ x S* 1) =

={FiPlee = ([ ([ |F<x,y'>|qda<y'>)p/qu) " o}

Lemma 2.1 (see [10]) The direct mazimal operator MM is bounded from
LP(R™) to LP(LY)(R™ x S™1) for all 1 < p < max{2,(n+1)/2} and ¢ <
p(n —1)/(n —p).
Proof of Theorem 3. By the method of rotations, we can write
Maf(@) <swpr [ 00yl - w)ldot)i
r>0 Sn—1

<2/Sn M (2, y) |, ) |do(y).

Applying Holder’s inequality and Lemma 2.1 for Q(z, y') € L>°(R™) x LI(S™1)
and ¢ > p(n —1)/(p — 1)n (equivalently, ¢ < p(n —1)/(n — p)), we get

|Mafllee < o( / ( Sn_lWf(%y’)lmo:’y')ua(yq) dm)up

< O(/Rn (/Sn_l |9 f (, y/)|q'd0(y,))p/q,
) (/5”1 e, y/)lqda(y'))p/qda:) :

< O] oo wmyx asn-1) 1M [ ooy < ClLSf o
Thus we complete the proof of Theorem 3. [ |

Let us now turn to the proof of Theorem 2. Let us begin with recalling
some known results.

Lemma 2.2 (see [7]) Suppose that 0 < 3 < 1, £ € Z, m € N. Denote by H.,,
the space of surface Sphem'cal harmonics of degree m on S™' with its di-
mension D, {Ym]} denotes a normalized complete system in H,,. Let

Yinj(2')

WX{QZQEEQZH}(‘I)‘

Komj(z) =
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Then
— Cm 1 |24€]| Y, (€)] 2% <1
Ko (&) = R — 2.1
i€ {C‘m‘*‘”ﬁ”|2%|-ﬂ/2|Ym,j<f'>|, 2% > 1, &)
K eami (6)] < Cm™ 7YYo (€], (2.2)
VK my ()] < C2, (2.3)

where A = (n—2)/2 and & = £/|¢|.

Lemma 2.3 (see [20]) Let ¢p € C°(R™) be a radial function such that
supp(¥) € {€ : 1/2 < [¢] < 2} and 3,5 v*(27'¢) = 1 for [¢] # 0. Define
the multiplier S; by Sif(€) = ¥(271E) f(€). For b € BMO and a nonnega-

tiwe integer k, denote by Sipy the k-th order commutator of S;. Then, for
l<p<ox

H ( Z |Sl;b,kf|2)1/2
leZ

L, S Ok p) Bl e

Proof of Theorem 2. By Holder’s inequality, we split ||[Mqyxf||z2 into
two parts,

r>0 T

Voasfle < [ (swp [ 100a =)l o)1 wldy)

<(swp [ 10—l wldy)as

r>0 "

— [ (Mo (@) OMaf(a))ds

< || Mook f || 2| Ma f]| 2

Applying Theorem 3 with p = 2 and ¢ > 2(n — 1)/n, we obtain that 2
[Mofllr: < Cllfllz=. (2.5)

By (2.4) and (2.5), to prove Theorem 2, it suffices to show
1Moo fllze < CIOIFI N e (2.6)

Let
112, )|z sy

Bo(e,y') = 9,9 = — 5
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It is easy to check that Qo(z,y’) € L®(R") x LI(S™1) for ¢ > 2(n — 1)/n
and satisfies (1.1). Thus

Mooy < Csp [ B o) vy

I€Z |x - y|n
Qo(x, z —
= Cap | 2082 9) (3 4) — b(y)| 3 dy
ez Joicayi<2t T — Yl
12z, )] 1(50-1) ok
—l—Csup/ b(x) —by))™"[f(y)|dy
P e a(S”—1)|x—y|”( (z) = b(y)™" | f(y)]
= N1 + NQ.

Define the k-th order commutator M, formed by the Hardy-Littlewood
maximal operator M and a BMO function b by

Moaf () =supr™ [ )~ b))l

r>0
Applying Theorem 2.4 in [17] with o = § = 1, we know that
1M fllz2 < ClBIIEN F1] 22 (2.7)

Without loss of generality, we can assume that ||b||. = 1. Observe that for
any r € R”, we have

N2z < Cf[ My 2k fl| 2 < C| f]| 2
Therefore, to show (2.6), it remains to give the following estimate of Ni:
[Ntz < Cllf| e (2.8)

As in [6], by a limit argument we may reduce the proof of Theorem 1 to the
case of f € C3°(R") and

Q) = 33 i (1) Vo ()

m>0 j=1

is a finite sum. Notice that Qy(x, 2’) satisfies (1.1), so ap; = 0. Denote

D 1/2 o
() = <Z |am7j(x)|2) and d,, ;(z) = mi ) (2.9)

am(x)
Then
Dm
S (@) =1, (2.10)
j=1
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and

Qo(z,2") = Z am () i A (@)Y (2. (2.11)

m>1

Let

Fumgnand ()= [ sl =9 0y b)) £ () dy.

21 <|p—y|<2! |z —y["

Using Holder’s inequality twice and (2.10), we get for 0 < 6 < 1,

9 Qo(w,x —y) . 2k D2
o=l [ B0 s
) (9] D,
< C{ > “i(ﬂf)m_a}{ > m Z(Slug |E,m,j;b,2kf(93)|)2}-
m—1 m=1 j=1 ‘&

(2.12)
By [6, p.230], for ¢ > 2(n — 1)/n, if we take 0 < # < 1 and close to 1
sufficiently, then

(Samm)” o[ owame) ",

m>1
S CHQO”Loo(RTL)XLq(STL*l).
By (2.12) and (2.13)
2

Nl <03 | (ot oo @)
m=1 €

j=1 1
00 Dm 1/212
WU BMVER
m=1 =1 lez L2

Clearly, (2.8) will follow if we can show that there exists 0 < 5 < (1 —6)/2
such that

< Om™ 7P| ]| Lo (2.14)
L2

H (DZ S Fimsnanf (@) "

j=1 leZ

Let us take a radial function ¢ € C§° such that 0 < ¢ < 1, supp(¢)) C
{€:1/2<[¢] <2} and Y, ,¢*(27%) = 1 for [£] # 0. Define the multiplier
S; by Sif(€) = (27€) f(¢). For le Z,meNand j=1,...,D,y, set

B} 0 1(6) = Kim s (€)p(27€),
E,m,jf(x) = Kl,m,j * f(.T)

—

and  Fj, . f(€) = EL,. () f(€),
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where and in the sequel, Kj,, ; is defined in Lemma 2.2. Define by the
operator Fi, jpx and Fy, o, the k-th order commutators of Fy,,; and
F} . respectively. Then

lym,j>
Fl,m,j;b,%f(x) - Z(Ei,m,jsz‘—l)b,zkf(m)- (2~15)
i€Z

By (2.15) and Minkowski inequality,

H (% > |(Fz,m7j;b’2kf(x)|2) 1/2

j=1 lez L2
' 2 1/2
(/ Z Z E,m,jSi—l)b,2kf(x) d.T) (216)
j=1 lez ZEZ
/2
<z(2/ z| (Bl duaef@r)
i€Z NIEZ
= R.
With the aid of the formula
k
(b(z) = b(y))* =D Cr(b(x) — b(2))"(b(z) = b(y))* ™, 2,y,z €R", (2.17)
u=0
it is easy to check that
2k
(Emj 1— l)b?kf chkﬂm]ba(sl 1;0,2k— af)( ) (218)
a=0

Let
' Dm 1/2
Fioy o fa) = (Z mim,j;b,af(xﬂ?) |
7=1

Then, applying Minkowski inequality and by (2.18),

Dm 2 12
<Z/ Z|ZCkFlm;ba i l;b,2k—af)(x)|2dx)
i€Z NIEZ =1 a=0
1/2
<CZZO&(Z/ Z| sl Sicthsi-af o)
zEZa 0 leZ
/2
OZZ (Z/ |} it (Sicip2n—af) ()] dx)
i€Z a=0 =Y/

(2.19)
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Hence, if there exists 0 < vy < 1 such that
1F i f 2 < Cm= 0270l ]| o (2.20)

then we may get (2.14). In fact, by (2.16), (2.19) and Lemma 2.3, we have

H (% Z |(Fl’mvj;b,2kf(x)|2) 1/2

j=1 leZ L2
2% 4 1/2
<O S Can 2 [ (S )
i€Z a=0 ez YR?
2% 1/2
—C ce m—l+,32—v0,3|i|/2 ( Si— ko 2)
Z Z ok Z |Si—i;0.2k—af | L

i€Z a=0 leZ

< Cm™ | f || 2.

Thus, to finish the proof of Theorem 2, it remains to verify (2.20). Define
the operator F}, ; by

—

F‘ll,m,jf(g) = Ell,m,](Z_lg)]E(S)

the a-th order commutator of F} Let

Lmj-

Denote by £

m,j;b,a

Fjlfm;b,af(g) = (Z |F}7:m,j;b,af(§)|2> .
7=1

Applying Lemma 2.2, we have

K (6)] < Cm W02 min |20, 2|7/} Vi, (€1)],
[ Kpmy (6)] < Cm 1Y, (€],
VK, (6)] < C2.

Note that supp(E!

l7m7j

(271)) C {€: 2071 < |€] < 2771} then we get

B} (270 < Cm A2 min{27 2772Y |y, (€],
1B, (278) < Cm Y80,
IVE;,.,27'¢)| < C.

Using Lemma 2.3 in [7] with 6 = 2’ and s = 0, we know that for any fixed
0 < v < 1 and nonnegative integer «

1)

7
lym;b,a

”L2 < Cm(—l+ﬂ/2)v2—ﬂ|ilv/2”fHLQ.
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For fixed 0 < § < (1—6)/2, we can find 0 < vy < 1 such that vy(—1+/3/2) <
—1+ 3. Hence

1Y pip allze < Ot 0270002 £,

which implies (2.20) by dilation-invariance. Therefore we have completed
the proof of Theorem 2. [ |

3. Proof of Theorem 1

This section is divided into two parts. In Subsection 3.1, we give a lemma
which plays a key role in the proof of Theorem 1. In Subsection 3.2, we will
finish the proof of Theorem 1.

3.1. Key lemma

Lemma 3.1.1 For 0 < § < ocoom € N, s € Nand j = 1,...,D,,, take
Bssm; € C°(R") such that supp(Bssmj) C {& : §/2 < [¢] < 26}. Let
T 5.m,; be the multiplier operators defined by

Tosmif(€) = Booms(©)F(€), j=1,...,Dp.

Moreover, for b € BMO and k € N, denote by Tssm j.pi the k-th order
commutator of T 5m ; and

D,

1/2
Ts,6,m; b,kf(x) - (Z(Ts,5,m,j;b,kf(x))2> :

j=1
If for some constant 0 < B < 1, Bssm,; satisfies the following conditions:

| Bosm,(6)] < C278Pm= 10 min 6, 5702}y, 5(€')], (3.1.1

|Bs,5,m,j(§)| S Om_)\_1|Ym,j(§,)|7 (3.1.2

IV By sm,(6)] < C2°, (3.1.3

then for any fivred 0 < v < 1, there exists a positive constant C' = C(n, k,v
such that

)
)
)
)

T gmbef |z2 < €277 2mE 02 ming?, 6= 2 B|| | 2. (3.1.4)

Proof. We may assume that [|b]|. = 1. Let us consider a C{°(R"™) radial
function ¢, such that supp¢ C {z:1/2 < |z| <2} and Y, ., 0(27Yz]) =1
for any |z| > 0. Denote ¢o(z) = S ¢(274x|) and ¢y(z) = ¢(274x|) for
positive integer [. Then ¢y € S(R") and suppeoy C {z : 0 < |z| < 2}.
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Let Ky 5m,j(2) = (Bssmg) (x). Denote Kl s, ;(x) = Ky, (x)éi(w) for
[=0,1,... We have

5577%] E : 5m,j

Denote by T? ;. - and T.; . ., the convolution operator with kernel Kj,

and the k-th order commutator of 7 !
Minkowski’s inequality

D, o0 9 1/2
Tesmid e = ( LS Tt )

s </n;

=0

=2 T s f Iz,
1=0

om,y; and b, respectively. Then by

s5m,g i ( )) )1/2 (3.1.5)

8

where T% 5 f(a)= (2 ‘ Tesmonf (@ )] )1/2 It is easy to see that (3.1.4)
is the consequence of (3. 1 5 and the following Claim 1.

Claim 1: For any fixed 0 < v < 1, there exists 7 > 0 such that
T2 sy |2 < C27P0 P20 min {67 5722} || fll 2. (3.1.6)

Below we show Claim 1 by an almost orthogonality decomposition. For
[ > 0, we decompose R" = |J;2 _ Q4 where @ 's are non-overlapping
cubes with side length 2'. Set f; = fxg,. Then f(z) = >3 _ fa(z) for a.e.
z € R™. It is obvious that supp(T. 5, ., fa) C 10nQq since supp(K. ;.. ) C
{z : |z] < 2772}, Moreover, the sets in the family {supp(T%;,,, jpxfd) o> o
have bounded overlaps. So we have the following almost orthogonality prop-
erty:

H sém,jbkf”L2 < ¢ Z H (Sm,]bkdeL2

d=—00

Thus

Dy,
HTsl,cS,m;b,ka%Q = Z ”Tsl,é,m,j;b,kf”%2
j=1

[e%e) Dy
<C YD T s msertlliz =C Z 1T 5 v fall 72

d=—o00 j=1 d=—00

Hence, it is suffices to verify (3.1.6) for a function f with suppf C @,
where ) has its side length 2.
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Choose S CPR™),0< <1, [ identically one on 50nQ), and suppy C
100nQ. Set Q = 200nQ, and bg = Q™ fQ )dy. Let

b(x) = (b(x) — bg)e(x).
It is easy to see that

k

T smgnid (1) = D CRV (@) T g (04 ) ().

=0

1= (o)

Denote

then we have

2
O/‘b# ém](bk #f)( )

<c/zz 2

bﬂ 6mg bk Nf)( ) ,d.T
J=1n=0 (3.1.7)

<OZ/ ' |QZI Lams 0 ) (@) da

= OZ 0T 5 (BF ) 2

1T 5.0 S 172

Thus, in order to prove Claim 1, by (3.1.7) we only need to show the following

Claim 2: For any fixed 0 < v < 1, there exists v > 0 such that for a
function f supported in ) with side length 2!

DT 5 (BFH ) || 2 < 27050 2B/~ min {§Y, 67702} || £ 2. (3.1.8)

However, Claim 2 can be reduced from the following

Claim 3: For g € Lq'(R”), 1<q¢ <2(hence2<g<oo)and 0 <t <1

2ts _ BA-t)s 260 (Z24F)(Ab) 2y 20A g 2
ITosmalce < C2027 7772 0m” et
x (min{d,d- ﬁ}) IIQIILq
In fact, notice that for any 1 <o < oo and p=0,1,...,k,

[5"]120 < CIBIEIQIY" < C2mie.
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Then for any 2 < ¢1,q2 < oo with 1/q; + 1/¢2 = 1/2, applying Holder’s
inequality twice and by (3.1.9), we get

10T e (B )z < (9o T g (B8 )

2ts _ pBA=t)s _ 281 _2 (Z2468)A=t) (1 2y, 2tA
< (C2@22 w2 2 D — -3+
2(1-1)

x (min{d, 6/2) " [[5]| n [|6F £ g

2ts _ pA=t)s _ 2 (1—2) (72+B>(17t>_(1_1)+&
a2 q2

< (242 o 2 i T w)m )

2(1—t) ~
x (min{d, 07772}) " ([0 168|202 a2 || f || 22
nl(1—2) (72+ﬂ)(17t)_(1_l)+2tk 1-2)

— 2L n(
2’'m a2 a2 a2 a2

2ts _ B(l—t)s _Lﬂ_i_
< (222 a2 Qa2
2(1—1)

X (min{é, 5‘ﬁ/2}) 2 || f|lze-

(3.1.10)
Now, for any fixed 0 < v < 1, we choose ¢ > 2 but close to 2 sufficiently
and t > 0 but close to 0 sufficiently, such that ¢ and ¢ satisfy:

2t/q2 > n(1 = 2/qg),
2t/qp — B(1 = 1) /g2 < —v3/2,
(—24+08)1—t)/qga — (1 —2/q2) + 2tA/q2 < (—1 + 3/2)w.

Then we have

vi=2t/qa —n(l —2/q) >0,
(211 /02 -(1-2/a2) 124002 <y (~14B/2

2ts B(1—t)s

2 9 - < 2—1},@5/2‘
If § > 1, then by (3.1.10)

||guTé,5,m(Ek_#f) e < (2882 (=148/2)vg—ly §n(1-2/q2) §—B(1-1)/q2 [Falre
< Cg—vﬂs/2m(—1+ﬁ/2)vQ—lvg—ﬂvﬂ||f||L2_
(3.1.11)
If 0 < 0 < 1, similar to the estimate of (3.1.11), we have

||E“Tsl,5,m(gk_“f)||m < O vPs/2(~148/2pw g~y gn(1-2/a2) §20=1) /a2 || £]| . »
< 02_v55/2m(_1+ﬁ/2)v2_l’yév||f||L2'
(3.1.12)
Thus Claim 2 follows from (3.1.11) and (3.1.12).

Hence, to finish the proof of Lemma 3.1.1, it remains to verify Claim 3.
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First we consider the case where ¢ = oo. By the definition of T" we have

$,0,m,j7

T 3 g(a) ( (/ ISHe —y>||g<y>|dy)2)l/2

g/ (D L y>|2)1/2|g<y>|dy

R

1/2
< Hg”Ll/ (Z| sémy ) dg.

—_— o — o~

Ki&m](g) - KS,6,m,j*¢l(§) - /n s5mJ( )¢l(§ y) (3.1.13)

and (see [6, p.225,(2.6)])

Note that

Z Vo ()Y~ m?, for any x # 0, (3.1.14)
by (3.1.2), we get
D

D, 1/2 . o
/Rn(2| sémg( )|2) d§</>< (Z /nBsémj( )¢l(§—y)dy ) dg
7=1
/2
/n/n(Z|Bsém]?/ 2) ¢l(§_y)dyd§
</ (Z'B )/ ay |3
§/2<|y| <26 sam3 (Y L

D 1/2
<om [ (X mR) d
0/2<|y|<28 =1
< Cm~tom,
i.e.
T, 5mgHLoo < Cm '6"|g|l - (3.1.15)

For ¢ = 2, note that fRn n)dn = ¢(0) = 0, then by (3.1.13) and (3.1.3) we
have

KL, ()] | 1Busmile —27y) — By 5. (2)]|0(y)| dy

< CrVB i [ B0y < C2
Rn
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Therefore, applying Plancherel theorem and the fact (see [6, p. 226, (2.7)])
Dy, ~m*, (3.1.16)

we have

I 5.m9l22 _</ Z| sdmi (€ ()|2d€)1/2 (3.1.17)

< C2°2° m)‘||g||L2.

Applying Plancherel theorem again, (3.1.1), (3.1.13) and (3.1.14) we see that

I sl < /Z| o € PI(E) de
/HDBMJ*@ P15 de

N / {(2 / Basmi(€ = y)iy) dy 2) 1/2}2I§(§)I2d€
IRVA (iﬂf Busmsl€ ~ ) ") dy}2|§<s>|2 %

< CQ‘Sﬂm_”‘_“ﬁ(min{(S 5‘5/2})2

J(L (DYmg& ) i) e

< C27%m~ 2+ﬂ(m1n{5,5 ) ill2 g2
That is,
1T gl < C2=*2m1512) wmin (6, 6972} g]| .. (3.1.18)

Hence, interpolating between estimates (3.1.17) and (3.1.18), for any
0<t<l,

||Tsl,5,mg||L2 < Oz—tl2t52—(1—t)sﬁ/2mt,\m(—1+gi)(l—t)

_ 3.1.19
x(min{é, 5—5/2})1 t||g||L2. ( )

Thus we obtain (3.1.9) for 2 < ¢ < oo by interpolating between (3.1.15)
and (3.1.19). The proof of Lemma 3.1.1. is now completed. [ |
0

Remark 3.1.1. When £ = 0, Lemma 3.1.1 also holds; when s =
Lemma 3.1.1 is just the Lemma 2.3 in [7].
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Remark 3.1.2. From the proof of Lemma 3.1.1, if we replace (3.1.1)-(3.1.3)

by
|Basmi(€)] < Cm™127*min{4, 6 }|V,;(€)], (3.1.1)
| Besmi(€)] < Cm™ 27127 Y,, (€], (3.1.2)
VB, 5.m (6| <C272, (3.1.3)

then for any fixed 0 < v < 1, there exists a positive constant C' = C(n, k, v)
such that

I 5mipiefllze < C27"m™" min{6”, 6~ HbISIf 2. (3.1.4)

Lemma 3.1.2 (see [7, (3.4)]) For some(0 << (1—0)/2 and0 <6 <1

D 1/2
H(E]nmmﬂmf)

< Cm™ | £ e,
12

where

Tsnid () =pv. [ 8D 00) o) )y

3.2. Proof of Theorem 1
We still assume that ||b||. = 1. By (1.2) and Theorem 2, it suffices to show
that

<COllfl (3:21)
12

sup
I€Z

/ >2! w(b(x) - b(?/))kf(y)d?/'

|z —y|n

Similarly to the decomposition of Qy(x,z") in the proof of Theorem 2, we

have
Qz, 2") Z Z dm,j(z
m>1
where a,,(z) and d,, j(x) satisfy (2.9) and (2.10). For s € Z, set
Y, iz —
Ty () = s =) 40y — b)) £ ().
25 < |z —y|<25+1 |x - y|
Then

oo Dy oo

/— zlw(b() b)) FW)dy =D Y > Tom it ()

|.Z'—y|n m=1 j=1 s=I
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Using Holder’s inequality twice, by (2.13) we have
Q(.T, T — y)
(supl [ P ) ) )
1€Z | |z—y|>2! [z —yl

< (iafn(x) )(Z ZSUp

m=1 m= 1 =4

< O1lnss (3 QZSHPZTsmmf

me=1 leZ

) <

ZTsm]bkf

where 0 < 6 < 1 is defined by (2.13).
Hence, by (3.2.2) it is easy to see that, to get (3.2.1), it suffices to show
that for some 0 < § < (1 —6)/2,
)1/2

(it

I€Z.
We will give the proof of (3.2.3) by induction on the order k.
(i) Proof of (3.2.3) for k = 0.
In this case, we need to show that for 0 < 5 < (1 —0)/2

D 2\ 1/2
(S (e[ mmsse]))

Take n € Cg°(R") such that supp(n) C {z : [z| < 1} and n(z) = 1 when
|z| < 1/2. Let ®; € S(R™) be such that ®;(¢) = n(2'€). Let

) (3.2.2)

< Om™ 7P| £ Lo (3.2.3)

L2

< Om B f]| e (3.2.4)
L2

Ym' - .
Tm,jf(ac):p.v./ |;(+y|ny)f(y)dy for meN, j=1,2,...,D,.

Then we have

o (£ 1)

S§=—00

‘ (0 — @) <ZTsmjf)

I:P1+P2+P3,

S,m,jf(x)

S ‘q)l*( mjf

(3.2.5)

where and in the sequel, § denotes the Dirac function. Below we set up the
estimate of (3.2.4) for P; (i = 1,2,3), respectively. Firstly, we consider P;.
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By [5], we have

1/2))2 D,
H( (sup Pp) ) :/ Zsup|<1>l>|<Tm]f( )|da
=1 leZ 2 U leZ

<CZ M(T;f) ()P da

3.2.6
<OZ T (@ )|2da (320)
= CZ 1T 5.f ()22

< Cm_2Hf”L2a

where and in the sequel, M denotes the Hardy-Littlewood maximal operator.
Secondly, we consider P,. For s € Z,m € Nand j =1,2,...,D,,, define

Vi j(2)

[

Ks,m,j(x) = X{25<|x|§25+1}(x)'

Then

1/2
()
=1 leZ

<I>l * Kgmj* f)(x)

| /nz(izg

2
)dx

</ ZZ m@z*Ks,m,j*fxx) s
/. ZZ (b Kica o 0
<(% (Z/Z' (802 Koo @) )
< (Z D3I >f<£>|2ds)l/2)?

Note that

supp(® Ko my) C {€ - [2€] < 1}.
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Applying Lemma 2.2, Plancherel theorem and (3.1.11), we have
<

1/2
|(Sewer)
=1 leZ L2

<i(z [ X m@rae )f(§)|2d£)1/2

R™ fu21<iel 1y

+Z(Z [ Y BR e >f<§>|2ds)l/2

B 2>16|)

oy (Z/ > eI O OrE)

R™ (at<ig-1}

<on ([ Z Vs OPIFOPE)

< Cm7H| ] e

/2

/2

(3.2.7)
Finally, we discuss P3;. By Minkowski inequality and Plancherel theorem,
we get

1/2

j= 1 lEZ
-/ z(sup
n leZ

2

L2

((6 = @) % Ky * f)(2)

2
)dx

/ 2% 2 ((6 = @p) * Kygpym,j * f)() 2dm
(OO <Z/ D0 =) Kot ><x>|2dx)1/2)2
(% (Z [ S-S @ier) )

—

Since supp((1 — <I>l)K8+l7m7j) C {€:]2%| > 1/2}, by Lemma 2.2 we have
(1= BUEN K stm i (€)] < OB 02120 751y, (&),
Similarly to (3.2.7), it is easy to obtain that
< Om~ P2 £l o (3.2.8)

1/2
|(Zemrr)
=1 IEZ L2

By (3.2.6)—(3.2.8), we obtain (3.2.4) and hence (3.2.3) holds for k = 0.
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(ii) Proof of (3.2.3) for k € N.

In this case, we assume that (3.2.3) is true for all integers u with 0 <
u < k — 1 and we will prove that (3.2.3) holds also for k.

Take n € C3°(R™) such that n(x) = 1 when |z| < 1/2, supp(n) C {z :
lz| < 1}. Let ®; € S(R") be such that &;(¢) = n(2€). Write

Z Ts,m,j;b,kf(‘r)
s=l

S |(I)l * Tm,j;b,kf($)| + (I)l * Z Ts,m,j;b,kf(x)

+ Z Ts,m,j;b,kf(x) -

-1

S=—00

(I)l * (Z Ts,m,j;b,kf) ('T)
s=lI

— [+ [T+ 1II.

(3.2.9)

We need to prove that (3.2.3) is true for I, 11 and I11I, respectively. First
we consider /. By Lemma 3.1.2, for 0 < < (1 —6)/2and 0 < 0 < 1, we

have
2

(G’

‘o1 lez

L2

D,

:/nz
<OZ

<OZ T ( z)|2da

< Cm‘Q”ﬂHfIIQ

sup |(I)l * Tm,j;b,kf(x)|2dx
leZ

M (T g ) () da (3.2.10)

Now we consider /. Denote by G; and G, the convolution operator
with kernel ®; and the u-th order commutator of G, respectively. Applying

formula (2.17) we can write

@i (3 Kot

S$=—00
Let

11, = sup
I€Z

and

11, =sup
leZ

b,k

o (£ ) o

Zc Giipo u(z Tsm]buf)( )|

ZOkGlbk u Z Tsm]buf

S§=—00

[ee]

S§=—00
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Therefore, if we can show that for some 0 < 8 < (1 —6)/2,

)

()

then (3.2.3) holds for I1.
For 11, applying Minkowski inequality we have

&), (L 2(325

<([2Zz

< Cm7 7P| £l 2 (3.2.11)
L2

and

< Cm ™) £l 22, (3.2.12)
L2

q)l * Ks,m,j)b,kf(x)

S§=—00

(D) % Ky j)oif(x)

2 1/2
) )
2 1/2
dm)

] 1 l€Z 's=—o0
2 1/2
(/ Z Z q)z % K g mi)onf () dac)
j=1 ZEZ s=1
/2
(Z/ Z| Dy * Kismj)orf ()] dﬂ?)
€7
= W
Let
Us7l7m7jf - q)l * Kl—s,m,j * f
Denote

Usimjbk = (P % K g m )bk
Let ¢ € C§° be a radial function such that 0 < ¢ <1, suppy C {£:1/2 <
€] < 2} and Y, ,?(27%€) = 1 for |£] # 0. Define the multiplier S; by

Sif(6) = (27 f(€).Forle Z, s eN,m=1,2...,and j = 1,..., Dy,
Set

Batm () = BUOKami(€): Blims(€) = Boims(©0(20)

Define the operator U, , by (UL, .. f)"(§) = ( slmjf)A(§)¢(21_i§). De-
note by U’ Lok the k-th order commutator of Uy : Then

Jdmyge

Us jym, gk f (x) = Z((Ug,l,m,jsi—l)b,kf)(x)'

1E€EL
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Applying the equation above and Minkowski inequality, we have

W Z(Z/ Z'Z im g Si—Obef) ()] dm) :

leZ 7j=1 ZEZ
/2

<ZZ(Z/ Zl LS ) (@) dx) (3:2.13)

s= 1 i€Z NIEZ

Write ( sllm] Z—Z)b,kf( ) Za OOa ;lm] ba(Si—l;b,k—af)(‘r) and

4 D 1/2
o f() = <Z| e <x>|2) ,
7j=1

then

Zok slm]ba Z l;b,k—af)(x)

2 1/2
dm)

(2)S

ZEZ j=1'a=0
1/2
<oy a(y . z| LimnalSctascof (o)
leZ
: 1/2
-4§x%z/|ﬂm&mwmmma.
lez

We claim that there exists 0 < v < 1 such that
1U% b 122 < Cm~ 027527 £l L. (3.2.14)

If so, then by Lemma 2.3, we have

1/2
Wis < OZOk m~ gl (Z Si— l;b,k—af)(x)|2d'r>

leZ
< Cm-+9g-s9- Ml g2
(3.2.15)
Thus, (3.2.11) will follow from (3.2.13) and (3.2.15). Now we estimate
(3.2.14). Define the operator U, ; by (U;lmjf) (f) B (2 2716) f ().

Denote by U : the a-th order commutator of U : Let

Jmugsb,a Jdom,ge

1/2
rTi 2
s,l,m;ba <Z| slm]ba | ) .



L? BOUNDEDNESS FOR MAXIMAL COMMUTATORS WITH ROUGH VARIABLE KERNELS 385

By the definition of By, ; and Lemma 2.2, we have
| By, (§)] < Cm™ 127 min{|2'¢], |2°€| 71}V 5(€1)],
| B, ()] < Cm™ 127, 5(€),
|V By m,; (&) < C21275.
Note that supp(B%,, (27%)) C {£: 2071 < €] < 271}, we get

s,lm,j
|Begmg(27€)] < Cm™ 7127 min{2', 27} ¥,,5(€))],
|lem]( _l§)| < Om_)\_12_S|ij(§/)|’

|Vlem](2 §)| < C2” °
Using (3.1.4)" with 6 = 27, for any fixed 0 <v <1 and « € N

10 mspallz < 027271 £ .

Thus, for 0 < < (1—-6)/2 (0 <6 < 1), we can take 0 < vy < 1 — 3 in the
above estimate. Hence we obtain

Uz pmipallz < Cm=tHP27271 00 £ o,
which implies, by dilation-invariance,
VS mipallz < Cm=tH027s27 10| £ o,

So we proved (3.2.14). Now let us turn to (3.2.12). Write

I, = sup ZCkGlbk u( Z Tsm]buf) )
€ S=—00
= Slug Z O;;LGl;b,k_u (Tm,j,b,uf - Z Ts,m,j;b,uf) (33)
€z |- o
P l
< sup Z CrGurpi—u(Tjpuf) (@)
1€z | 4= 5
+ sup ZOkGlbk u(szmJ buf)( )
leZ
= Iy + 1122

Thus, to prove (3.2.12), it is sufficient to show that for some 0 < § <

(1=6)/2
[N

< Cm™ ) £l 22 (3.2.17)
L2
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and

< Cm ™ £l 2o (3.2.18)
L2

I35

However, (3.2.17) is just a consequence of Lemma 3.1.2 and (2.7). In fact,
for 0 < B < (1—9/2)

D 1/2(12 Di k—
(Xm) | < S s [ [Gun (T (o) i
j=1 L? j=1 u=0 €2 JR"
Dy k—1
S ﬁHMb,k—u(Tm,j,b,uf) 172

OZ ‘ijbuf”L2
< Cm-220) 2,

On the other hand, to obtain (3.2.18), applying (2.7) and the induction
assumptions for 0 < u < k — 1, we have

Dm 1/2))2 1/2
TS o T
=1 1.2 leZ u=0
1/2
Glbk u(ZTsmjbuf ) )

> (Zisg
) [po i )

< CZ/ Z(sumZTsmbuf )

ez <=
< Cm_2+2ﬁ||f||2

Thus we prove (3.2.3) for /1. Finally, we show (3.2.3) is true for /71. It is
easy to check that

2

L2
2

L2
2

S,m,j;b,uf(x”

LQ

177

s,m,j;b,kf(x) - ((I)l * ZKs,m,j) f(x)
s=l

b,k

k—1 o
— Z O]gGl;b,k—u (Z Ts,m,j;b,uf) (33)
u=0 s=l

< IT + 1oy,

(i((s — D))« Ks,m,j)b’k f(@).

s=l

where 1], = sup
leZ
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Thus, by (3.2.18), we need only to verify that

|(5 )

Applying Minkowski inequality, we get

)1,

-(/[. Z(izg

(L1

j= 1l€Z

<Z<Z/ ZI (6 — @) % Ko )onf(2)] dx) 2

leZ
=Q.

Let Vi imjf = (0 — @) * Koyimg* [ and Vspmjpr = ((6 — ) * Ks+l,m,j)b,k-
Let ¢ € C§° be a radial function such that 0 < ¢ <1, suppy C {{:1/2 <
€] < 2} and Y, ,¢*(27°€) = 1 for [£] # 0. Define the multiplier .S; by

Sif(&) = (27 ) f(€). For l€Z,s€Z,, meNand j=1,..., Dy, set

/2

< Cm™P £l e (3.2.19)
L2

/2

2 1/2
5 (I)l) * K&m’j)b,kf(x) ) dﬂf)

2 >1/2 (3.2.20)

5 (I)l *Ks—i-lm])bkf( )

s=0

—

Ds,l,m,j(f) = (1 - (i)\l(g))Ks—H,m,j(f)
and .
DLZG N mj(g) = Ds,l,m,j (£)¢(21_Z§)

Define the operator Vy, ., ; by (Viym )" (6) = (Veimsf) ™ (£)1(27°€) and
denote by V! Lmjb the k-th order commutator of V¢ Then it is clear

s,lym,j*
that

Vtamgwrf (@) = (Vi Sicof) ().
SIBY>

1€EL
2 1/2
dx)
leZ Jj=1

<ZZ<Z/ Z| St S ) (@ >|2d:c)1/2 (3:2:21)

s= 0 1€EZ NIEZ

= Z Z Qz’,s-

s=0 1€Z

By Minkowski inequality, we have

slm] Si- l)bkf)( )

ZEZ
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Write (‘/Z,l,m,jsi—l)b,kf(x) = ZZ =0 C(a‘/sll RNE ba(Si—l;b,k—af) (.T) and let

1/2
i § 2
‘/s,l,m;ba < | slmg ba | ) )

then

(=L SIS OV Sectiaf o >|2do:)1/2

leZ j=1 a=0
1/2
<czca(z [ 3 Wt z;b,k_afxxwx)
leZ
: 1/2
_Ozck (Z/ | lmba Si— l;b,k—af)(‘r)|2dx) :
leZ

Obviously, if we can prove that there exists 0 < v < 1 such that,

flliz < G022l (3.2.22)

” s,l,m;b,a

then applying Lemma 2.3, we get

/2
i,s < C«Zc«a —1+52 55/22 vplil/2 | (Z/ | i—lb k— af( )| d.T)

lez
< Om—1+62 Bs/29—vpi Vz”f”ﬂ
(3.2.23)
Thus, (3.2.19) follows by (3.2.20), (3.2.21) and (3.2.23). Hence, it remains
to show (3.2.22). To this end, define the multiplier V! by

s,lm,j

—

‘/sllm]f(é-) D;lm](Q g)f(g)

the a-th order commutator of V? Let

s,lym,j*

and denote by V!

s,lm,jib,a

1/2
‘/sl,l,m;ba (Zl s,lym,7; ba |2) .

By Lemma 2.2, we have
| Datim(§)] < Cm 02970 2 min{|2'¢ ], |2'€| 772} ¥ 5(£)],

1D tm (&) < Cm 1 Y,(8))],
IV Dy 1mj(6)] < C212°,
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Since supp(Dy,,, (27")) € {&: 27! < [¢] < 2'*'}, we have the following
estimates:

Di 2—l S Cvm—)\—1+ﬁ/22—ﬁs/2 min 21‘7 2—iﬁ/2 Ym ) é—l ’
7‘7

s7l7m7j

D%t (27€)] < O™ Yo (€1)],

S7l7m7j

VD, 1, (276)] < C2°.

s,lm,j
Applying Lemma 3.1.1 with § = 2¢, we know for any fixed 0 < v < 1 and
nonnegative integer u

Hvz‘ f||L2 < CQ—ﬁsv/2m(—1+B/2)Q—Blilv/2||f||L2,

s,l,m;b,«
which implies

Ive

7l7m;b’a

fllze < Oz—ﬂsv/2m(—1+ﬂ/2)Q—ﬂ\i\v/2||f||L2

by dilation-invariance. This is (3.2.22) and (3.2.3) holds for [7I. This
completes the proof of Theorem 1.

Acknowledgement. The authors would like to express their deep grat-
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