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End-point estimates and multi-parameter
paraproducts on higher dimensional tori

John T. Workman

Abstract

Analogues of multi-parameter multiplier operators on R
d are de-

fined on the torus T
d. It is shown that these operators satisfy the

classical Coifman-Meyer theorem. In addition, L(log L)n end-point
estimates are proved

1. Introduction

This article is, in part, a continuation of [13, 14]. It is also derived from the
author’s dissertation, which can be found in full at [17].

Recall the multi-linear Coifman-Meyer [5] operator

Λ(1)
m (f1, . . . , fd)(x) =

∫
Rd

m(t)f̂1(t1) · · · f̂d(td)e
2πix(t1+···+td) dt,

for Schwartz functions fj and where m satisfies a standard Marcinkiewicz-
Mihlin-Hörmander type condition [12]. It is well known this operator maps
Lp1 × · · ·×Lpd → Lp for 1/p1 + · · ·+ 1/pd = 1/p and 1 < pj < ∞. The case
when p ≥ 1 was originally shown by Coifman and Meyer. The general case
p > 1/d was settled later in [9, 11].

Led by natural questions in non-linear partial differential equations, ex-
tensions of this operator were considered by Muscalu et. al.: first the so-
called bi-parameter multiplier [13], then multi-parameter multipliers [14].
In this setting, m is allowed to belong to a much wider class of multipli-
ers which behave like the product of standard multipliers. Special cases
of these multiplier operators had been previously considered by Christ and
Journé [4, 10]. In [13, 14], it is shown that these multiplier operators satisfy
the same Lp1 × · · · × Lpd → Lp property.
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However, in the single-parameter case of Coifman and Meyer, more is
known. We have “end-point” estimates corresponding to the case when any
or all of the pj are equal to 1. Here, the result is Lp1 × · · ·×Lpd → Lp,∞. In
the multi-parameter setting, no such end-point estimates are known.

A natural candidate for such an estimate would involve L log L spaces,
because of how they arise in interpolation results. Naively, an operator
which maps L1 → L1,∞, and also satisfies some Lp result, is often thought
to also satisfy some L log L to L1 property. Indeed, we recall the result of
Stein [16], which states Mf is locally integrable if and only if f is locally
in L log L; alternatively, C. Fefferman [6] showed the maximal double Hilbert
transform maps L log L([0, 1]2) to L1,∞([0, 1]2).

That L log L estimates can only be gained in the compact setting is a
rather common obstacle. To avoid this, we instead consider analogues of
multiplier operators defined on the torus T

d. This also allows a departure
from the classical definition of L log L spaces to a more iterative approach
which blends perfectly with our methods. Ultimately, we show that the
s-parameter multiplier operator Λ

(s)
m in this setting satisfies the classical

Coifman-Meyer theorem, along with the desired end-point estimate: for
pj = 1 each Lpj is replaced by L(log L)s−1.

The organization is as follows. In the next section, characterizations
of L(log L)n are developed for any probability space, and several impor-
tant results therein are proved. Section 3 details the connections between
L(log L)n spaces and the Hardy-Littlewood maximal operator. Section 4
deals with the notion of adapted families and a particular square function of
Littlewood-Paley type. Section 5 introduces hybrid square-max operators.
In Section 6, bi-parameter multiplier operators are handled, while section 7
is a non-rigorous survey of the proof for multi-parameter multipliers.

A remark on the notation used: we will write A � B whenever A ≤ C ·B
with some universal constant C.

2. Zygmund spaces and L(log L)n

Let (X, ρ) be a probability space. For f : (X, ρ) → C, denote the decreasing
rearrangement of f by f ∗.

Definition. For t > 0 and f : (X, ρ) → C, let f (∗,1)(t) = f ∗(t) and for
integers n ≥ 2, set f (∗,n)(t) = 1

t

∫ t

0
f (∗,n−1)(s) ds.

On a probability space, f ∗ is supported on [0, 1]. It is advantageous to
informally think of each f (∗,n) as being defined only on (0, 1].

We can immediately verify the following properties: (1) f (∗,n) is nonneg-
ative, decreasing, and identically 0 if and only if f = 0 a.e.[ρ]; (2) f (∗,n) ≤



Multi-parameter paraproducts on higher dimensional tori 593

f (∗,n+1); (3) (αf)(∗,n) = |α|f (∗,n) (4) |f | ≤ |g| a.e.[ρ] implies f (∗,n) ≤ g(∗,n)

pointwise; (5) |fk| ↑ |f | a.e.[ρ] implies f
(∗,n)
k ↑ f (∗,n) pointwise.

We would also like to show (f +g)(∗,n)(t) ≤ f (∗,n)(t)+g(∗,n)(t) for all t > 0
and n ≥ 2; this property does not hold for n = 1. By induction, it suffices
to prove the result for n = 2. However, this is an immediate consequence of
the following technical result of Bennett and Sharpley [3]:

tf (∗,2)(t) =

∫ t

0

f ∗(s) ds = inf
f=g+h

{‖g‖1 + t‖h‖∞
}
.

Definition. For f : (X, ρ) → C and integers n ≥ 0, define ‖f‖L(log L)n by

‖f‖L(logL)n =

∫ 1

0

f (∗,n+1)(t) dt.

Define the Zygmund space L(log L)n(X) as the set of functions f with
‖f‖L(log L)n < ∞.

We note that L(log L)0(X) = L1(X), which is a useful notational short-
cut. Clearly, ‖ · ‖L(log L)n is a norm with the additional properties that
|f | ≤ |g| a.e.[ρ] implies ‖f‖L(log L)n ≤ ‖g‖L(log L)n and |fk| ↑ |f | a.e.[ρ] implies
‖fk‖L(log L)n ↑ ‖f‖L(logL)n . Further, this definition of L(log L)n coincides with
the classical space.

Theorem 2.1. f ∈ L(log L)n(X) if and only if∫
X

|f(x)|( log+ |f(x)|)n ρ(dx) < ∞.

The proof is fairly technical but straightforward and is left to the reader.
Using Hardy’s inequality, it is also easy to establish the following.

Theorem 2.2. For any 1 < p ≤ ∞ and n ≥ 0,

Lp(X) ⊆ L(log L)n+1(X) ⊆ L(log L)n(X) ⊆ L1(X),

with ‖f‖1 ≤ ‖f‖L(log L)n ≤ ‖f‖L(log L)n+1 � ‖f‖p.

The principal reason for defining L(log L)n as we have is the ease in which
we gain interpolation results.

Lemma 2.3. Let T be a sublinear operator which maps L1(X) → L1,∞(X)
and Lp(X) → Lq,∞(X), for some 1 < p, q < ∞. Then, for n ∈ N,

(Tf)(∗,n)(t) �
[
1

t

∫ tm

0

f (∗,n)(s) ds + t−1/q

∫ 1

tm
s1/p−1f (∗,n)(s) ds

]
,

where m = (1
q
− 1)(1

p
− 1)−1.
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Proof. We show this by induction. The n = 1 case is a technical result
established in [3]. Assume it is true for n − 1. Then,

(Tf)(∗,n)(t) =
1

t

∫ t

0

T (∗,n−1)(s) ds

� 1

t

∫ t

0

1

s

∫ sm

0

f (∗,n−1)(u) du ds +
1

t

∫ t

0

s−1/q

∫ 1

sm

u1/p−1f (∗,n−1)(u) du ds

=: I + II.

By the change of variables r = sm,

I =
1

m

1

t

∫ tm

0

1

r

∫ r

0

f (∗,n−1)(u) du dr =
1

m

1

t

∫ tm

0

f (∗,n)(r) dr.

On the other hand, changing the order of integration gives

II =
1

t

∫ tm

0

u1/p−1f (∗,n−1)(u)

∫ u1/m

0

s−1/q ds du

+
1

t

∫ 1

tm
u1/p−1f (∗,n−1)(u)

∫ t

0

s−1/q ds du

=
1

1 − 1/q

1

t

∫ tm

0

f (∗,n−1)(u) du +
1

1 − 1/q
t−1/q

∫ 1

tm
u1/p−1f (∗,n−1)(u) du

≤ 1

1 − 1/q

[
1

t

∫ tm

0

f (∗,n)(u) du + t−1/q

∫ 1

tm
u1/p−1f (∗,n)(u) du

]
.

�

Theorem 2.4. Let T be a sublinear operator which maps L1(X) → L1,∞(X)
and Lp(X) → Lq,∞(X), for some 1 < p, q < ∞. Then, for all n ∈ N, T also
maps L(log L)n(X) → L(log L)n−1(X).

Proof. Set m = (1
q
− 1)(1

p
− 1)−1. Using Lemma 2.3 and the same change

of variables and Fubini arguments,

‖Tf‖L(log L)n−1 =

∫ 1

0

(Tf)(∗,n)(t) dt

�
∫ 1

0

1

t

∫ tm

0

f (∗,n)(s) ds dt +

∫ 1

0

t−1/q

∫ 1

tm
s1/p−1f (∗,n)(s) ds dt

=
1

m

∫ 1

0

1

u

∫ u

0

f (∗,n)(s) ds du +

∫ 1

0

s1/p−1f (∗,n)(s)

∫ s1/m

0

t−1/q dt ds

=
1

m

∫ 1

0

f (∗,n+1)(u) du +
1

1 − 1/q

∫ 1

0

f (∗,n)(s) ds � ‖f‖L(log L)n.

�
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Corollary 2.5. Let T be a sublinear operator. If for some 1 < p, r < ∞∥∥∥∥( ∞∑
k=1

|Tfk|r
)1/r

∥∥∥∥
1,∞

�
∥∥∥∥( ∞∑

k=1

|fk|r
)1/r

∥∥∥∥
1

and∥∥∥∥( ∞∑
k=1

|Tfk|r
)1/r

∥∥∥∥
p

�
∥∥∥∥( ∞∑

k=1

|fk|r
)1/r

∥∥∥∥
p

,

then for all n ∈ N∥∥∥∥( ∞∑
k=1

|Tfk|r
)1/r

∥∥∥∥
L(log L)n−1

�
∥∥∥∥( ∞∑

k=1

|fk|r
)1/r

∥∥∥∥
L(log L)n

.

Proof. This only requires viewing the above theory through the wider
scope of Banach space-valued functions f : (X, ρ) → (B, ‖ · ‖B) (see [8]). If
instead one defined the decreasing rearrangement f ∗ for Banach space-valued
functions, in the natural way, and repeated the definitions and arguments of
this section, everything would still hold. In particular, the previous theorem
is valid; if T is sublinear operator mapping L1

B(X) to L1,∞
B (X) and Lp

B(X)
to Lq,∞

B (X), then T : L(log L)n
B(X) → L(log L)n−1

B (X). But, simply by
definition, f ∗(t) = (‖f‖B)∗(t), where (‖f‖B)∗ is understood as the decreasing
rearrangement of the map x 
→ ‖f(x)‖B. Thus,

‖f‖L(log L)n
B

=
∥∥‖f‖B

∥∥
L(log L)n .

Let B = �r and T (f) = (Tf1, T f2, . . .), so that T : L1
B(X) → L1,∞

B (X)
and Lp

B(X) → Lp
B(X). Thus, T : L(log L)n

B(X) → L(log L)n−1
B (X), which is

what was promised. �

3. Connections to Hardy-Littlewood

Let us turn our attention to the probability space (T, m). Let Mf denote
the standard Hardy-Littlewood maximal operator on T. Of course, M maps
L1(T) → L1,∞(T) and Lp(T) → Lp(T) for all 1 < p < ∞. So, by the inter-
polation results of the previous section, M : L(log L)n(T) → L(log L)n−1(T).
Further, from Fefferman and Stein [7], we know∥∥∥∥( ∞∑

k=1

|Mfk|r
)1/r

∥∥∥∥
1,∞

�
∥∥∥∥( ∞∑

k=1

|fk|r
)1/r

∥∥∥∥
1

and∥∥∥∥( ∞∑
k=1

|Mfk|r
)1/r

∥∥∥∥
p

�
∥∥∥∥( ∞∑

k=1

|fk|r
)1/r

∥∥∥∥
p

,

for all 1 < p, r < ∞, and therefore Corollary 2.5 applies. However, much
more can be said.
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Theorem 3.1. f (∗,n+1)(t) ∼ (Mf)(∗,n)(t), where the underlying constants
do not depend on f or t.

It clearly suffices, by induction, to prove f (∗,2)(t) ∼ (Mf)∗(t). But, this is a
well-known result; see [2, 3].

Corollary 3.2. f ∈ L(log L)n+1(T) if and only if Mf ∈ L(log L)n(T), and,
in particular, ‖f‖L(log L)n+1 ∼ ‖Mf‖L(log L)n.

4. Adapted families

Definition. A smooth function ϕ : T → C is adapted to an interval I with
constants Cm > 0, m ∈ N, if

|ϕ(x)| ≤ Cm

(
1 +

distT(x, I)

|I|
)−m

for all x ∈ T, m ∈ N,

|ϕ′(x)| ≤ Cm
1

|I|
(

1 +
distT(x, I)

|I|
)−m

for all x ∈ T, m ∈ N.

A family of smooth functions ϕI : T → C, indexed by the dyadic inter-
vals, is called an adapted family if each ϕI is adapted to I with the same
universal constants. We say {ϕI}I is a 0-mean adapted family if it is an
adapted family, with the additional property that

∫
T
ϕI dm = 0 for all I.

For an adapted family ϕI , define φI = |I|−1/2ϕI , where |I| denotes
Lebesgue measure. Note ‖φI‖2 � 1 for all I. Often, φI is called an L2-
normalized family. Per our notation, ϕI will always represent an adapted
family, and φI will always represent the L2-normalization.

Conceptually, we often think of functions which are adapted to an inter-
val I as being “almost supported” in I. The following theorem, which is a
variation of a result in [14], gives some rigid meaning to this.

Theorem 4.1. Let ϕI : T → C be adapted to a dyadic interval I, with
|I| = 2−N . Then, we can write

ϕI =

∞∑
k=1

2−10kϕk
I ,

where each ϕk
I is adapted to I, uniformly in k, with supp(ϕk

I ) ⊆ 2kI for
1 ≤ k ≤ N and ϕk

I = 0 otherwise. Further, if ϕI has integral 0, each ϕk
I can

be chosen to have integral 0.

To clarify the notation above, for an interval I and constant α > 0, αI
is the interval concentric with I so that |αI| = α|I|.
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Given an adapted family ϕI , its normalization φI , and f : T → C, we
will be interested in “averages” of f with respect to the family. Let

M ′f(x) = sup
I

1

|I|1/2
|〈φI , f〉|χI(x).

where the supremum is over all dyadic intervals. For a 0-mean adapted
family ϕI , define the Littlewood-Paley (discrete) square function by

Sf(x) =

(∑
I

|〈φI , f〉|2
|I| χI(x)

)1/2

,

where the sum is over all dyadic intervals.

Using Theorem 4.1, it is easily shown that M ′f � Mf , so that M ′

satisfies the same properties as M . It is known that S : L1 → L1,∞ and
Lp → Lp for 1 < p < ∞ (see [17] for a new approach). We will need to
establish Fefferman-Stein inequalities for S as well, but the only the special
case r = 2 will be necessary.

Theorem 4.2. For 1 < p < ∞ and any sequence f1, f2, . . . of complex-valued
functions on T ∥∥∥∥( ∞∑

k=1

|Sfk|2
)1/2

∥∥∥∥
p

�
∥∥∥∥( ∞∑

k=1

|fk|2
)1/2

∥∥∥∥
p

,∥∥∥∥( ∞∑
k=1

|Sfk|2
)1/2

∥∥∥∥
1,∞

�
∥∥∥∥( ∞∑

k=1

|fk|2
)1/2

∥∥∥∥
1

.

Only considering the r = 2 allows us to use Rademacher functions and Khin-
chine’s inequality to “linearize.” For the weak-L1 inequality, an alternate
characterization called the Kolmogorov condition is helpful (see [8]). For
full details, see [17].

5. Hybrid operators

The definitions of the hybrid operators MS, SM , and SS, their properties,
and their relevance in our context are borrowed from [13].

We say a set R ⊂ T2 is a dyadic rectangle if there exist dyadic intervals I
and J so that R = I × J . Given two (possibly distinct) adapted families ϕI

and ϕJ , we will write ϕR(x, y) = ϕI(x)ϕJ(y). For ϕR = ϕI ⊗ ϕJ , set
φR = |R|−1/2ϕR = φI ⊗ φJ .
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For functions f : T
2 → C, define

MMf(x, y) = sup
R

1

|R|1/2
|〈φR, f〉|χR(x, y).

If {ϕR} is a family such that
∫

T
ϕJ dm = 0 for all J , then define

MSf(x, y) = sup
I

1

|I|1/2

(∑
J

|〈φR, f〉|2
|J | χJ(y)

)1/2

χI(x),

Analogously, if
∫

T
ϕI dm = 0 for all I, define

SMf(x, y) =

(∑
I

(
supJ

1
|J |1/2 |〈φR, f〉|χJ(y)

)2

|I| χI(x)

)1/2

.

Finally, if
∫

T
ϕI dm =

∫
T
ϕJ dm = 0, set

SSf(x, y) =

(∑
R

|〈φR, f〉|2
|R| χR(x, y)

)1/2

.

Theorem 5.1. Each of MM , MS, SM , and SS maps Lp(T2) → Lp(T2)
for all 1 < p < ∞, L(log L)n+2(T2) → L(log L)n(T2) for all n ≥ 0, and
L log L(T2) → L1,∞(T2).

Proof. Let MS denote the strong maximal operator (that is, where the
supremum is taken over all bi-parameter rectangles). Define the 1st and
2nd variables maximal operators M1 and M2 as follows. For f : T2 → C,
let M1f(x1, x2) = M(f(·, x2))(x1) and M2f(x1, x2) = M(f(x1, ·))(x2). It is
clear that M1, M2 satisfy all the Lp properties and Fefferman-Stein inequal-
ities that M does. Define M ′

1, M
′
2, S1, S2 similarly.

Using Theorem 4.1 as before, MMf � MSf . But, MSf ≤ M1 ◦M2f , so
that

‖MMf‖p � ‖M1 ◦ M2f‖p � ‖M2f‖p � ‖f‖p,

‖MMf‖L(log L)n � ‖M1 ◦ M2f‖L(log L)n � ‖M2f‖L(log L)n+1 � ‖f‖L(log L)n+2 ,

‖MMf‖1,∞ � ‖M1 ◦ M2f‖1,∞ � ‖M2f‖1 � ‖f‖L log L.

We abuse notation slightly and write 〈f, φI〉 to mean
∫

T
φI(x)f(x, y) dx,

a function of the variable y. Thus, 〈φR, f〉 = 〈φJ , 〈f, φI〉〉 makes sense. Also,
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we can consider the two variable function 〈f, φI〉χI . In this manner,

SMf(x, y) =

(∑
I

(
supJ

1
|J |1/2 |〈φR, f〉|χJ(y)

)2

|I| χI(x)

)1/2

=

(∑
I

(
sup

J

1

|J |1/2

∣∣〈φJ ,
〈f, φI〉
|I|1/2

χI(x)
〉∣∣χJ(y)

)2
)1/2

=

(∑
I

M ′
2

(〈f, φI〉
|I|1/2

χI

)
(x, y)2

)1/2

.

By the Fefferman-Stein inequalities on M ′ (or M ′
2),

‖SMf‖p =

∥∥∥∥(∑
I

M ′
2

(〈f, φI〉
|I|1/2

χI

)2
)1/2∥∥∥∥

p

�
∥∥∥∥(∑

I

|〈f, φI〉|2
|I| χI

)1/2∥∥∥∥
p

= ‖S1f‖p � ‖f‖p,

and

‖SMf‖L(log L)n =

∥∥∥∥(∑
I

M ′
2

(〈f, φI〉
|I|1/2

χI

)2
)1/2∥∥∥∥

L(log L)n

�
∥∥∥∥(∑

I

|〈f, φI〉|2
|I| χI

)1/2∥∥∥∥
L(log L)n+1

= ‖S1f‖L(log L)n+1 � ‖f‖L(log L)n+2 ,

and

‖SMf‖1,∞ =

∥∥∥∥(∑
I

M ′
2

(〈f, φI〉
|I|1/2

χI

)2
)1/2∥∥∥∥

1,∞

�
∥∥∥∥(∑

I

|〈f, φI〉|2
|I| χI

)1/2∥∥∥∥
1

= ‖S1f‖1 � ‖f‖L log L.

On the other hand,

MSf(x, y) = sup
I

1

|I|1/2

(∑
J

|〈φR, f〉|2
|J | χJ(y)

)1/2

χI(x)

≤
(∑

J

(
supI

1
|I|1/2 |〈φR, f〉|χI(x)

)2

|J | χJ(y)

)1/2

.
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This is essentially SM with the roles of I and J reversed. The same argu-
ments as above can now be applied.

Finally,

SSf(x, y) =

(∑
R

|〈φR, f〉|2
|R| χR(x, y)

)1/2

=

[∑
I

∑
J

1

|J |
∣∣〈φJ ,

〈f, φI〉
|I|1/2

χI(x)
〉∣∣2χJ(y)

]1/2

=

[∑
I

S2

(〈f, φI〉
|I|1/2

χI

)
(x, y)2

]1/2

,

so that the same proof works. �

6. Bi-parameter multipliers

Given a vector �t = (t1, . . . , t2d) ∈ R2d, denote ρ1(�t) = (t1, t3, . . . , t2d−1) and
ρ2(�t) = (t2, t4, . . . , t2d), which are both vectors in Rd. For multi-indices of
nonnegative integers α, we set |ρ1(α)| = α1 + α3 + · · ·+α2d−1, and similarly
for |ρ2(α)|. Conversely, for 1 ≤ j ≤ d, let �tj = (t2j−1, t2j) ∈ R2, so that
�t = (�t1, . . . ,�td).

Definition. Let m : R2d → C be smooth away the origin and uniformly
bounded. We say m is a bi-parameter multiplier if

|∂αm(�t)| � ‖ρ1(�t)‖−|ρ1(α)|‖ρ2(�t)‖−|ρ2(α)|

for all vectors α with |α| ≤ 2d(d + 3), where ‖ · ‖ is the Euclidean norm
on Rd.

Given such a multiplier m on R2d and L1 functions f1, . . . , fd : T2 → C,
we define the associated multiplier operator Λ

(2)
m (f1, . . . , fd) : T2 → C as

Λ(2)
m (f1, . . . , fd)(�x) =

∑
�t∈Z2d

m(�t)f̂1(�t1) · · · f̂d(�td)e
2πi�x·(�t1+···+�td).

Consider the following theorem.

Theorem 6.1. For any bi-parameter multiplier m on R2d, it follows that
Λ

(2)
m : Lp1×· · ·×Lpd → Lp for 1 < pj < ∞ and 1/p1+· · ·+1/pd = 1/p. If any

or all of the pj are equal to 1, this still holds with Lp replaced by Lp,∞ and

Lpj replaced by L log L. In particular, Λ
(2)
m : L log L×· · ·×L log L → L1/d,∞.
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We focus only the bi-linear d = 2 case, but this makes no substantiative
difference in the proof. Note that in this case, the bi-parameter multiplier
condition can be stated

|∂(α,β)m(�s,�t)| � ‖(s1, t1)‖−α1−β1‖(s2, t2)‖−α2−β2

for all two-dimensional indices α, β with |α|, |β| ≤ 10.
It is by now a well established fact (see [14, 15, 17]) that the study of

multiplier operators of various sorts can be reduced to the study of finitely
many discrete paraproducts. For f, g : T2 → C, the bi-parameter bi-linear
paraproducts are defined by

T a,b(f, g)(x, y) =
∑

R

1

|R|1/2
〈φ1

R, f〉〈φ2
R, g〉φ3

R(x, y),

for a, b = 1, 2, 3, where φ1
R, φ2

R, and φ3
R are each the tensor product of two

normalized adapted families, as in the previous secton. The sum is over all
dyadic rectangles R. Further, if φi

R = φi
I ⊗ φi

J , then
∫

T
φi

I dx = 0 for i �= a
and

∫
T
φi

J dx = 0 for i �= b.
In order to establish Theorem 6.1, we need only prove each paraprod-

uct satisfies the same bounds. First, the following lemma is a well-known
characterization of weak-Lp. A proof is given in [1].

Lemma 6.2. Fix 0 < p < ∞ and f : Td → C. Suppose that for every mea-
surable set |E| > 0 in Td, we can choose a subset E ′ ⊆ E with |E ′| > |E|/2
and |〈f, χE′〉| ≤ A|E|1−1/p. Then, ‖f‖p,∞ � A. Conversely, if ‖f‖p,∞ ≤ A,
then for any measurable set |E| > 0 there exists E ′ ⊆ E with |E ′| > |E|/2
and |〈f, χE′〉| � A|E|1−1/p.

Theorem 6.3. T a,b :Lp1 ×Lp2 → Lp for 1<p1, p2 <∞ and 1/p1+1/p2 =1/p.
If p1 or p2 or both are equal to 1, this still holds with Lp replaced by Lp,∞

and Lpj replaced by L log L.

Proof. We will assume a = 1 and b = 2, as the other cases will follow
similarly.

First, suppose p > 1. Then, necessarily p1, p2 > 1 and 1 < p′ < ∞. Note,
1/p1 + 1/p2 + 1/p′ = 1. Fix h ∈ Lp′(T) with ‖h‖p′ ≤ 1. Then,

|〈T 1,2(f, g), h〉| ≤
∑

R

1

|R|1/2
|〈φ1

R, f〉||〈φ2
R, g〉||〈φ3

R, h〉|

=

∫
T2

∑
R

|〈φ1
R, f〉|

|R|1/2

|〈φ2
R, g〉|

|R|1/2

|〈φ3
R, h〉|

|R|1/2
χR(x, y) dx dy.
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Concentrating on the integrand,∑
R

|〈φ1
R, f〉|

|R|1/2

|〈φ2
R, g〉|

|R|1/2

|〈φ3
R, h〉|

|R|1/2
χR(x, y) =

=
∑

I

∑
J

|〈φ1
R, f〉|

|R|1/2

|〈φ2
R, g〉|

|R|1/2

|〈φ3
R, h〉|

|R|1/2
χR(x, y)

≤
∑

I

[(
1

|I|1/2
χI(x) sup

J

|〈φ2
R, g〉|

|J |1/2
χJ(y)

)

·
(∑

J

|〈φ1
R, f〉|

|R|1/2

|〈φ3
R, h〉|

|R|1/2
χR(x, y)

)]
.

Applying Hölder’s inequality, the last term is bounded by

SM(g)(x, y)

(∑
I

(∑
J

|〈φ1
R, f〉|

|R|1/2

|〈φ3
R, h〉|

|R|1/2
χR(x, y)

)2
)1/2

.

Applying Hölder to the inner sum,(∑
I

(∑
J

|〈φ1
R, f〉|

|R|1/2

|〈φ3
R, h〉|

|R|1/2
χR(x, y)

)2
)1/2

≤

≤
(∑

I

(∑
J

|〈φ1
R, f〉|2
|R| χR(x, y)

)(∑
J

|〈φ3
R, h〉|2
|R| χR(x, y)

))1/2

≤
(

sup
I

1

|I|χI(x)
∑

J

|〈φ1
R, f〉|2
|J | χJ(y)

)1/2(∑
I

∑
J

|〈φ3
R, h〉|2
|R| χR(x, y)

)1/2

= MS(f)(x, y)SS(h)(x, y).

Hence,

|〈T 1,2(f, g), h〉| ≤
∫

T2

MSf(x, y)SMg(x, y)SSh(x, y) dx dy

≤ ‖MSf‖p1‖SMg‖p2‖SSh‖p′ � ‖f‖p1‖g‖p2.

As h in the unit ball of Lp′ is arbitrary, we have ‖T 1,2(f, g)‖p � ‖f‖p1‖g‖p2.

Now assume 1/2 ≤ p ≤ 1. By interpolation, it is sufficient to show
T 1,2 : Lp1 × Lp2 → Lp,∞ for all 1 ≤ p1, p2 < ∞. Fix ‖f‖p1 = 1 if p1 > 1 or
‖f‖L log L = 1 if p1 = 1. Similarly for g and p2. Let E ⊆ T2 with |E| > 0.
By Lemma 6.2, we will be done if we can find E ′ ⊆ E, |E ′| > |E|/2 so that
|〈T 1,2(f, g), χE′〉| � 1 ≤ |E|1−1/p.
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For �k ∈ N2 and R = I × J a dyadic interval, denote 2
�kR = 2k1I × 2k2J ,

and |�k| = k1 + k2. Use Theorem 4.1 to write

φ3
R =

∑
�k∈N2

2−10|�k|φ3,�k
R

where each φ3,�k
R is the normalization of the tensor product of two 0-mean

adapted families which are uniformally adapted to I, J respectively. Further,

supp(φ3,�k
R ) ⊆ 2

�kR for �k small enough, while φ3,�k
I is identically 0 otherwise.

Now

〈T 1,2(f, g), χE′〉 =
∑
�k∈N2

2−10|�k|∑
R

1

|R|1/2
〈φ1

R, f〉〈φ2
R, g〉〈φ3,�k

R , χE′〉.

Hence, it suffices to show |∑ |R|−1/2〈φ1
R, f〉〈φ2

R, g〉〈φ3,�k
R , χE′〉| � 24|�k|, so long

as the underlying constants are independent of �k.

Let SS
�k be the double square operator with φ3,�k

R . For each �k ∈ N2, define

Ω−3|�k| = {MSf > C23|�k|} ∪ {SMg > C23|�k|},
Ω̃�k = {MS(χΩ−3|�k|) > 1/100},˜̃
Ω�k = {MS(χΩ̃�k

) > 2−|�k|−1}.

and

Ω =
⋃

�k∈N2

˜̃
Ω�k.

Observe, C can be chosen independent of f and g so that |Ω| < |E|/2. Set
E ′ = E − Ω = E ∩ Ωc. Then, E ′ ⊆ E and |E ′| > |E|/2.

Fix �k ∈ N2, and set Z�k = {MSf = 0}∪{SMg = 0}∪{SS
�kχE′ = 0}. Let

D be any finite collection of dyadic rectangles. Consider three subcollections.
Set D1 = {R ∈ D : R ∩ Z�k �= ∅}. For the remaining rectangles, let D2 =

{R ∈ D −D1 : R ⊆ Ω̃�k} and D3 = {R ∈ D −D1 : R ∩ Ω̃c
�k
�= ∅}.

If R ∈ D1, then there is some (x, y) ∈ R ∩ Z�k. Namely, MSf(x, y) = 0,

SMg(x, y) = 0, or SS
�k(χE′)(x, y) = 0. If it is the first, 〈φ1

R, f〉 = 0. If it is

the second, then 〈φ2
R, g〉 = 0, and if it is the third, 〈φ3,�k

R , χE′〉 = 0. As this
holds for all R ∈ D1, we have∑

R∈D1

1

|R|1/2
|〈φ1

R, f〉||〈φ2
R, g〉||〈φ3,�k

R , χE′〉| = 0.
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Now suppose R ∈ D2, namely R ⊆ Ω̃�k. For some �k, φ3,�k
R is identically 0

and 〈φ3,�k
R , χE′〉 = 0. For all others, φ3,�k

I is supported in 2
�kR. Let (x, y) ∈ 2

�kR,
and observe

MS(χΩ̃�k
)(x, y) ≥ 1

|2�kR|

∫
2�kR

χΩ̃�k
dm ≥ 1

2|�k|
1

|R|
∫

R

χΩ̃�k
dm = 2−|�k| > 2−|�k|−1.

That is, 2
�kR ⊆ ˜̃

Ω�k ⊆ Ω, a set disjoint from E ′. Thus, 〈φ3,�k
R , χE′〉 = 0. As this

holds for all R ∈ D2, we have∑
R∈D2

1

|R|1/2
|〈φ1

R, f〉||〈φ2
R, g〉||〈φ3,�k

R , χE′〉| = 0.

Finally, we concentrate on D3. Define Ω−3|�k|+1 and Π−3|�k|+1 by

Ω−3|�k|+1 = {MSf > C23|�k|−1},
Π−3|�k|+1 = {I ∈ D3 : |I ∩ Ω−3|�k|+1| > |R|/100}.

Inductively, define for all n > −3|�k| + 1,

Ωn = {MSf > C2−n},

Πn = {R ∈ D3 −
n−1⋃

j=−3|�k|+1

Πj : |R ∩ Ωn| > |R|/100}.

As every R ∈ D3 is not in D1, that is MSf > 0 on R, it is clear that each
R ∈ D3 will be in one of these collections.

Set Ω′
−3|�k| = Ω−3|�k| for symmetry. Define Ω′

−3|�k|+1
and Π′

−3|�k|+1
by

Ω′
−3|�k|+1

= {SMg > C23|�k|−1},
Π′

−3|�k|+1
= {R ∈ D3 : |R ∩ Ω′

−3|�k|+1
| > |R|/100}.

Inductively, define for all n > −3|�k| + 1,

Ω′
n = {SMg > C2−n},

Π′
n =

{
R ∈ D3 −

n−1⋃
j=−3|�k|+1

Π′
j : |R ∩ Ω′

n| > |R|/100
}
.

Again, all R ∈ D3 must be in one of these collections.
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Choose an integer N big enough so that Ω′′
−N = {SS

�k(χE′) > 2N} has
very small measure. In particular, we take N big enough so that |R∩Ω′′

−N | <
|R|/100 for all R ∈ D3, which is possible since D3 is a finite collection. Define

Ω′′
−N+1 = {SS

�k(χE′) > 2N−1},
Π′′

−N+1 = {R ∈ D3 : |R ∩ Ω′′
−N+1| > |R|/100},

and

Ω′′
n = {SS

�k(χE′) > 2−n},

Π′′
n =

{
R ∈ D3 −

n−1⋃
j=−N+1

Π′′
j : |R ∩ Ω′′

n| > |R|/100
}
,

Again, all R ∈ D3 must be in one of these collections.

Consider R ∈ D3, so that R ∩ Ω̃c
�k
�= ∅. Then, there is some (x, y) ∈

R ∩ Ω̃c
�k

which implies |R ∩ Ω−3|�k||/|R| ≤ MS(χΩ−3|�k|)(x, y) ≤ 1/100. Write

Πn1,n2,n3 = Πn1 ∩ Π′
n2

∩ Π′′
n3

. So,

∑
R∈D3

1

|R|1/2
|〈φ1

R, f〉||〈φ2
R, g〉||〈φ3,�k

R , χE′〉|

=
∑

n1,n2>−3|�k|, n3>−N

[ ∑
R∈Πn1,n2,n3

1

|R|1/2
|〈φ1

R, f〉||〈φ2
R, g〉||〈φ3,�k

R , χE′〉|
]

=
∑

n1,n2>−3|�k|, n3>−N

[ ∑
R∈Πn1,n2,n3

|〈φ1
R, f〉|

|R|1/2

|〈φ2
R, g〉|

|R|1/2

|〈φ3,�k
R , χE′〉|
|R|1/2

|R|
]
.

Suppose R ∈ Πn1,n2,n3. If n1 > −3|�k|+ 1, then R ∈ Πn1 , which in particular

says R /∈ Πn1−1. So, |R ∩ Ωn1−1| ≤ |R|/100. If n1 = −3|�k| + 1, then we still
have |R ∩ Ω−3|�k|| ≤ |R|/100, as R ∈ D3. Similarly, If n2 > −3k + 1, then

R ∈ Π′
n2

, which in particular says R /∈ Π′
n2−1. So, |R ∩ Ω′

n2−1| ≤ |R|/100.

If n2 = −3|�k| + 1, then we still have |R ∩ Ω′
−3|�k|| = |R ∩ Ω−3|�k|| ≤ |R|/100,

as R ∈ D3. Finally, if n3 > −N + 1, then R /∈ Π′′
n3−1 and |R ∩ Ω′′

n3−1| ≤
|R|/100. If n3 = −N +1, then |R∩Ω′′

−N | ≤ |R|/100 by the choice of N . So,
|R ∩ Ωc

n1−1 ∩ Ω′c
n2−1 ∩ Ω′′c

n3−1| ≥ 97
100

|R|. Let Ωn1,n2,n3 =
⋃{R : R ∈ Πn1,n2,n3}.

Then,

|R ∩ Ωc
n1−1 ∩ Ω′c

n2−1 ∩ Ω′′c
n3−1 ∩ Ωn1,n2,n3 | ≥

97

100
|R|
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for all R ∈ Πn1,n2,n3. Further,∑
R∈Πn1,n2,n3

|〈φ1
R, f〉|

|R|1/2

|〈φ2
R, g〉

|R|1/2

|〈φ3,�k
R , χE′〉|
|R|1/2

|R|

�
∑

R∈Πn1,n2,n3

|〈φ1
R, f〉|

|R|1/2

|〈φ2
R, g〉|

|R|1/2

|〈φ3,�k
R , χE′〉|
|R|1/2

× |R ∩ Ωc
n1−1 ∩ Ω′c

n2−1 ∩ Ω′′c
n3−1 ∩ Ωn1,n2,n3|

=

∫
Ωc

n1−1∩Ω′c
n2−1∩Ω′′c

n3−1∩Ωn1,n2,n3

χR(x, y)

×
∑

R∈Πn1,n2,n3

|〈φ1
R, f〉|

|R|1/2

|〈φ2
R, g〉|

|R|1/2

|〈φ3,�k
R , χE′〉|
|R|1/2

dx dy

≤
∫

Ωc
n1−1∩Ω′c

n2−1∩Ω′′c
n3−1∩Ωn1,n2,n3

MSf(x, y)SMg(x, y)SS
�k(χE′)(x, y) dx dy

� C22−n12−n22−n3|Ωn1,n2,n3 |.
Note,

|Ωn1,n2,n3| ≤ |
⋃

{R : R ∈ Πn1}| ≤ |{MS(χΩn1
) > 1/100}|

� |Ωn1 | = |{MSf > C2−n1}| � C−p12p1n1 .

Repeating the argument,

|Ωn1,n2,n3| � |Ω′
n2
| = |{SMg > C2−n2}| � C−p22p2n2 , and

|Ωn1,n2,n3| � |Ω′′
n3
| = |{SS

�k(χE′) > 2−n3}| � 2αn3

for any α ≥ 1. Thus, |Ωn1,n2,n3 | � C−p1−p22θ1p1n12θ2p2n22θ3αn3 for any θ1 +
θ2 + θ3 = 1, 0 ≤ θ1, θ2, θ3 ≤ 1. Hence,∑

R∈D3

1

|R|1/2
|〈φ1

R, f〉||〈φ2
R, g〉||〈φ3,�k

R , χE′〉|

�
∑

n1,n2>−3|�k|, n3>0

2(θ1p1−1)n12(θ2p2−1)n22(θ3α−1)n3

+
∑

n1,n2>−3|�k|, −N<n3≤0

2(θ1p1−1)n12(θ2p2−1)n22(θ3α−1)n3

=: A + B.
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For the first term, take θ1 =1/(2p1), θ2 =1/(2p2), θ3 =1−1/(2p), and α=1.
For the second term, take θ1 = 1/(3p1), θ2 = 1/(3p2), θ3 = 1 − 1/(3p) > 0,
and α = 2/θ3 to see

A =
∑

n1,n2>−3|�k|, n3>0

2−n1/22−n2/22−n3/2p � 23|�k|21/2p ≤ 23|�k|+1,

B =
∑

n1,n2>−3|�k|, −N<n3≤0

2−2n1/32−2n2/32n3 ≤
∑

n1,n2>−3|�k|,n3≤0

2−2n1/32−2n2/32n3 � 24|�k|.

Note, there is no dependence on the number N , which depends on D, or C,
which depends on E.

Combining the estimates for D1, D2, and D3, we see∑
R∈D

1

|R|1/2
|〈φ1

R, f〉||〈φ2
R, g〉||〈φ3,�k

R , χE′〉| � 24|�k|,

where the constant has no dependence on the collection D. Hence, as D is
arbitrary, we have∣∣∣∑

R

1

|R|1/2
〈φ1

R, f〉〈φ2
R, g〉〈φ3,�k

R , χE′〉
∣∣∣

≤
∑

R

1

|R|1/2
|〈φ1

R, f〉||〈φ2
R, g〉||〈φ3,�k

R , χE′〉| � 24|�k|,

which completes the proof. �
It should now be clear that proving the above for (a, b) �= (1, 2) follows

by permuting the roles of MM , MS, SM , and SS. For instance, if (a, b) =

(1, 1), then we consider MMf , SSg, and SS
�kχE′.

7. Multi-parameter multipliers

Finally, we would like to consider multipliers, and their corresponding op-
erators, which are multi-parameter. That is, m acts as if the product of s
standard multipliers.

For a vector �t ∈ Rsd and 1 ≤ j ≤ s, let ρj(�t) = (tj , tj+s, . . . , tj+s(d−1))

∈ Rd. Conversely, for 1 ≤ j ≤ d, let �tj = (ts(j−1)+1, . . . , tjs) ∈ Rs so that
�t = (�t1, . . . ,�td).

Let m : Rsd → C be smooth away from the origin and uniformly bounded.
We say m is an s-parameter multiplier if

|∂αm(�t)| �
s∏

j=1

‖ρj(�t)‖−|ρj(α)|

for all indices |α| ≤ sd(d + 3), where ‖ · ‖ is the Euclidean norm on Rd.
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Given such a multiplier m on R
sd and L1 functions f1, . . . , fd : T

s → C,
we define the associated multiplier operator Λ

(s)
m (f1, . . . , fd) : Ts → C as

Λ(s)
m (f1, . . . , fd)(�x) =

∑
�t∈Zsd

m(�t)f̂1(�t1) · · · f̂d(�td)e
2πi�x·(�t1+···+�td).

The familiar Lp estimates of still hold with minor modifications.

Theorem 7.1. For any s-parameter multiplier m on Rsd, it follows that
Λ

(s)
m : Lp1×· · ·×Lpd → Lp for 1 < pj < ∞ and 1/p1+· · ·+1/pd = 1/p. If any

or all of the pj are equal to 1, this still holds with Lp replaced by Lp,∞ and Lpj

replaced by L(log L)s−1. In particular, Λ
(s)
m : L(log L)s−1×· · ·×L(log L)s−1 →

L1/d,∞.

In view of these results, we now have a good perception of the heuristics.
Away from pj = 1, each of these operators act the same. However, it is
these endpoint cases which are the most interesting. Each time we go up a
parameter, we “gain a log” at the endpoint.

Just as in the bi-parameter case, we can reduce to paraproducts. We say
Q ⊂ Ts is a dyadic rectangle if Q = I1 × · · · × Is for dyadic intervals Ij .
Let ϕQ : T

s → C be the s-fold tensor product of adapted families. The
appropriate (bi-linear) paraproducts in this setting are

T a1,...,as
ε (f, g)(�x) =

∑
Q

1

|Q|1/2
〈φ1

Q, f〉〈φ2
Q, g〉φ3

Q(�x)

where the sum is over all dyadic rectangles Q. Each aj ranges over 1, 2, 3.
If φi

Q = φi
I1
⊗ · · · ⊗ φi

Is
, then

∫
T
φi

Ij
dx = 0 whenever i �= aj.

To complete the proof on s-parameter multiplier operators, it suffices to
show the associated paraproducts satisfy the same bounds. The same stop-
ping time argument works equally well in all dimensions, given the correct
s-fold hybrid operators. Therefore, we will understand the paraproducts if
we can show each s-fold hybrid operator maps Lp → Lp for 1 < p < ∞ and
L(log L)s−1 → L1,∞.

For illustrative purposes, we show this for one specific operator when
s = 3. For f : T3 → C define

SSMf(x, y, z) =

(∑
I1

∑
I2

(
supI3

1
|I3|1/2 |〈φQ, f〉|χI3(z)

)2

|I1||I2| χI1(x)χI2(y)

)1/2

.

Using the same notational conveniences as before,

SSMf =

(∑
I1

∑
I2

M ′
3

(〈f, φI1 ⊗ φI2〉
|I1|1/2|I2|1/2

χI1χI2

)2
)1/2

.
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So,

‖SSMf‖p =

∥∥∥∥(∑
I1

∑
I2

M ′
3

(〈f, φI1 ⊗ φI2〉
|I1|1/2|I2|1/2

χI1χI2

)2)1/2
∥∥∥∥

p

�
∥∥∥∥(∑

I1

∑
I2

|〈f, φI1 ⊗ φI2〉|2
|I1||I2| χI1χI2

)1/2
∥∥∥∥

p

=

∥∥∥∥(∑
I1

S2

(〈f, φI1〉
|I1|1/2

χI1

)2)1/2
∥∥∥∥

p

�
∥∥∥∥(∑

I1

|〈f, φI1〉|2
|I1| χI1

)1/2
∥∥∥∥

p

= ‖S1f‖p � ‖f‖p,

and

‖SSMf‖1,∞ =

∥∥∥∥(∑
I1

∑
I2

M ′
3

(〈f, φI1 ⊗ φI2〉
|I1|1/2|I2|1/2

χI1χI2

)2)1/2
∥∥∥∥

1,∞

�
∥∥∥∥(∑

I1

S2

(〈f, φI1〉
|I1|1/2

χI1

)2)1/2
∥∥∥∥

1

� ‖S1f‖L log L � ‖f‖L(log L)2 .

The recipe for arbitrary s-fold hybrid operators should now be clear.
Each such operator is pointwise smaller than one of the form SS...SMM...M .
In this case, the M...MM part is bounded by Mj ◦Mj+1◦· · ·◦Ms. Repeated
iterations of Fefferman-Stein eliminate these Mj , while the remaining SS...S
part can be dealt with as usual.
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