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Real analytic parameter dependence of
solutions of differential equations

Pawe�l Domański

Abstract

We consider the problem of real analytic parameter dependence
of solutions of the linear partial differential equation P (D)u = f ,
i.e., the question if for every family (fλ) ⊆ D ′(Ω) of distributions
depending in a real analytic way on λ ∈ U , U a real analytic manifold,
there is a family of solutions (uλ) ⊆ D ′(Ω) also depending analytically
on λ such that

P (D)uλ = fλ for every λ ∈ U,

where Ω ⊆ R
d an open set. For general surjective variable coefficients

operators or operators acting on currents over a smooth manifold
we give a solution in terms of an abstract “Hadamard three circle
property” for the kernel of the operator. The obtained condition is
evaluated giving the full solution (usually in terms of the symbol)
for operators with constant coefficients and open (convex) Ω ⊆ R

d if
P (D) is of one of the following types: 1) elliptic, 2) hypoelliptic, 3)
homogeneous, 4) of two variables, 5) of order two or 6) if P (D) is
the system of Cauchy-Riemann equations. An analogous problem is
solved for convolution operators of one variable. In all enumerated
cases, it follows that the solution is in the affirmative if and only if
P (D) has a linear continuous right inverse which shows a striking dif-
ference comparing with analogous smooth or holomorphic parameter
dependence problems.

2000 Mathematics Subject Classification: Primary 35B30, 35E20, 46F05. Secondary
32U05, 58A25, 46A63, 46A13, 46E10, 46M18.
Keywords : Analytic dependence on parameters, linear partial differential operator, con-
volution operator, linear partial differential equation with constant coefficients, injective
tensor product, surjectivity of tensorized operators, space of distributions, currents, space
of ultradistributions in the sense of Beurling, functor Proj1, PLS-space, locally convex
space, vector valued equation, solvability.



176 P. Domański

The paper contains the whole theory working also for operators
on Beurling ultradistributions D ′

(ω). We prove a characterization of
surjectivity of tensor products of general surjective linear operators
on a wide class of spaces containing most of the natural spaces of
classical analysis.

1. Introduction

The problem of parameter dependence of solutions of linear partial differen-
tial equations is a classical question. As examples of important contributions
to that topic we should mention papers of Tréves [72, 73] and Browder [13].
Later the problem of Hörmander on holomorphic parameter dependence
of fundamental solutions was solved in [44], [45] and [46]. Tréves studied
smooth and holomorphic dependence. Browder considered real analytic de-
pendence – their results form the first source of motivation for our paper.

Browder looked at a differential operator as a densely defined map on
a Hilbert space L2(Ω). In that case there is no ambiguity in saying “ana-
lytically dependent” since all reasonable definitions of Banach valued real
analytic functions coincide [1].

We will consider differential operators acting on the space of distribu-
tions. In that case we have to explain what does it precisely mean “depend-
ing in an analytic way” capturing the intuitive idea of a distribution given
by a formula depending analytically on parameters λ. That idea becomes
apparent through the following example. The formula

(1.1) fλ(x) :=
1

1 + λ2
(∑d

j=1 x
2
j

) λ ∈ R

gives a distribution for each fixed λ and it is natural to say that it depends
analytically on λ. Unfortunately, as follows from [40, p. 107] or [41, p. 97]
there is no reasonable topology on the space of distributions (or smooth
functions) such that λ �→ fλ is locally given by a convergent vector valued
Taylor series.

The Acta Mathematica paper of Kriegl and Michor [40] (and also their
subsequent book [41]) contains a detailed discussion on “real analytic depen-
dence” in the context of their study of real analytic maps between manifolds
modelled on locally convex spaces and respective vector bundles. Their re-
search is motivated, for instance, by the search of a real analytic structure
of the group of real analytic diffeomorphisms on a real analytic manifold. In
order to cover examples like (1.1) we have to follow the choice of Kriegl and
Michor: for U a real analytic manifold and E a complex locally convex space
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we call a vector valued function g : U → E real analytic if for every linear
continuous functional x ∈ E ′ the scalar function x ◦ g : U → C is analytic.
In the context of distributions our definition means that

U � λ �→ fλ ∈ D ′(Ω)

is real analytic if for every test function ϕ ∈ D(Ω) the scalar function

λ �→ 〈fλ, ϕ〉
is real analytic. The example (1.1) satisfies that definition but it is not cov-
ered by Browder’s approach because his analytic dependent objects must be
locally represented by the vector valued Taylor series convergent in L2(Ω),
hence also in D ′(Ω). Moreover, not every real analytic vector valued func-
tion extends to a holomorphic function on some complex neighbourhood of
its domain (again the example (1.1)!) and therefore the real analytic de-
pendence differs essentially from the holomorphic one. A characterization of
Fréchet spaces X such that all X-valued real analytic functions are locally
representable via convergent vector valued Taylor series is given in [4] and [5]
but neither the space of smooth functions on a manifold nor the space of
distributions satisfies this condition.

The research of Kriegl and Michor in [40] and [41] gives the second mo-
tivation of our problem. In their terminology, we ask if every real analytic
curve lifts with respect to a surjective linear partial differential operator
– in [41, Sec. 21] such a lifting problem is considered for arbitrary quotient
maps and the smooth analogue of the question is explicitly formulated as
an open problem [41, p. 226].

The author finds the outcome of the present paper as very surprising.
We know (see, for instance, discussion in [8]) that the analogous smooth or
holomorphic dependence problems for P (D) : D ′(Ω) → D ′(Ω) have always
positive solutions over any convex open set Ω ⊆ Rd and for any linear
partial differential equation with constant coefficients. Contrary to that, we
will prove:

Theorem A. The real analytic parameter dependence problem for a partial
differential operator P (D) : D ′(Ω) → D ′(Ω) with constant coefficients:

(a) has a negative answer for all elliptic operators for arbitrary open set
Ω ⊆ Rd, d > 1, or for hypoelliptic operators for arbitrary open con-
vex set Ω ⊆ Rd, d > 1 as well as for a system of Cauchy-Riemann
equations for arbitrary pseudoconvex domain Ω ⊆ Cd, d ≥ 1;

(b) has an affirmative answer for operators of two variables on convex
open Ω ⊆ Rd if and only if the operator is hyperbolic;
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(c) has an affirmative answer for operators of order two on R
d if and only

if after some real linear invertible change of variables the operator
P (D) is of the form

μ(∂1 − a1)2 + c or μ

[
r∑

j=1

(∂j − aj)
2 −

s−1∑
j=r+1

(∂j − aj)
2 + λi∂s

]
+ c

for μ, c, aj ∈ C, λ ∈ R, 1 ≤ r < s− 1;

(d) has an affirmative answer for operators with homogeneous symbol on
convex open Ω ⊆ Rd if and only if the operator has a linear continuous
right inverse on C∞(Ω).

In fact, in all the cases above, the solution of our problem is positive if and
only if P (D) : D ′(Ω) → D ′(Ω) or, equivalently, P (D) : C∞(Ω) → C∞(Ω)
has a linear continuous right inverse.

As a consequence, the problem of real analytic parameter dependence
of solutions has a negative answer for the Laplace, heat and Schrödinger
operators on any open convex set Ω as well as for the wave operator with
more than one spatial variable on any bounded convex set with C1-boundary.
On the other hand, the answer is affirmative for the wave operator with
arbitrarily many variables for Ω = R

d as well as for the wave operator
with one spatial variable for any open convex set Ω ⊆ R2. Clearly, if a
linear partial differential operator P (D) : D ′(Ω) → D ′(Ω) (or, equivalently,
P (D) : C∞(Ω) → C∞(Ω) [48]) has a linear continuous right inverse then
it has a real analytic parameter dependence. All the above results support
a surprising conjecture that the converse holds as well (and give a partial
solution to [6, Problem 9.5]). A similar theory for operators on spaces of
ultradifferentiable functions of Roumieu type, in particular, on spaces of real
analytic functions, will be developed in a forthcoming paper.

Various characterizations of the existence of a linear continuous right
inverse for a linear partial differential operator with constant coefficients
(solving a problem of L. Schwartz) were given by Meise, Taylor and Vogt [48].
Their conditions were better understood and expressed in many cases in
terms of the symbol thanks to efforts of Braun, Meise, Taylor and Vogt
(see [48, 52, 53, 12] and many further papers). For homogeneous symbols P
and bounded convex Ω with C1-boundary this holds if and only if P is
proportional to a product of linear forms with real coefficients [48, Th. 3.8].
For Ω = Rd the condition is well understood up to d = 3 [12]. Our research
both shed a new light on those results and profits from the deep ideas in the
papers listed above (especially, from [55]) which are truly impressive and
inspiring for us.
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We will prove also some unexpected relations, in particular, that op-
erators with real analytic parameter dependence are just perturbations of
homogeneous operators with the same property:

Theorem B. If a linear partial differential operator P (D) :D ′(Ω) → D ′(Ω)
with constant coefficients, Ω ⊆ Rd convex open, has a real analytic parameter
dependence then both P (D) : D ′(Rd) → D ′(Rd) and Pp(D) : D ′(Ω) → D ′(Ω)
satisfy the same condition, where

Pp(z) =
∑
|α|=k

aαz
α

is the principal part of the polynomial P (z) =
∑

|α|≤k aαz
α.

By the Köthe-Grothendieck duality [43, Prop. 6.12], the dual space H ′(D)
of the space of holomorphic functions on the unit disc H(D) = ker ∂̄ ⊆
C∞(D) can be identified as follows:

H ′(D) = indN∈N (H∞
0 (KN ), ‖ · ‖∗N) ,

KN := C∗ \ (1 − 1/N)D, ‖f‖∗N := sup
|z|>1−1/N

|f(z)|,

where the subscript 0 means that we consider functions vanishing at ∞,
C∗ = C ∪ {∞} the Riemann sphere. The Hadamard three circle theorem
implies that

(1.2) ∀N ∃M ∀K ∃ θ0 ∀ θ ∈ ]θ0, 1[ ∃C ‖f‖∗M ≤ C (‖f‖∗N)θ (‖f‖∗K)1−θ.

In fact, this condition is nothing more but a qualitative version of the
Hadamard’s theorem later generalized by Petsche [66, Cor. 4.5]. In [6], [7]
and [8] the problem of splitting of short exact sequences

0 −→ X −→ Y −→ F −→ 0,

was studied for F either Fréchet or dual Fréchet and X, Y the so-called
PLS-spaces (like spaces of distributions or their closed subspaces, see Sec-
tion 2). The conditions analogous to (1.2) but for non-metrizable spaces
were discovered and proved to be of crucial importance for splitting. In
particular, in [6, Cor. 8.4], [8, Prop. 5.4] it was shown that essentially the
same condition as (1.2), the so-called dual interpolation estimate for θ close
to 1 (see (2.1) below in Section 2) holds for kernels of arbitrary partial dif-
ferential operators with constant coefficients (not only ∂̄) on D ′(Ω), Ω ⊆ Rd

convex. The basis of the whole paper is the following surprising fact that
the strong version of the Hadamard’s estimate has dramatic consequences
(Corollary 6.4):
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Theorem C. An arbitrary surjective linear partial differential operator
P (D, x) with variable coefficients on D ′(Ω) has real analytic parameter de-
pendence of solutions if and only if its kernel has the dual interpolation esti-
mate for all sufficiently small θ ∈ ]0, 1[ (see (2.1)). In fact, this result holds
for an arbitrary surjective linear continuous operator T : D ′(Ω) → D ′(Ω) as
well, where D ′(Ω) is either the space of distributions on open Ω ⊆ Rd or the
space of currents on a C∞-manifold Ω.

It is worth noting that since D ′(Ω)m � D ′(Ω) the result holds for matrices
(systems) of differential operators as well.

The whole paper is just the proof of the results above. It is based on a
combination of methods from various branches of mathematics and it also
gives several interesting by-products. In fact, roughly half of the paper con-
sists of estimates on plurisubharmonic functions on algebraic varieties. First,
we use some functional analysis to reformulate the problem to the question
on surjectivity of tensor products of surjective operators. The second step is
based on homological algebra and gives a reformulation in terms of vanishing
of some derived functor, or more precisely, some special cohomology groups
Proj1 . The third part based on the operator theory on Hilbert spaces (spec-
tral theory of unbounded operators) and on the modern theory of locally
convex spaces evaluates when Proj1 = 0. The fourth step comes from the
function theory: it is a specification of the calculated condition for the space
of real analytic functions via a complex analytic construction to obtain the
mentioned above dual interpolation estimate for small θ. The fifth part is a
translation of the estimate for kernels of differential operators through the
fundamental principle of Ehrenpreis and Palamodov. The sixth part, the
longest one, is a mixture of algebraic geometry and the theory of plurisub-
harmonic functions. We obtain estimates for plurisubharmonic functions on
the zero variety of the polynomial P which give main results.

Let us emphasize that several results in the paper are formulated and
proved for D ′

(ω)(Ω) (including Denjoy-Carleman style ultradistributions D ′
(Mp)

–see [39]) but they cover also the most interesting case of the space of clas-
sical distributions D ′(Ω) by taking ω(t) = log(2 + |t|). All the results up to
Section 6 are valid also for operators with variable coefficients and Ω being a
smooth manifold (that means for spaces of currents instead of distributions).

Now, we summarize the content of the paper. In Section 2 we explain the
framework of the category of PLS-spaces which contains most of the non-
Banach natural spaces of analysis. Among them the spaces of (ultra-)dis-
tributions, currents, real analytic functions, smooth and holomorphic func-
tions as well as the spaces of tempered distributions. We recall topological
invariants extensively used in the paper: dual interpolation estimates and
the so-called P -conditions.
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In Section 3 we formulate precisely the problem of real analytic param-
eter dependence of solutions of the given distributional equation Tu = f ,
where T , f are given and u is an unknown distribution or current. We recall
that this is equivalent with surjectivity of the operator T ⊗ id A (U) defined
on the completed tensor product of the domain of T and the space of real
analytic functions A (U). Grothendieck showed that for nuclear Fréchet
spaces tensor product of two surjective operators is surjective as well but we
consider highly non-metrizable spaces like D ′(Ω) or A (U) and therefore our
problem of surjectivity of tensor products is much more subtle and so far it
has been unsolved – the results of the present paper (see Section 5) are the
strongest known up to now.

In Section 4 we explain the relation of the problem of surjectivity of ten-
sor products of surjective operators acting on PLS-spaces to the homological
algebra problem of vanishing of Proj1 functor (the first derived functor of
the functor of projective limit) on the tensor product of kernels, see Corol-
lary 4.6. This section is the last part in the introductory part containing
essentially known results with only minor original contribution.

Section 5 is the first technical core of the paper. The main result (Theo-
rem 5.2) characterizes when Proj1 vanishes for a completed tensor product
of two PLN-spaces. Via the results of Section 4 it solves completely the
problem of surjectivity of tensor products of two surjective endomorphisms
on PLN-spaces (therefore on most of the natural spaces of analysis)!

In Section 6 we draw consequences from the previous section for tensor
products X⊗̂εE when one space is fixed. The crucial result is Corollary 6.4
= Theorem C which characterizes when T⊗id A (U) is surjective for surjective
T : D ′(Ω) → D ′(Ω) or, equivalently, characterizes when the equation Tu = f
has a real analytic parameter dependence of solutions. As a consequence we
characterize in terms of μ when a convolution operator Tμ : D ′

(ω)(R) →
D ′

(ω)(R) has a real analytic parameter dependence of solutions. The section
contains only a selection of the consequences of the constructed theory – an
attentive reader will easily produce much more.

Since in Section 6 we show that surjectivity of tensorized maps/real an-
alytic parameter dependence is equivalent with the so-called dual interpo-
lation estimates for the kernel of the map T , it is of crucial importance to
decide for a fixed operator T (especially differential operator) when its kernel
has this property. In Section 7 we give a characterization for linear partial
differential operators with constant coefficients, see Theorem 7.1. We use the
fundamental principle of Ehrenpreis and Palamodov and theory of plurisub-
harmonic functions to translate our conditions into a Phragmén-Lindelöf
type estimate for plurisubharmonic functions on a suitable algebraic variety.
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In Section 8 we use our theory to the problem of real analytic parameter
dependence of solutions of linear partial differential equations with constant
coefficients on the space of distributions D ′(Ω) or the space of ultradistribu-
tions of Beurling type D ′

(ω)(Ω), Ω convex. Using plurisubharmonic functions

on algebraic varieties we show the main results of the paper (Theorems A
and B). This section is the second technical core of the paper – we apply
subtle methods of the theory of plurisubharmonic functions.

The last Section 9 collects open problems which naturally appear in our
theory.

To conclude the introductory section let us recall that Fréchet space
means a complete metrizable locally convex space. An operator denotes a
linear continuous map and by L(X, Y ) we denote the space of all such oper-

ators T : X → Y . The notation X
comp

⊆ Y means that X is a complemented
locally convex subspace of Y . By Ω we always denote either an open sub-
set of Rd or a smooth manifold both with a fixed but arbitrary compact
exhaustion

K1 � K2 � · · · � KN � · · · � Ω, Ω =
⋃

N∈N

KN .

From Section 7 on, Ω is always an open subset of Rd. If Ω is convex then KN

will be chosen convex as well. By A (U) we denote the space of real analytic
functions with its natural topology (see [47, 18, 24]) on a real analytic mani-
fold U . Throughout the paper we always assume that real analytic manifolds
are Hausdorff, paracompact and have countable bases of topology.

A short exact sequence of locally convex spaces

0 −−−→ X
j−−−→ Y

q−−−→ Z −−−→ 0

is called topologically exact if j is a linear topological embedding and q is
an open continuous linear map. By B(x, r) we denote a ball of radius r
and center x. H(V ) denotes the space of holomorphic functions on V . If

z = (z1, . . . , zd) ∈ C
d then |z| :=

(∑d
j=1 |zj|2

)1/2

. The symbols o(·) and O(·)
are always understood as variable tends to ∞.

For non-explained notions from functional analysis (theory of locally con-
vex spaces, spectral theory etc.) see [57] or/and [37]. For the theory of tensor
products see [37]. For applications of homological algebra and derived func-
tors to partial differential equations and functional analysis see [83]. For the
theory of plurisubharmonic functions (pluripotential theory) see [38]. For
linear partial differential equations see [36, 62]. For the theory of currents
see [25].
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2. PLS-spaces – preliminaries

The whole paper is written in a very convenient framework of the so-called
PLS-spaces. It turns out that typical non-Banach spaces of analysis are
either PLS-spaces or their duals. For a review on PLS-spaces see [18].

An LS-space (called also a DFS-space) is a locally convex inductive limit
of a sequence of Banach spaces with compact linking maps or, equivalently,
a strong dual of a Fréchet-Schwartz space. It is known that LS-spaces are
reflexive, Schwartz, separable and that every closed subspace and separated
quotient of an LS-space is LS as well. Examples of LS-spaces are spaces of
distributions of compact support E ′(Ω), spaces of tempered distributions S ′,
spaces of germs of holomorphic functions over a compact set H(K), etc.

A projective limit of a sequence of LS-spaces is called a PLS-space. It is
known that all Fréchet-Schwartz spaces, LS-spaces and their countable prod-
ucts are PLS-spaces. Every closed subspace and complete separated quotient
of a PLS-space is PLS as well. The class of PLS-spaces is the smallest class
of locally convex spaces containing Fréchet-Schwartz spaces, their duals and
closed with respect of taking countable products and closed subspaces.

PLS-spaces are separable, webbed and complete. They are reflexive if
and only if they are barrelled or (ultra)bornological. Examples of PLS-
spaces are spaces of holomorphic functions H(V ), smooth functions C∞(Ω),
distributions or currents D ′(Ω), real analytic functions A (U), ultradistri-
butions in the sense of Beurling D ′

(ω)(Ω), ultradifferentiable functions in the

sense of Roumieu E{ω}(Ω) and Köthe type PLS-spaces Λ(A) (see [18]).

If instead of LS-spaces we take LN-spaces (i.e., locally convex inductive
limits of sequences of Banach spaces with nuclear linking maps, called also
DFN-spaces since they are strong duals of nuclear Fréchet spaces), we get
PLN-spaces. All the above mentioned PLS-spaces except some Köthe spaces
Λ(A) are PLN-spaces. The category of PLS-spaces is more convenient since
not every nuclear Fréchet space is a PLN-space (only so-called strongly nu-
clear Fréchet spaces [37] are PLN-spaces).

If X is a PLS-space we write it throughout the paper as

X = projN∈N XN , where XN = indn∈N XN,n is an LS-space,

(XN,n, ‖ · ‖N,n) are Banach spaces, inN,n+1 : XN,n → XN,n+1 are compact link-

ing maps, iN+1
N : XN+1 → XN , iN : X → XN are linking maps. Moreover,

we denote by BN,n the unit ball of XN,n and UN,n its polar, i.e., the unit ball
in X ′

N,n ↪→ X ′
N . Without loss of generality we assume that inN,n+1 has norm

≤ 1, i.e., BN,n ⊆ BN,n+1 for N, n ∈ N. Moreover,

iN+1
N (BN+1,n) ⊆ BN,n for N, n ∈ N.
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We denote
‖f‖∗N,n := sup

‖x‖N,n≤1

|f(x)|

the dual norm. The same conventions will be used for other PLS-spaces Y,E,
etc. By W (UN,n, BN,n) we denote the set of all linear continuous operators

T : X ′
N,n → YN,n, T (UN,n) ⊆ BN,n.

The spaces mentioned above are described, for instance, in [6, pp. 333–336].
For the sake of completeness we recall the definition of D ′

(ω)(Ω) from [11]
since these spaces are extensively used in the paper.

We will use the classical multiindex notation for α = (α1, . . . , αd),

|α| = α1 + · · · + αd, f (α)(x) =
∂|α|

∂α1x1 · · · · · ∂αdxd

.

We introduce a weight ω : [0,∞[→ [0,∞[ to be a continuous increasing
function satisfying the following conditions:

(α) ω(2t) = O(ω(t));

(β) ω(t) = O(t);

(γ) log t = o(ω(t)) or ω(t) = log(2 + |t|);
(δ) ϕ is a convex function, ϕ(t) := ω(et).

We extend ω to Cd by ω(z) := ω(|z|). If∫ ∞

0

ω(t)

1 + t2
dt <∞

then the weight is non-quasianalytic and we will use later on only such
weights.

If Ω ⊆ Rd open then the class of Beurling ultradistributions D ′
(ω)(Ω) is

defined to be the strong dual of

D(ω)(Ω) :=
{
f ∈ D(Ω) : ∀ k ∈ N

‖f‖k := sup
x∈Ω

sup
α∈Nd

|f (α)(x)| exp
(
− kϕ∗

( |α|
k

))
<∞

}
,

where
ϕ∗(t) := sup

x≥0
(xt− ϕ(t)) the Young conjugate of ϕ,

equipped with the inductive limit topology (steps are Fréchet spaces with ‖ ·‖k

seminorms):

D(ω)(Ω) = indN∈N D(ω)(KN), D(ω)(KN) := {f ∈ D(ω)(Ω) : supp f ⊆ KN}.
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Thus D ′
(ω)(Ω) is a PLN-space. We consider the weight ω(t) = log(2 + |t|)

since it gives D ′
(ω)(Ω) to be the classical space of distributions D ′(Ω). If Ω

is a smooth manifold then we use the same notation D ′(Ω) to denote the
space of currents over Ω with the analogous topology (we hope that which
space is denoted will be clear from the context).

The family of classes D ′
(ω) is well adapted to Fourier transform but it con-

tains also most of the Denjoy-Carleman style classes defined via growth con-
ditions of Taylor coefficients controlled by sequences (Mp), see [9] and [39].
The best known among them are Gevrey classes (see, for instance, [69]):
Γ(p) = D(ω) for ω(t) = t1/p for p > 1.

The space of real analytic functions A (Ω) has the topology given as

A (Ω) = projN∈N H(KN),

where H(KN) is the space of germs of holomorphic functions over KN ,

H(KN) := indn∈N H∞(UN,n),

where (UN,n)n∈N is a basis of complex neighbourhoods of KN . Analogously,
we define topology on A (Ω) where Ω is a real analytic manifold. Clearly
A (Ω) is a PLN-space (for more details see [18]). The space A (Ω) , Ω ⊆ Rd

open, is neither metrizable nor dual metrizable and it has a complicated
structure: for instance, it has no Schauder basis [24].

We call a sequence α regular if

Λr(β)
comp

⊆ Λr(α)
comp

⊆ Λr(γ), β, γ stable.

Here Λ0(α), Λ∞(α) denote power series spaces of finite and infinite type,
respectively, see [57, Ch. 29].

We will need the following simple observation:

Proposition 2.1 Let U be a real analytic manifold.

(a) If U is compact then A (U) � Λ′
0(α), α regular.

(b) If U has infinitely many connected components, all of them compact,
then

A (U) �
∏
n∈N

Λ′
0(α

(n)), sequences α(n) are regular for every n ∈ N.

(c) If U has at least one non-compact connected component then A (U) has
a quotient isomorphic to A (R) and A (U) is isomorphic to a quotient
of the space A (Rm) for suitable big m.
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Proof. (a): Clearly U contains a copy of the unit circle T as a real analytic
submanifold. By [81], the restriction map r : A (U) → A (T) has a continu-
ous linear right inverse, so A (T) � Λ′

0(j) is isomorphic to a complemented
subspace of A (U). By [60, §2.15], we may embed U into Tm for m big
enough. Again by [81], the restriction map R : A (Tm) → A (U) has a con-
tinuous linear right inverse, so A (U) is complemented in A (Tm) � Λ′

0(j
1/m).

This completes the proof by [59, Cor. 1.1], comp. [75, Satz 1.7].
(b): Immediate consequence of (a).
(c): Obviously, we may C1-embed R into U . By [34, Th. 2.1.4, 2.5.1], we

can also embed R into U as a real analytic submanifold. The restriction
map r : A (U) → A (R) is a linear continuous surjection. Analogously, by
[60, § 2.15], U embeds into Rm for sufficiently big m as a real analytic sub-
manifold and the restriction map R : A (Rm) → A (U) is a linear continuous
surjection. By [47, Th. 1.2] and [57, 24.30] the maps r and R are open. �

We will use extensively in the paper the following Lemma [11, Lemma
1.7], [10, Prop. 5], [50, Lemma 3.7]:

Lemma 2.2 For every non-quasianalytic weight ω, ε > 0, and a function
h : [0,∞[→ [0,∞[ such that ω = o(h) there exists a non-quasianalytic
weight σ ≥ ω, a plurisubharmonic function v on Cd and a constant D > 0
such that

ω = o(σ), σ = o(h), −Dω(z) ≤ v(z) ≤ ε| Im z| − ω(z) for z ∈ C
d.

We will use only PLS-type Köthe sequence spaces with �∞-norms as
defined, for instance, in [6]. Among PLS-type Köthe sequence spaces the
most interesting are PLS-type power series spaces Λr,s(α, β) see for instance
[6, Th. 2.2]. We define for sequences (αj) and (βj) of positive numbers such
that αj + βj → ∞ as j → ∞ the following PLS-space

Λr,s(α, β) := {x = (xj) : ∀ N ∃ n : ‖x‖N,n <∞},
where

‖x‖N,n := sup
j

|xj | exp(rNαj − snβj)

and (rN), (sn) are arbitrary fixed sequences such that rN ↗ r, sn ↗ s.
It suffices to consider r, s = 0,∞ and the space does not depend on the
choice of (rN) and (sn).

We will classify PLS-spaces by means of the so-called dual interpola-
tion estimates and P-properties which are generalizations of (Ω)-type and
dual (DN)-type properties introduced by Vogt and Zahariuta (see MSC 2000
number 46A63) and were defined for the first time in [6, 7, 8]. For Fréchet
spaces of holomorphic functions of one variable the estimates are closely con-
nected (via Köthe-Grothendieck duality) with the classical Hadamard three
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circle theorem and operator theory specialists will recognize similarity to the
so-called J-type in the interpolation theory of operators [2]. All these reminis-
cences are rooted in the proofs later on. A lot of information below is taken
from [7]. A PLS-space is strict if and only if it is a projective limit of a sequen-
ce of LS-spaces where linking maps in the projective spectrum are surjective.

A PLS-space X has a dual interpolation estimate if

(2.1)
∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∀ m ≥ n ∀ θ ∈ ]0, 1[ ∃ k ≥ m,C

∀ x ∈ X ′
N ‖x ◦ iMN ‖∗M,m ≤ C

(‖x ◦ iKN‖∗K,k

)1−θ (‖x‖∗N,n

)θ
.

If we replace the quantifier ∀ θ ∈]0, 1[ by

∃ θ0 ∈]0, 1[ ∀ θ ∈]0, θ0[ (or ∃ θ0 ∈]0, 1[ ∀ θ ∈]θ0, 1[ )

we get the definition of the dual interpolation estimate for small (big) theta.

Using the proof of [6, Lemma 5.1] we get the following reformulation of
the dual interpolation estimate:

∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∀ m ≥ n ∀ θ ∈ ]0, 1[ ∃ k ≥ m,C ∀ r > 0

∀ x ∈ X ′
N : ‖x ◦ iMN ‖∗M,m ≤ C

(
rθ‖x ◦ iKN‖∗K,k +

1

r1−θ
‖x‖∗N,n

)
.

Clearly taking θ close to 0 or 1 we get the dual interpolation estimate for

small or big θ. If we consider only r ≥ 1 then we get the condition (PΩ) (for
all θ or, equivalently, θ close to 0) or (PΩ) (for θ close to 1 or, equivalently,
for some θ ∈ ]0, 1[). Analogously, if we consider only 0 < r ≤ 1 then we get
the condition (PA) (for all θ or, equivalently, θ close to 1) or (PA) (for θ
close to 0 or, equivalently, for some θ ∈ ]0, 1[).

The dual interpolation estimate for small θ is equivalent to the combina-

tion of (PΩ) and (PA) , for big θ is equivalent to (PΩ) and (PA). Moreover,

(PΩ) implies (PΩ) and (PA) implies (PA) . Thus the dual interpolation

estimate for all θ is equivalent to the combination of (PΩ) and (PA) .
There are also reformulations of these P-conditions in the similar spirit

as in the definition of the dual interpolation estimate. For instance, (PΩ) is
equivalent to

∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∀ m ≥ n ∃ θ ∈ ]0, 1[ ∃ k ≥ m,C

∀x ∈ X ′
N : ‖x ◦ iMN ‖∗M,m ≤ C

(‖x ◦ iKN‖∗K,k

)1−θ · max
(‖x‖∗N,n, ‖x ◦ iKN‖∗K,k

)θ
.

If we take ∀ θ ∈ ]0, 1[ then we get (PΩ) . Analogously, (PA) is equivalent to

∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∀ m ≥ n ∃ θ ∈ ]0, 1[ ∃ k ≥ m,C

∀ x ∈ X ′
N : ‖x ◦ iMN ‖∗M,m ≤ C max

(‖x ◦ iKN‖∗K,k, ‖x‖∗N,n

)1−θ (‖x‖∗N,n

)θ
and if we take ∀ θ ∈ ]0, 1[ we get (PA).
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All these conditions are inherited by countable products and complete
quotients. In papers [6, 8, 7] many examples of spaces with P-properties are
collected. We summarize them for the sake of convenience (use Prop. 2.1).

Corollary 2.3 (a) A Fréchet space has a dual interpolation estimate for
big θ iff it has (Ω). It has a dual interpolation estimate for small (all) θ

iff it has (Ω).

(b) An LS-space has a dual interpolation estimate for small θ iff its dual
has (DN). It has a dual interpolation estimate for big (all) θ iff its
dual has (DN).

(c) The space of distributions D ′(Ω), Ω⊆Rd arbitrary open, or the space of
currents D ′(Ω), Ω an arbitrary C∞-manifold, or the space of Beurling
ultradistributions D ′

(ω)(Ω) has the dual interpolation estimate for all θ.

(d) The space of real analytic functions A (Ω), Ω a real analytic manifold
has the dual interpolation estimate for small θ.

(e) The PLS-type power series space Λr,s(α, β) has the dual interpolation
estimate for big θ iff s = ∞ or it is a Fréchet space. It has the dual

interpolation estimate for small θ (or (PΩ) ) iff it is an LS-space.

Remark. Let us recall that the space of currents D ′(Ω) is the dual space
of the space of differential forms on Ω with compact support. Since Ω can
be embedded into some Rm in such a way that there is a tubular neigh-
bourhood Ω1 of Ω in Rm and using C∞-resolution of identity we can define
a linear continuous map extending differential forms with compact support
on Ω to such forms on Ω1. By duality the space of currents D ′(Ω) is a com-
plemented subspace of the space of currents D ′(Ω1). Since Ω1 is “flat” the
latter is a product of finitely many spaces of distributions. That is why the
space of currents also has the dual interpolation estimate for all θ.

3. Parameter dependence of solutions versus surjectiv-

ity of tensorized maps

Let us assume that
T : D ′

(ω)(Ω) → D ′
(ω)(Ω)

is a surjective operator and U is a real analytic manifold. We say that the
equation

Tu = f,

where u is an unknown distribution has the real analytic parameter depen-
dence (of solutions) if for every real analytic function

U � λ �→ fλ ∈ D ′
(ω)(Ω)



Real analytic parameter dependence of solutions of PDEs 189

there is a real analytic function

U � λ �→ uλ ∈ D ′
(ω)(Ω)

such that
Tuλ = fλ for every λ ∈ U.

Recall that for complete locally convex space X:

A (U,X) := {f : U → X : ∀ g ∈ X ′ g ◦ f ∈ A (U)}.
As shown in [40], A (U,X) contains functions for which vector valued

Taylor series is not convergent. In [4, 5] a characterization is given for which
Fréchet spaces X every function F ∈ A (U,X) has a Taylor series local
representation.

Let us define ε-product of Schwartz for complete X, E:

XεE := Le(X
′
co, E)

the space of linear continuous operators from the dual X ′ equipped with the
compact-open topology. The subscript emeans that we equip L(X ′

co, E) with
the topology of uniform convergence on equicontinuous sets. It is important
that ε-product is commutative. Clearly X ⊗ E ⊆ XεE and if one of the
spaces has the approximation property then X ⊗ E is dense in XεE, the
latter is always complete if E and X are complete. If one of the spaces is
nuclear (thus has the approximation property) then on X ⊗E there is only
one natural topology so then XεE is the unique natural completion of X⊗E!

It is well known that for complete X (for A see [4, Th. 16]) spaces of
vector valued functions have the following tensor representations:

C∞(U,X) = C∞(U)εX, H(U,X) = H(U)εX, A (U,X) = A (U)εX.

For vector valued distributions ε-product is just the definition [71]:

D ′(U,X) := D ′(U)εX, D ′
(ω)(U,X) := D ′

(ω)(U)εX.

As T ⊗ id A (U) we define the unique extension of the tensor map

T ⊗ id A (U) : D ′
(ω)(Ω) ⊗ A (U) → D ′

(ω)(Ω) ⊗ A (U)

via density to the map: D ′
(ω)(Ω)εA (U) → D ′

(ω)(Ω)εA (U).

Conclusion: Let T : D ′
(ω)(Ω) → D ′

(ω)(Ω) be an operator. The equation
Tu = f has the real analytic parameter dependence of solutions if and
only if

T ⊗ id : D ′
(ω)(Ω)εA (U) → D ′

(ω)(Ω)εA (U)

is surjective. An analogous conclusion holds for smooth, holomorphic, ul-
tradifferentiable, (ultra)distributional dependence for operators on spaces
of real analytic, smooth, ultradifferentiable, holomorphic functions or (ul-
tra)distributions.
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4. Surjectivity of tensorized maps versus Proj1 functor

The aim of this section is to use homological approach to the problem of
surjectivity of tensorized maps. We will translate the problem into the
question of vanishing of the so-called Proj1 functor. Of course, the main
idea of this section is known to specialists (see [83]) – we complete it with
some minor new results.

Let V = projN∈N
VN be a projective limit of linear spaces. We construct

the following exact sequence

0 −−−→ V
i−−−→ ∏

N∈N
VN

σ−−−→ ∏
N∈N

VN ,

where i is the canonical embedding and σ((xn)N∈N) := (iN+1
N xN+1 −xN )N∈N

and iN+1
N : VN+1 → VN as usual denote linking maps. We define

Proj1
(
(VN , i

N+1
N )N∈N

)
:=
∏
N∈N

VN/ im σ.

That functor was introduced to functional analysis by Palamodov [63, 64],
and analyzed in depth by Vogt [78, 79], Frerick [28], Frerick and Wengen-
roth [30] and others, see a survey in [83].

If we assume that (VN) are complete and the spectrum is strongly re-
duced (i.e., canonical images of V in VN are dense) then all such spectra
are equivalent and we can write Proj1 V since it does not depend on such a
spectrum representing V . If V is a PLS-space then it is a strongly reduced
projective limit of LS-spaces and we have the following result:

Theorem 4.1 [83, Cor. 3.3.10] Let V be a PLS-space. The following asser-
tions are equivalent:

1. Proj1 V = 0;

2. V is ultrabornological;

3. V is barrelled.

Moreover, the following essentially known result will be used, see [20,
Prop. 4.3] and its proof based on [3, 4.3], where the last statement follows
from [17, Prop. 2.7].

Theorem 4.2 Let V = projN∈N
VN , W = proj N∈NWN are PLS-spaces

(represented by strongly reduced spectra of LS-spaces) then

V εW = projN∈N
VNεWN = projN∈N

Lb(V
′
N ,WN)

is a PLS-space, spectrum (VNεWN) is strongly reduced and

VNεWN = Lb(V
′
N ,WN)
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is an LS-space with the fundamental sequence of bounded sets (Banach discs)

(W (UN,n, BN,n))n∈N
,

where BN,n are the unit balls of Banach spaces in WN,n, WN = indn∈N WN,n

and UN,n are the unit balls of the duals of VN,n, VN = indn∈N VN,n.

We reduce the problem to tensorizing with the identity map.

Proposition 4.3 Let S : X → Y , T : E → E be continuous surjective
operators. Then

S ⊗ T : XεE → Y εE

is surjective if and only if

id Y ⊗ T : Y εE → Y εE, and S ⊗ id E : XεE → Y εE

are surjective.

Proof. Observe that

S ⊗ T = (id Y ⊗ T ) ◦ (S ⊗ id E) = (S ⊗ id E) ◦ (id X ⊗ T ) . �

Lemma 4.4 If X is a nuclear Fréchet space then X = projN∈N
XN such

that XN are LS-spaces with c0-steps. Therefore X ′
N are projective limits of

sequences of �1 Banach spaces.

Proof. Clearly, by nuclearity, X = projN∈N YN , where YN � c0 and linking
maps are compact.

If T : c0 → c0 is a compact operator then there is a null sequence (xn)
such that

T (Bc0) ⊆ {(zn) : |zn| < xn}.
Therefore T factorizes through an LS-space (an inductive limit of c0-Banach
spaces):

V := {(zn) : ∃ N sup
n∈N

|zn|
N
√
xn

<∞}.

Thus every linking map iN+1
N : YN+1 → YN factorizes through an LS-space

of type V . �

Proposition 4.5 Assume that

(4.1) 0 −−−→ X −−−→ Y −−−→ Z −−−→ 0

is a topologically exact sequence of PLS-spaces, E a PLS-space.
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If either all X ′
N or all E ′

N are projective limits of Banach �1-spaces (in
particular, if either X or E is a PLN-space or a nuclear Fréchet space) then

(4.2) 0 −−−→ XεE −−−→ Y εE −−−→ ZεE −−−→ 0

is exact if Proj1 N∈N (XεE) = 0. If Proj1 N∈N (Y εE) = 0 then the above
condition is also necessary.

Proof. It is known (see [22, p. 64]) that (4.1) is a projective limit of exact
sequences

0 −−−→ XN
jN−−−→ YN

qN−−−→ ZN −−−→ 0,

where Y = projN∈N YN , Z = projN∈N ZN and YN , ZN are LS-spaces.
By [37, proof of 16.3.2] (comp. Theorem 4.2),

XεE = projN∈N
XNεEN , Y εE = projN∈N

YNεEN ,

ZεE = projN∈N ZNεEN .

Since EN are LS-spaces, i.e., Montel thus XNεEN = Lb(E
′
N , XN) etc. There-

fore the sequence

(4.3) 0 −−−→ XNεEN
jN⊗id−−−−→ YNεEN

qN⊗id−−−−→ ZNεEN −−−→ 0

is exact if every T ∈ L(E ′
N , ZN) lifts with respect to qN to S ∈ L(E ′

N , YN).
By [6, Lemma 3.5] this is true (for the case of nuclear Fréchet spaces apply
Lemma 4.4).

We have proved that (4.2) is a projective limit of exact sequences (4.3).
The result follows from Palamodov’s [63] or [83, Cor. 3.1.5] which implies
existence of the following exact sequence:

0 → XεE → Y εE → ZεE →
→ Proj1 (XεE) → Proj1 (Y εE) → Proj1 (ZεE) → 0. �

Corollary 4.6 Let S : X → Y , T : E → E be continuous open surjective
operators between PLS-spaces. Assume that either E or ker T and ker S are
PLN-spaces or nuclear Fréchet spaces. Then

S ⊗ T : XεE → Y εE

is surjective whenever

Proj1 (ker SεE) = Proj1 (Y ε ker T ) = 0.

If, additionally, Proj1 (XεE) = Proj1 (Y εE) = 0 then this is also a neces-
sary condition.

Proof. Apply Proposition 4.5 and Proposition 4.3. �
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Observe that:

Proposition 4.7 If T : X → Y is a surjective continuous operator between
PLS-spaces and Proj1 Y = 0 then T is open.

Proof. By Theorem 4.1, Y is ultrabornological. Since any PLS-space X is
webbed, then by the De Wilde webbed open mapping theorem [57, 24.30],
T is open. �

Finally, let us observe that vanishing of Proj1 is somehow inherited by
products.

Proposition 4.8 Let X, E(j), j ∈ N, be PLS-spaces. If Proj1
(
XεE(j)

)
= 0

for every j ∈ N then Proj1
(
Xε
∏

j∈N
E(j)

)
= 0.

Proof. This is an easy calculation since Xε
∏

j∈N
E(j) =

∏
j∈N

(
XεE(j)

)
and if X = projN∈N

XN , E(j) = proj N∈NE
(j)
N . Then

Proj1
(
Xε
∏
j∈N

E(j)
)

=
∏
N∈N

(
XNε

(∏
j≤N

E
(j)
N

))
/ im σ,

σ :
∏
N∈N

(
XNε

(∏
j≤N

E
(j)
N

))
→
∏
N∈N

(
XNε

(∏
j≤N

E
(j)
N

))
.

�

Conclusion: To decide if the ε-product of two surjective operators between
PLN-spaces is surjective we need to know when Proj1 of an ε-product of
two PLN-spaces vanishes. We solve this problem in the next section.

5. Vanishing of Proj1 for tensor products of PLS-spaces

Now, we will give criteria of vanishing of Proj1 (XεE), where X, E are
PLS-spaces. By Theorem 4.2, XεE is a PLS-space thus vanishing of Proj1

is inherited by complete quotients (use Theorem 4.1). Since X and E are
complemented subspaces of XεE a necessary condition for Proj1 XεE = 0
is that Proj1 X = Proj1 E = 0. Moreover, there is a very good condi-
tion (P ∗

3 ) characterizing the vanishing of Proj1 V for PLS-spaces V in terms
of inequalities between norms on functionals on VN for a strongly reduced
representation V = projN∈N VN (see [83, Cor. 3.3.10]). Unfortunately, for
our purposes this is by far not enough since the space of functionals on
VN = XNεEN is too big to be handled and this condition gives no chance
to “separate” the condition into suitable conditions on X and E.
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A PLS space E is called deeply reduced if one (equivalently, each one)
of its strongly reduced representing spectra of LS-spaces (EN , i

N+1
N ) satisfies

the following condition

∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∀ m ≥ n ∃ k ≥ m :

iMN EM,m ⊆ iKNEK,k

EN,k ∩EN,n
EN,k

.

If the inclusion holds only in the first (second) factor we call E deeply reduced
in columns (in rows).

Proposition 5.1 If E is a deeply reduced in rows PLS-space then there is
a strongly reduced representing spectrum (ẼN , i

N+1
N ) such that

∀ N ∃ n ∀ m ≥ n ẼN,m is dense in ẼN,m+1.

If, additionally, E is just deeply reduced then we may additionally assume
that

∀ N ∃ n ∀ m ≥ n iN+1
N ẼN+1,m is dense ẼN,m.

Remark. The converse implications are trivial.

Examples. The space of real analytic functions A (Ω) is deeply reduced
since every compact subset of Rd has a complex neighbourhood basis con-
sisting of pseudoconvex sets (see [14] or [31]). It follows also from [70, Satz
2.19] that E{ω}(Ω) is deeply reduced for quasianalytic weights ω. Since for
non-quasianalytic weights ω both D ′

(ω)(Ω) and E{ω}(Ω) are Köthe type PLS-

spaces [76], [11], thus they are deeply reduced as all Köthe type PLS-spaces.
It is also easy to show that every Fréchet Schwartz space is a deeply reduced
PLS-space. On the other hand an LS-space is deeply reduced if and only if
it is the dual of a countably normed Fréchet Schwartz space.

Proof of Proposition 5.1: Without loss of generality we may assume that
M = N + 1. First, let us assume only deep reducedness in rows. Thus for
m ≥ n we define

ẼN,m := EN,n
EN,m ⊆ EN,m, ẼN := ind m≥nẼN,m.

Since

∀ N ∃ n ∀ m ≥ n ∃ k ≥ m iN+1
N EN+1,m ⊆ ẼN,k

the spectra (EN) and (ẼN) of LS-spaces are equivalent. Clearly, for m ≥ n
the space ẼN,m is dense in ẼN,m+1.
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Now, assume that E is deeply reduced (also in columns!). By the above
argument we may assume without loss of generality that for m ≥ n the space
EN,m is dense in EN,m+1 and that k = m+ 1. Thus

∀ N ∃ n(N) ∀ m ≥ n(N)

iN+1
N EN+1,m ⊆ iN+2

N EN+2,m+1

EN,m+1

=: FN,m+1 ⊆ EN,m+1.

We define FN := ind m≥nFN,m and it is an LS-space such that the spectrum
(FN) is equivalent to (EN). Since for m ≥ n(N + 1) holds

iN+1
N FN+1,m+1 ⊇ iN+1

N iN+2
N+1EN+2,m

we have

(5.1) FN,m+1 ⊇ iN+1
N FN+1,m+1

FN,m+1 ⊇ iN+2
N EN+2,m

EN,m

= FN,m.

Since for m big enough EN+2,m is dense in EN+2,m+1 thus iN+2
N EN+2,m is

dense in iN+2
N EN+2,m+1 with respect to the topology of EN,m+1. This means

that FN,m is dense in FN,m+1. By (5.1), also iN+1
N FN+1,m+1 is dense in FN,m+1.

�
We are ready to formulate the main result of this section.

Theorem 5.2 Let X, E be PLS-spaces which are strongly reduced projective
limits of LS-spaces:

X = projN∈N XN = projN∈N indn∈N XN,n,

E = projN∈N
EN = projN∈N

indn∈N EN,n.

If one of the following conditions hold:

(a) one of the spaces X or E is a deeply reduced PLN-space,

(b) both X and E are PLN-spaces,

(c) one of the spaces X or E is isomorphic to a Köthe type PLS-space of
infinite order Λ∞(A),

then the following conditions are equivalent:

(1) Proj1 (XεE) = 0;

(2) the pair (X,E) satisfies the condition (T ), i.e.,

∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∀ m ≥ n ∃ k ≥ m,S

∀ x ∈ X ′
N , y ∈ E ′

N :

‖x ◦ iMN ‖∗M,m‖y ◦ iMN ‖∗M,m ≤ S
(‖x‖∗N,n‖y‖∗N,n + ‖x ◦ iKN‖∗K,k‖y ◦ iKN‖∗K,k

)
.
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(3) the pair (X,E) satisfies the condition (Tε), i.e.,

∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∀ m ≥ n, ε > 0 ∃ k ≥ m,S

∀ x ∈ X ′
N , y ∈ E ′

N :

‖x ◦ iMN ‖∗M,m‖y ◦ iMN ‖∗M,m ≤ ε‖x‖∗N,n‖y‖∗N,n + S‖x ◦ iKN‖∗K,k‖y ◦ iKN‖∗K,k.

Remarks. (1) Each one of the conditions imply that

Proj1 X = Proj1 E = 0

(comp. [83, 3.2.18]).
(2) Assumptions (a) and (b) are needed only to prove (3)⇒(1) or (2)⇒(1).
(3) Our result is much more general than the known results when one of

the tensorized spaces is metrizable and the other dual metrizable (Vogt [78],
Frerick [28], Frerick-Wengenroth [30, 74]) or recent results of Bonet and the
author [6, 8].

(4) By [8, Th. 3.1, 3.4], the result is also true if one of the spaces X or E
is a nuclear Fréchet space and, by [6, Th. 4.1], if one of the spaces is an LN-
space. In [6] and [8] one of the spaces is represented by a “linearly ordered”
family of Banach spaces – lack of such a “linear order” is the main difficulty
in the proof below. We need the result as above in Theorem 5.2 having in
mind applications to highly non-metrizable spaces A (U).

(5) Another approach to vanishing of Proj1 on complicated spaces is
given in [29].

(6) We use a convention 0 · ∞ = 0.

Proof of Theorem 5.2. (1)⇒(2): Apply [83, Th. 3.2.18 or Th. 3.3.6] for
functionals of the form x⊗ y ∈ (XNεEN)′.

(2)⇒(3): The proof is inspired by [8, Th. 3.1 (2)⇒(3)]. Condition (T )
implies by Braun and Vogt’s lemma in the form given in [6, Lemma 4.4], the
condition (PX) and (PY ) respectively:

∀ N1 ∃ N ≥ N1 ∀ K ≥ N ∃ n1 ∀ n ≥ n1, γX > 0 ∃ CX , k ≥ n

∀ x ∈ X ′
N1

‖x ◦ iNN1
‖∗N,n ≤ CX‖x ◦ iKN1

‖∗K,k + γX‖x‖∗N1,n1
,

∀ Ñ1 ∃ Ñ ≥ Ñ1 ∀ K̃ ≥ Ñ ∃ ñ1 ∀ ñ ≥ ñ1, γ̃Y > 0 ∃ CY , k̃ ≥ ñ

∀ y ∈ E ′
Ñ1

‖y ◦ iÑ
Ñ1
‖∗

Ñ,ñ
≤ CY ‖y ◦ iK̃Ñ1

‖∗
K̃,k̃

+ γY ‖y‖∗Ñ1,ñ1
.

Assume (T ) in the form:

∀ N, Ñ ∃ M ≥ N, M̃ ≥ Ñ ∀ K ≥M, K̃ ≥ M̃ ∃ n, ñ ∀ m, m̃ ∃ S, k, k̃
∀ x ∈ X ′

N , y ∈ E ′
Ñ

:

‖x ◦ iMN ‖∗M,m‖y ◦ iM̃Ñ ‖∗
M̃,m̃

≤ S
(
‖x‖∗N,n‖y‖∗Ñ,ñ

+ ‖x ◦ iKN‖∗K,k‖y ◦ iK̃Ñ‖∗
K̃,k̃

)
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We take x ∈ X ′
N1

, y ∈ E ′
Ñ1

. We apply (T ) to x ◦ iNN1
, y ◦ iÑ

Ñ1
and obtain

the condition (T1):

‖x◦iNN1
◦ iMN ‖∗M,m‖y ◦ iÑÑ1

◦ iM̃
Ñ
‖∗

M̃,m̃
≤

≤ S
(
‖x ◦ iNN1

‖∗N,n‖y ◦ iÑÑ1
‖∗

Ñ,ñ
+ ‖x ◦ iNN1

◦ iKN‖∗K,k‖y ◦ iÑÑ1
◦ iK̃

Ñ
‖∗

K̃,k̃

)
.

If ‖y ◦ iÑ
Ñ1
‖∗

Ñ,ñ
≤ ‖y ◦ iK̃

Ñ1
‖∗

K̃,k̃
then we apply (PX) to (T1) and choose γX ≤

ε/(2S). Otherwise we apply first (PY ) to (T1) and then (PX) to the term
with constant SCY and take γY ≤ ε/(2S), γX ≤ ε/(2SCY ). This completes
the proof of (2)⇒(3) (details are left to the reader).

Before we prove the implication (3)⇒(1) we need some auxiliary results.

Proposition 5.3 If a pair of PLS-spaces (X,E) satisfies (Tε) then if (EN,n)
are chosen to be reflexive for all N , n the same holds for all y ∈ E ′

N,k and
the pair (X,E) satisfies also (TBε), i.e.,

∀ N, Ñ ∃ M ≥ N, M̃ ≥ Ñ ∀ K ≥M, K̃ ≥ M̃ ∃ n, ñ ∀ m ≥ n, m̃ ≥ ñ,

∀ ε > 0 ∃ k ≥ m, k̃ ≥ m̃, S ∀ y ∈ E ′
Ñ,k̃

:

‖y ◦ iM̃
Ñ
‖∗

M̃,m̃
iMN BM,m ⊆ ε‖y‖∗

Ñ,ñ
BN,n + S‖y ◦ iK̃

Ñ
‖∗

K̃,k̃
iKNBK,k.

Moreover, if E is deeply reduced the above condition holds for y ∈ E ′
Ñ,k̃

,

where the closure is taken with respect to the standard topology of E ′
Ñ,ñ

∩E ′
K̃,k̃

.

Proof. By [8, Lemma 3.5 (b)], we obtain from (Tε) the condition (TBε)
but only for y ∈ E ′

Ñ
.

Since EÑ,k̃ ↪→ EÑ is injective and EÑ,k̃, EÑ can be assumed reflexive,
the dual map πk̃ : E ′

Ñ
→ E ′

Ñ,k̃
has a dense image. We define analogously

πk̃
ñ : E ′

Ñ,k̃
→ E ′

Ñ ,ñ
. Let us take z ∈ E ′

Ñ ,k̃
, v ∈ BM,m. Then there is a sequence

(yj) ⊆ E ′
Ñ

such that πk̃yj → z in E ′
Ñ ,k̃

. We get

‖πk̃
m̃πk̃yj ◦ iM̃Ñ ‖∗

M̃,m̃
iMN v = ε‖πk̃

ñπk̃yj‖∗Ñ,ñ
aj + S‖πk̃yj ◦ iK̃Ñ‖∗

K̃,k̃
iKNbj ,

where (aj) ⊆ BN,n, (bj) ⊆ BK,k. Since sets BN,n, BK,k are compact in
XN and XK , and since every compact set of an LS-space is metrizable [15],
we can find a suitable subsequence of j such that the corresponding subse-
quences of (aj) and (bj) are convergent to a ∈ BN,n and b ∈ BK,k. We have
proved that

∀ N, Ñ ∃ M ≥ N, M̃ ≥ Ñ ∀ K ≥M, K̃ ≥ M̃

∃ n, ñ ∀ m ≥ n, m̃ ≥ ñ, ε >0 ∃ k ≥ m, k̃ ≥ m̃, ∃ S > 0 ∀ z ∈ E ′
Ñ ,k̃

‖πk̃
m̃z ◦ iM̃Ñ ‖∗

M̃,m̃
iMN BM,m ⊆ ε‖πk̃

ñz‖∗Ñ ,ñ
BN,n + S‖z ◦ iK̃

Ñ
‖∗

K̃,k̃
iKNBK,k.
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If E is deeply reduced then we may (and we will) assume that E ′
Ñ,k̃

injectively

embeds continuously into E ′
Ñ,ñ

and E ′
K̃,k̃

. Clearly, then for z ∈ E ′
Ñ,k̃

we can

find yj ∈ E ′
Ñ ,k̃

which tends to z both in the norm of E ′
Ñ,ñ

and E ′
K̃,k̃

. The

same argument as above shows the required inequality.
The first statement can be proved by the same trick. �

Proposition 5.4 If a pair (X,E) of PLS-spaces satisfies (Tε) for strongly
reduced projective representations of X, E then either X is strict or E is
deeply reduced in rows and either E is deeply reduced in columns or X is a
Fréchet space.

Proof. Let us assume that E is not deeply reduced in rows. Hence

∃ N ∀ M ∀ n ∃ m ∀ k ∃ y ∈ E ′
N,k πk

m(y ◦ iMN ) �= 0 but πk
ny = 0,

where πk
m : E ′

M,k → E ′
M,m, πk

n : E ′
N,k → E ′

N,n are restriction maps. By Propo-
sition 5.3, the condition (TBε) holds, so we get

∀ N ∃ M ≥ N ∀ K ≥M ∀ m ∃ k ≥ m,S iMN BM,m ⊆ SiKNBK,k.

Therefore

∀ N ∃ M(N) ≥ N ∀ K ≥M iMN XM ⊆ iKNXK .

We get inductively a sequence (Nj), Nj+1 = M(Nj), and the strict spectrum

(XNj
/ ker i

Nj

Nj−1
) is equivalent to the given one.

If X is not a Fréchet space, then

∃ N0 ∀ N ≥ N0 ∀ M ≥ N ∀ n ∃ m0 ∀ m ≥ m0 ∃ (xj) ⊆ X ′
N

‖xj ◦ iMN ‖∗M,m

‖xj‖∗N,n

→ ∞ for j → ∞.

Let us take (Tε) and apply it for xj and y ∈ E ′
N,k such that y ◦ iKN |EK,k

= 0
by Prop. 5.3. Thus for every j > 0 we get

‖y ◦ iMN ‖∗M,m · ‖xj ◦ iMN ‖∗M,m ≤ ε‖y‖∗N,n · ‖xj‖∗N,n.

We have proved that for any ε > 0

‖y ◦ iMN ‖∗M,m ≤ ε‖y‖∗N,n.

If y ∈ E ′
N,k belongs to the polar of εBN,n + iKNEK,k then it belongs to the

polar of iMN BM,m. Therefore, for every ε > 0 we get

iMN BM,m ⊆ εBN,n + iKNEK,k

EN,k
.
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Since BN,n ⊆ BN,k we get

iMN BM,m ⊆ iKNEK,k

EN,k
.

We have proved that E is deeply reduced in columns. �
Next result is a slight modification of [21, Lemma 2.2] (originally the

result is also in [61]). We omit the proof based on the spectral theory of un-
bounded operators since it is a modification of the proof in [21, Lemma 2.2].

Theorem 5.5 Let H, H0, H1 be Hilbert spaces and let U be a topological
vector space. Let us assume that the following diagram of injective continu-
ous linear maps commutes

H
j1−−−→ H1

j0

⏐⏐� ⏐⏐�u1

H0 −−−→
u0

U.

Let j1(H) and j0(H) be dense in H1 and H0 respectively. Moreover, let H
be complete in the norm:

‖x‖ :=
(‖j1x‖2

H1
+ ‖j0x‖2

H0

)1/2
.

Then for any ε > 0 there are: a set I, positive weights v :I → R+, w :I → R+

and isomorphisms

T : H → �2(I), V : H0 → �2(I, v), W : H1 → �2(I, w)

such that the following diagram commutes:

�2(I)
id−−−→ �2(I)

β−−−→ �2(I, w)

id

⏐⏐� ⏐⏐�T−1

⏐⏐�W−1

�2(I)
T−1−−−→ H

j1−−−→ H1

α

⏐⏐� ⏐⏐�j0

⏐⏐�u1

�2(I, v) −−−→
V −1

H0 −−−→
u0

U,

where α, β are natural embeddings and

‖T‖ · ‖T−1‖, ‖V ‖ · ‖V −1‖, ‖W‖ · ‖W−1‖ < 1 + ε.
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Proof of Theorem 5.2. (3)⇒(1): (a): Assume that E is a deeply reduced
PLN-space. Without loss of generality we may assume that for every N ,
n ∈ N big enough:

• E ′
N,n is a Hilbert space;

• E ′
N,n → E ′

N+1,n and E ′
N,n+1 → E ′

N,n are injective Hilbert-Schmidt
maps of the Hilbert-Schmidt norm ν2 and operator norm ≤ 1;

• E ′
N,n+1 is dense in E ′

N,n (since EN,n ↪→ EN,n+1 is injective).

Applying (Tε) we get, by Proposition 5.3, for every y ∈ E ′
N,k

E′
N,n∩E′

K,k the
following inclusion:

(5.2) ‖y ◦ iMN ‖∗M,mi
M
N BM,m ⊆ ε‖y‖∗N,nBN,n + S‖y ◦ iKN‖∗K,ki

K
NBK,k.

We define
H := E ′

N,k+1

E′
N,n+1∩E′

K,k+1 ⊆ E ′
N,k

E′
N,n∩E′

K,k

here we equip H with the Hilbert norm from the intersection space E ′
N,n+1∩

E ′
K,k+1. Since

E ′
N,k+1 ⊆ H1 :=

(
ker

(
iKN |EK,k+1

))⊥ ⊆ E ′
K,k+1,

we have
H = E ′

N,k+1

E′
N,n+1∩H1

and the image of H is dense in H1. Obviously H is dense in H0 := E ′
N,n+1.

If we define U = E ′
K,n then we are exactly in the situation described in

Theorem 5.5.
The natural maps

π0 : H0 → E ′
N,n, π1 : H1 → E ′

K,k

are Hilbert-Schmidt injections of Hilbert-Schmidt norm ≤ 1. Moreover, by
Prop. 5.3, the natural map E ′

N,k+1 → E ′
M,m is continuous when the domain

space is equipped with the Hilbert norm of E ′
N,n+1 ∩ E ′

K,k+1. It extends to
a continuous linear map r : H → E ′

M,m.
Let R ∈ W (UM,m, BM,m). Using the map T obtained via Theorem 5.5,

we define
ti := R(rT−1(ei)) ∈ ‖rT−1ei‖∗M,mBM,m.

Using (5.2) we find

w̃i ∈ S‖π1j1T
−1(ei)‖∗K,kBK,k, ṽi ∈ ε‖π0j0T

−1(ei)‖∗N,nBN,n

such that
iMN ti = iKN w̃i + ṽi, for all i.
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We define

W̃ : H1 → XK,k, W̃ (x) :=
∑

i

1

w2
i

〈Wx, ei〉	2(I,w)w̃i

and

Ṽ : H0 → XN,n, Ṽ (x) :=
∑

i

1

v2
i

〈V x, ei〉	2(I,v)ṽi.

We will show that they are well defined and continuous. Let x ∈ H1,

‖W̃ (x)‖K,k ≤
∑

i

∣∣∣∣ 1

w2
i

〈Wx, ei〉	2(I,w)

∣∣∣∣ · ‖w̃i‖K,k

≤ S
∑

i

∣∣∣∣∣
〈
Wx,

ei

wi

〉
	2(I,w)

∣∣∣∣∣ ·
∥∥∥∥π1j1T

−1

(
ei

wi

)∥∥∥∥
K,k

≤ S

(∑
i

∣∣∣∣
〈
Wx,

ei

wi

〉
	2(I,w)

∣∣∣∣
2)1/2

·
(∑

i

∥∥∥∥π1j1T
−1

(
ei

wi

)∥∥∥∥
2

K,k

)1/2

= S‖Wx‖	2(I,w)ν2(π1 ◦W−1) ≤ S(1 + ε)‖x‖H1(1 + ε)ν2(π1).

Analogously, for x ∈ H0,

‖Ṽ (x)‖N,n ≤
∑

i

∣∣∣∣ 1

v2
i

〈V x, ei〉	2(I,v)

∣∣∣∣ ·
∥∥∥∥π0j0T

−1

(
ei

vi

)∥∥∥∥
∗

N,n

≤ ε(1 + ε)‖x‖H0(1 + ε)ν2(π0).

We have proved that

‖W̃‖ ≤ S(1 + ε)2, ‖Ṽ ‖ ≤ ε(1 + ε)2.

Since H1 is a closed Hilbert subspace of E ′
K,k+1 we can extend W̃ with the

same norm onto E ′
K,k+1.

Let us take x ∈ E ′
N ⊆ E ′

N,k+1 ⊆ H . We calculate

iMN ◦R ◦ (iMN )′x = iMN ◦R ◦ rx = iMN ◦R ◦ r ◦ T−1 ◦ Tx
=
∑

i

iMN ◦R ◦ r ◦ T−1(ei)〈Tx, ei〉	2(I) =
∑

i

iMN ti〈Tx, ei〉	2(I)

=
∑

i

iKN w̃i〈Tx, ei〉	2(I) +
∑

i

ṽi〈Tx, ei〉	2(I)

=
∑

i

iKN w̃i〈Wj1x, ei〉	2(I) +
∑

i

ṽi〈V j0x, ei〉	2(I)

= iKNW̃ (j1x) + Ṽ (j0x).
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We have proved that

iMN ◦W (UM,m, BM,m) ◦ (iMN )′ ⊆ S(1+ε)2iKN ◦W (UK,k+1, BK,k) ◦ (iKN )′

+ε(1 + ε)2W (UN,n+1, BN,n).

By Theorem 4.2 and [83, Th. 3.2.14], this implies Proj1 (XεE) = 0.

(b): By the Remark (4) after Theorem 5.2, we may assume that none of
the spaces is Fréchet. If both are strict then as in the proof of Proposition 4.5
we show surjectivity of

iN+1
N ⊗ iN+1

N : XN+1εEN+1 → XNεEN .

Thus the spectrum is strict and automatically Proj1 XεE = 0. We may
assume that X is neither strict nor Fréchet, then Prop. 5.4 implies that E
is deeply reduced. Apply part (a).

(c): By Theorem 4.2 and [83, Th. 3.2.14], we need to prove

(5.3)

∀ N, Ñ, ∃ M ≥ N, M̃ ≥ Ñ ∀ K ≥M, K̃ ≥ M̃

∃ n, ñ ∀ m ≥ n, m̃ ≥ ñ, ε > 0 ∃ k ≥ m, k̃ ≥ m̃, ∃ S > 0

iMN ◦W (UM̃,m̃, BM,m) ◦ (iM̃
Ñ

)′ ⊆ SiKN ◦W (UK̃,k̃, BK,k) ◦ (iK̃
Ñ

)′+

+ εW (UÑ,ñ, BN,n).

We assume first that E = Λ∞(B), b1,n(i) > 0 for each n. Let ei be the unit
vector in E ′, then ‖ei‖∗N,n = 1/bN,n(i). Thus, by (Tε) for y = ei and x ∈ X ′

N

we get
‖x ◦ iMN ‖∗M,m

bM̃,m̃(i)
≤ ε

‖x‖∗N,n

bÑ ,ñ(i)
+ S

‖x ◦ iKN‖∗K,k

bK̃,k̃(i)
.

By [8, Lemma 3.5], we get

(5.4)
iMN BM,m

bM̃,m̃(i)
⊆ 2εBN,n

bÑ ,ñ(i)
+

2SiKNBK,k

bK̃,k̃(i)
.

We identify
W (UM̃,m̃, BM,m) ⊆ L(E ′

M̃
, XM)

with a subset of the space of vector valued sequences:

L(E ′
M̃
, XM) = {u = (u(i))i∈N ⊆ XM : ∃ m, m̃ sup

i
bM̃,m̃(i)‖u(i)‖M,m <∞}.

In particular,
u = (u(i))i∈N ∈W (UM̃,m̃, BM,m)

if and only if

u(i) ∈ (bM̃ ,m̃(i)
)−1

BM,m for every i ∈ N.
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By (5.4), we get

iMN u(i) = 2εv(i) + 2SiKNw(i) for each i ∈ N,

where
v(i) ∈ (bÑ,ñ(i)

)−1
BN,n, w(i) ∈ (bK̃,k̃(i)

)−1
BK,k.

We define

v ∈W (UÑ,ñ, BN,n) ⊆ L(E ′
Ñ
, XN), w ∈W (UK̃,k̃, BK,k) ⊆ L(E ′

K̃
, XK)

by
v(x) := (v(i)x(i))i∈N

, w(z) := (w(i)z(i))i∈N
,

for
x = (x(i)) ∈ E ′

Ñ
, z = (z(i)) ∈ E ′

K̃
.

Obviously,

iMN ◦ u ◦
(
iM̃
Ñ

)′
= 2εv + 2SiKN ◦ w ◦

(
iK̃
Ñ

)′
,

which implies (5.3) with changed ε and S.
In the general case E = Λ∞(B) is a countable product of spaces E(j) for

which we have proved Proj1 (XεE(j)) = 0. Apply Proposition 4.8. �
Next corollary is a generalization of the famous (DN)-(Ω) splitting theo-

rem [57, Th. 30.1] or [82, Satz 1.9] which means, in particular, that if E is an
LS-space, E ′ ∈(DN) , and X is a Fréchet Schwartz space, X ∈(Ω), then
Proj1 (XεE ′) = 0 whenever one of the spaces is nuclear. Observe that in
that case both E and X have the dual interpolation estimate for big θ. It
also generalizes results of Grothendieck [32, II.§4, no. 3, Prop.15] and Vogt
[77, Th. 4.9].

Corollary 5.6 Let X, E be PLS-spaces. Assume that both spaces are PLN-
spaces or one of them is a deeply reduced PLN-space. If E and X have
the dual interpolation estimate for small (big) θ then Lb(E

′
b, X) = XεE is

ultrabornological and Proj1 (XεE) = 0.

Remark. Results on inheritance of dual interpolation estimates for Schwartz
(tensor) products of PLS-spaces were very recently obtained by Piszczek
using the results of this paper, see [67].

Proof. Assume that

∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∀ m ≥ n ∃ θ0 ∀ θ ∈]0, θ0[ ∃ k, C
∀ x ∈ X ′

N , y ∈ E ′
N

‖x ◦ iMN ‖∗M,m ≤ C
(‖x‖∗N,n

)θ · (‖x ◦ iKN‖∗K,k

)1−θ

‖y ◦ iMN ‖∗M,m ≤ C
(‖y‖∗N,n

)θ · (‖y ◦ iKN‖∗K,k

)1−θ
.

Multiplying this inequalities we get easily (T ). Apply Theorems 5.2 and 4.1. �
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6. Conditions with one fixed space

The previous section gave a characterization of vanishing of Proj1 XεE for
a large class of PLS-spaces E, X. We fix one space E and we characterize
those spaces X such that Proj1 XεE = 0

Corollary 6.1 Let X be a PLS-space, U a real analytic manifold, then
Proj1 XεA (U) = 0 if and only if X satisfies the dual interpolation esti-
mate for small θ (for U connected non-compact) or if and only if X satisfies

(PΩ) (for U compact).

Proof. Sufficiency for the non-compact case follows from Corollary 5.6
and 2.3 since A (U) is deeply reduced. For the compact case use Proposi-
tion 2.1 and [6, Cor. 3.8, 7.2].

Necessity. The function theoretic argument from the proof of [6, Th. 7.8]
gives numbers 1 > a > b and a sequence of functionals (gj) ⊂ A (R)′ such
that for j ∈ N

1 = ‖gj‖∗N,n > aj = ‖gj‖∗M,m > bj = ‖gj‖∗K,k.

Since, by Proposition 2.1, A (R) is a quotient of A (U) for non-compact con-
nected U then we may assume that (gj) ⊂ A (U)′. Plugging the constructed
functions into the condition (T) from Theorem 5.2 we get analogously as in
the proof of [6, Th. 7.8] that for some η > 0, big r and all y ∈ X ′

N

‖y ◦ iMN ‖∗M,m ≤ C
(‖y ◦ iKN‖∗K,kr

−η + ‖y‖∗N,nr
)

which is equivalent to (PA) .

On the other hand, A (U)
comp

⊇ A (T) � Λ′
0(j) (see the proof of Proposi-

tion 2.1 and [19, Th. 5.4]) thus Proj1 XεΛ′
0(j) = 0. From [6, Cor. 3.8, 7.2] it

follows that X has (PΩ). �

Corollary 6.2 Let X be a PLS-space, Ω ⊆ Rd be an arbitrary open set, ω

non-quasianalytic. Proj1 XεE{ω}(Ω) = 0 if and only if X satisfies (PΩ) .
Analogously, Proj1 XεD ′

(ω)(Ω) = 0 if and only if X satisfies (PΩ).

Proof. Apply Proposition 4.8 and [6, Cor. 7.2, 3.8]. By [11, Prop. 4.9, 5.6],

E{ω}(Ω) �
∏

Λ0(α)′, D ′
(ω)(Ω) �

∏
Λ∞(β)′.

�
Remark. The same holds for the space of currents D ′(Ω) over arbitrary
C∞-manifold Ω instead of D ′

(ω)(Ω). In that case sufficiency follows from the
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remark after Corollary 2.3. Necessity follows from the fact that D ′(T) is
isomorphic to a complemented subspace of D ′(Ω). Clearly D ′(T) are just
periodic currents on R so it is isomorphic to Λ′

0(log j).
Now, let us apply the results on the vanishing of Proj1 to the surjectivity

problem:

Corollary 6.3 Let T : D ′(Ω1) → D ′(Ω1), S : D ′(Ω2) → D ′(Ω2) be surjec-
tive operators, Ω1, Ω2 ⊆ Rd arbitrary open or C∞-manifolds. Then

T ⊗ S : D ′(Ω1 × Ω2) → D ′(Ω1 × Ω2)

is surjective if and only if ker T and ker S have (PΩ) .
An analogous result holds for

T : D ′
(ω1)(Ω1) → D ′

(ω1)(Ω1) and S : D ′
(ω2)(Ω2) → D ′

(ω2)(Ω2).

Proof. Apply Cor. 4.6, Cor. 6.2 and the remark below it. Observe that

Proj1
(
D ′

(ω1)(Ω1)εD ′
(ω2)(Ω2)

)
= 0 by Cor. 2.3 and Cor. 5.6. �

Next corollary (Theorem C) is crucial for the whole paper giving a crite-
rion of the real analytic parameter dependence of linear operators on spaces
of distributions or currents.

Corollary 6.4 Let T : D ′
(ω)(Ω) → D ′

(ω)(Ω) be a surjective operator then

T ⊗ id A (U) : D ′
(ω)(Ω)εA (U) → D ′

(ω)(Ω)εA (U)

is surjective if and only if ker T has the dual interpolation estimate for

small θ (for non-compact connected U) or if and only if ker T has (PΩ)
(for compact U). Therefore surjectivity does not depend on the choice of an
open set U ⊆ Rn.

Let us emphasize that the result is true, for instance, for variable coeffi-
cients differential operators. The dual interpolation estimate (2.1) is a kind
of a very strong abstract “Hadamard three circle theorem” as explained in
Section 1.

Proof. Apply Cor. 4.6 and Cor. 6.1. Observe that

Proj1 D ′
(ω)(Ω)εA (U) = 0 by Cor. 5.6 and Cor. 2.3. �

Corollary 6.5 Let T : D ′
(ω)(Ω) → D ′

(ω)(Ω) be a surjective operator and
let ω1 be a non-quasianalytic weight. Then

T ⊗ id E{ω1}
(U) : D ′

(ω)(Ω)εE{ω1}(U) → D ′
(ω)(Ω)εE{ω1}(U)

is surjective if and only if ker T has (PΩ) .

Proof. Apply Cor. 4.6, Cor. 6.2 and Cor. 2.3. �
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Clearly there are plenty of other results of that type – we leave their
formulation to the reader. Just for fun we give the following example of
surjectivity results for products of differential operators.

Corollary 6.6 Let

P1(x,D) :=
∑
|α|≤m

aα(x)∂α
x : D ′(Ω1) → D ′(Ω1),

P2(y,D) :=
∑
|β|≤k

bβ(y)∂β
y : D ′(Ω2) → D ′(Ω2)

be two linear surjective partial differential operators, x ∈ Ω1, y ∈ Ω2. The
operator

P1(x,D)P2(y,D) =
∑

|α|≤m,|β|≤k

aα(x)bβ(y)∂α
x∂

β
y : D ′(Ω1 × Ω2) → D ′(Ω1 × Ω2)

(x, y) ∈ Ω1 × Ω2, is surjective if and only if ker P1(x,D) and ker P2(x,D)
have (PΩ) .

The above results are worth studying mostly if we have a method of
evaluating the dual interpolation estimates or P-conditions for the kernel of
the map. Using known descriptions of kernels of convolution operators we
can prove the following characterizations:

Corollary 6.7 Let ω be a non-quasianalytic weight and let μ ∈ D ′
(ω)(R) be

an ultradistribution with compact support. The convolution operator

(6.1) Tμ : D ′
(ω)(R,A (U)) → D ′

(ω)(R,A (U))

is surjective if and only if

(6.2) Tμ : D ′
(ω)(R) → D ′

(ω)(R)

has a linear continuous right inverse.

Remark. A characterization of existence of right inverse for Tμ in terms
of μ̂ is given in [56, Th. 3.9, 2.1, 4.4, Prop. 4.6] and [42].

Proof. Sufficiency is obvious.
Necessity for distributions. A characterization of surjectivity of (6.2) is

given in [27, Th. 3.4]. If (6.1) is surjective then (6.2) must be surjective.
Then, by [27, Th. 2.10], ker Tμ ⊆ D ′

(ω)(R), dim ker Tμ = ∞, is isomorphic

to Λ∞,∞(α, β), where αj = | Im aj |, βj = ω(aj) and (aj) is a sequence with
multiplicities of zeros of the Fourier transform μ̂ of μ. By Corollary 6.4 and
Corollary 2.3, ker Tμ is an LS-space. This completes the proof by [56, Th. 3.9
and Th. 2.1]. �
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Unfortunately, it seems to be very difficult to check interpolation es-
timates for general operators or even differential operators with variable
coefficients. In case of constant coefficients differential operators we may
apply the Fundamental Principle of Ehrenpreis and Palamodov. This is the
content of the next section.

7. Evaluation of the dual interpolation estimates via

Phragmén-Lindelöf type conditions

First we need some notation and we introduce a family of Phragmén-Lindelöf
type conditions. Assume from now on that V is an algebraic variety, Ω ⊆ Rd

is a convex open set and ω is a weight (in the sense of definitions of spaces
D ′

(ω)(Ω)). We fix a convex compact exhaustion (KN) of Ω. We define

PSH(V ) to be the set of plurisubharmonic functions u : V → [−∞,∞[,
i.e., locally bounded from above and plurisubharmonic at regular points
of V . We assume that the values in singular points of V are defined by
u(z) := lim supξ∈Vreg,ξ→z u(ξ) for z ∈ Vsing. For a convex compact set

∅ �= K ⊆ Rd we define its support function

hK : R
d → R, hK(ξ) := sup{〈ξ, x〉 : x ∈ K},

moreover, for any N ∈ N we define hK := hKN
. Then

PSH(V,N) := {u ∈ PSH(V ) : ∀ n ∈ N ∃ C0 ∀ z ∈ V

u(z) ≤ hN(Im z) − nω(z) + C0}.
We say that the variety V satisfies IPL(Ω, ω) if and only if

∀ N ∃ M ≥ N ∀ K ≥M ∃ n ∈ N ∀ m ∈ N ∀ θ ∈ ]0, 1[ ∃ k ∈ N, C

∀ t ∈ R ∀ u ∈ PSH(V,N) (a) + (b) ⇒ (c),

where

(a) ∀ z ∈ V u(z) ≤ hN(Im z) − nω(z) + t;

(b) ∀ z ∈ V u(z) ≤ hK(Im z) − kω(z);

(c) ∀ z ∈ V u(z) ≤ hM(Im z) −mω(z) + θt + C.

If all the conditions are considered only for t ≥ 0 (or t ≤ 0) we write
IPL+(Ω, ω) (or IPL−(Ω, ω)) and say that V satisfies the IPL condition for
positive (negative) t. Similarly, if we replace the quantifier ∀ θ ∈ ]0, 1[ by
∃ θ0 ∈ ]0, 1[ ∀ θ ∈ ]0, θ0[ we say that IPL is satisfied for small θ and denote

it by IPL0(Ω, ω). Analogously, if we put ∃ θ0 ∈ ]0, 1[ ∀ θ ∈ ]θ0, 1[ then we
call the condition for big θ and denote it by IPL1(Ω, ω). Of course, all the
possible combinations of subscripts and superscripts are possible so we have
defined nine versions of IPL.
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It is easy to observe that IPL+(Ω, ω) is equivalent to IPL0
+(Ω, ω). Simi-

larly, the condition IPL−(Ω, ω) is equivalent to IPL1
−(Ω, ω), hence IPL(Ω, ω)

is equivalent to the combination of IPL0
+(Ω, ω) and IPL1

−(Ω, ω).

The idea of introducing Phragmén-Lindelöf properties to our theory is
clearly inspired by Hörmander’s characterization of surjectivity of linear par-
tial differential operators with constant coefficients on the space of real ana-
lytic functions [35] and the impressive research of Meise, Taylor and Vogt on
the existence of linear continuous right inverses for linear partial differential
operators with constant coefficients on the space of smooth functions [48]
and, especially, [55]. We apply many ideas from the latter paper. In view
of Problem 9.1, the guiding principle is that everything true for the right
inverse should be true for the real analytic parameter dependence. Surpris-
ingly often that is right.

Remarks. (1) Clearly we may assume ω(0) ≥ 1.

(2) We may remove the constant C in the definitions of IPL conditions
manipulating with k for t ≥ 0 or n for t ≤ 0.

Now, we formulate the main result of this section. Let us recall that for
ω(z) = log(2 + |z|) the space D ′

(ω) is just the standard space of distribu-
tions D ′.

Theorem 7.1 Let Ω ⊆ Rd be open convex and let V = {z : P (−z) = 0} be
the zero variety of the polynomial P . Let P (D) : D ′

(ω)(Ω) → D ′
(ω)(Ω) be a

linear partial differential operator with constant coefficients.

(i) ker P (D) has the dual interpolation estimate if and only if V has
IPL(Ω, ω).

(ii) ker P (D) has a dual interpolation estimate for small θ (big θ) if and
only if V has IPL0(Ω, ω) ( IPL1(Ω, ω) ).

(iii) ker P (D) has (PΩ) if and only if V has IPL+(Ω, ω) or, equivalently,
IPL0

+(Ω, ω).

(iv) ker P (D) has (PΩ) if and only if V has IPL1
+(Ω, ω).

(v) ker P (D) has (PA) if and only if V has IPL−(Ω, ω) or, equivalently,
IPL1

−(Ω, ω).

(vi) if ker P (D) has (PA) then V has IPL0
−(Ω, ω).

First, we reduce the result to irreducible varieties.

Lemma 7.2 An algebraic variety has one of the IPL properties if and only
if each of its irreducible component has the same property.
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Proof. Since each plurisubharmonic function on the variety is plurisub-
harmonic on each irreducible component (use [38, Th. 2.9.22]) sufficiency
follows.

Necessity follows from the fact that every plurisubharmonic function
on an irreducible component V1 of an algebraic variety V extends to a
plurisubharmonic function ũ on the whole V by taking ũ(z) = −∞ for
z ∈ V \ V1. �

We call a property (P ) of PLS-spaces to be a three space property of
PLS-spaces if for every short topologically exact sequence of PLS-spaces

0 → X → Y → Z → 0

the space Y has (P ) whenever X and Z have (P ).

Lemma 7.3 The following properties are the three space properties of PLS-
spaces: the dual interpolation estimate, the dual interpolation estimate for

big θ and for small θ, (PΩ) , (PΩ) and (PA) .

Proof. Observe that for a PLS-space X we have for stable α:

• X ∈(PΩ) if and only if Proj1 XεΛ′
0(α) = 0 (Λ0(α) equipped with

�1-norms) [6, Cor. 3.8, 7.2];

• X ∈(PΩ) if and only if Proj1 XεΛ′
∞(α) = 0 (Λ∞(α) equipped with

�1-norms) [6, Cor. 3.8, 7.2];

• X ∈(PA) if and only if Proj1 XεΛr(α) = 0 (Λr(α) equipped with
�∞-norms) [8, Th. 4.4, 3.4];

• X has the dual interpolation estimate for small θ if and only if

Proj1 XεA (R) = 0

(Cor. 6.1).

Other considered properties are combinations of the mentioned above. It
suffices to show that for a fixed PLN-space E the condition Proj1 XεE = 0
is a three space property of PLS-spaces X.

Assume that 0 → X → Y → Z → 0 is a short topologically exact
sequence of PLS-spaces and Proj1 XεE = Proj1 ZεE = 0. As in the proof
of Proposition 4.5 we obtain the following exact sequence:

0 → XεE →Y εE → ZεE →
→ Proj1 (XεE) → Proj1 (Y εE) → Proj1 (ZεE) → 0

and the result follows easily. �
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Lemma 7.4 Let P be a polynomial, P = Q1 · · · · ·Qn its decomposition into
irreducible factors. The space ker P (D) ⊆ D ′

(ω)(Ω) has one of the conditions

(PΩ) , (PΩ) , (PA) , the dual interpolation estimate for all (big, small) θ
if and only if every space ker Qj(D) ⊆ D ′

(ω)(Ω) has the same property for
j = 1, . . . , n.

Please observe by the proof below that necessity holds also for (PA) .

Proof. As in [80, Lemma 5], we have a short exact sequence

(7.1) 0 → ker (P/Qj)(D) → ker P (D) → ker Qj(D) → 0.

If ker P (D) has one of the properties then Proj1 ker P (D) = 0. By [83, Sec.
3.4.5, 3.4.6], P (D) is surjective, thus all operators Qj(D) are surjective and
Proj1 ker Qj(D) = 0. By Proposition 4.7, the sequence (7.1) is topologically
exact. Hence ker Qj(D) is a topological quotient of ker P (D) which implies
necessity.

For sufficiency we apply Lemma 7.3 and inductively sequence (7.1). Let
us note that if ker Qj(D) satisfies one of the considered conditions then
Proj1 ker Qj(D) = 0 and (7.1) is topologically exact as above. �

The crucial role in the proof of our result is played by the following ap-
proximation result of Meise, Taylor and Vogt [49, Th. 5.1] and Franken [26,
Th. 8]. In fact, their formulation is much more complicated and based on
the stronger assumption |u(z)| ≤ L|z|. The following result gives in the
simplified form the essence of the result needed later on.

Theorem 7.5 For any algebraic variety V ⊆ Cd there is a constant CV

such that for any u ∈ PSH(V ) such that

(7.2) |u(z)| ≤ L|z| + L for z ∈ V

there exists for every point z ∈ V an entire function fz : Cd → C such that

(a) u(z) ≤ log |fz(ζ)| + L2 + CV log(2 + |z|) for some ζ ∈ V , |ζ − z| ≤ 2;

(b) ∀ ζ ∈ V ∃ ζ ′ ∈ V log |fz(ζ)| ≤ u(ζ ′)+CV log(2+|ζ |) and |ζ−ζ ′| ≤ 1.

Proof. Changing constants in the proof of [26, Th. 8], we get the same result
under the weaker assumption (7.2). In [26] the functions fz are defined only
for parameters outside exceptional sets S0 and E. To get them for all z we
need two steps. First, for z ∈ S0 we find z1 ∈ V \ S0, |z− z1| ≤ 1, such that
u(z) ≤ u(z1), see [26, Prop. 7 (iv)]. Then, by [26, (8) in the proof of Th. 10]
and the remarks below as well as [26, Prop. 7 (v)(c)], for z ∈ V \ S0

u(z) ≤ L2 + u(z(τ))

for some τ ∈ B \ E and |z − z(τ)| ≤ 1. We define fz = fτ , where fτ is
defined in [26, Th. 8]. Then we get the result by [26, Th. 8]. �



Real analytic parameter dependence of solutions of PDEs 211

Proof of Theorem 7.1: By Lemmas 7.2 and 7.4 we may restrict our
attention to irreducible polynomials P .

We show only the case (i). The other cases are very similar. By the Fun-
damental Principle for P (D) : D ′

(ω)(Ω) → D ′
(ω)(Ω) (see [50, Lemma 3.5, 3.8],

comp. [33, Sec. 4.3, 4.4]) we have

(ker P (D))′ = {f ∈ H(V ) : ∃ N ∀ n ‖f‖∗N,n <∞},
where

‖f‖∗N,n := sup
z∈V

|f(z)| exp (−hN (Im z) + nω(z)) .

Moreover, ker P (D) = projN∈N XN , where XN are LN-spaces and

X ′
N = {f ∈ H(V ) : ∀ n ∈ N ‖f‖∗N,n <∞}.

The dual interpolation estimate for ker P (D) ⊆ D ′
(ω)(Ω) means that

(7.3)

∀N ′ ∃M ′ ∀ K ′ ∃ n′ ∀ m′, θ ∈ ]0, 1[ ∃ k′, C ′ ∀ r > 0 ∀ f ∈ X ′
N ′ :

1

rθ
‖f‖∗M ′,m′ ≤ C

(
‖f‖∗K ′,k′ +

1

r
‖f‖∗N ′,n′

)
.

Taking logarithms on both sides and t = log r we get IPL(Ω, ω) with the
above preambule of quantifiers but only for u of the form u(z) = log |f(z)| ∈
PSH(V,N), f ∈ H(V ).

So it suffices to show that if IPL(Ω, ω) holds for such holomorphic func-
tions then we have the same condition for u ∈ PSH(V ).

Let us fix ε > 0. By Lemma 2.2, we construct a non-quasianalytic weight
σ, ω = o(σ), and a plurisubharmonic function v : Cd → [−∞,∞[ such that
for z ∈ Cd

−Dσ(z) ≤ v(z) ≤ ε| Im z| − σ(z).

Obviously for some D̃:

(7.4) −D̃|z| − D̃ ≤ v(z) ≤ ε|z|.
Since ω = o(σ), we get an increasing sequence (D1(p))p∈N such that

(7.5) ∀ z ∈ V v(z) ≤ ε| Im z| − pω(z) +D1(p).

Let us recall that there is a constant A such that

(7.6) ω(x+ 1) ≤ Aω(x) + A for all x

and we may assume that log(2 + |z|) ≤ ω(z) for any z.
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We take arbitrary N , B(0, ε) ⊆ KN . We take N ′ := N and choose
from (7.3) M ′, M := M ′, then for any K ≥ M , K ′ := K we find n′

from (7.3), n := An′ + ACV (CV comes from Theorem 7.5). Then for any
m, m′ := A2m + A2CV we choose for suitable θ a constant k′ from (7.3),
k := Ak′ + ACV .

We take arbitrary t ≥ 0, u ∈ PSH(V,N) such that for z ∈ V we have:

(7.7)
u(z) ≤ hN (Im z) − nω(z) + t,

u(z) ≤ hK(Im z) − kω(z).

We define
ũ(z) := max (u(z), v(z) −D1(k)) .

Using (7.4) and the second estimate in (7.7), let us observe that for some
L > 0 not depending on t we get:

|ũ(z)| ≤ L|z| + L.

By (7.5), ũ ∈ PSH(V,N) since u ∈ PSH(V,N). For z ∈ V and t ≥ 0 we get
by (7.5):

(7.8)
ũ(z)≤ max (hN(Im z) − nω(z) + t, hN(Im z) − nω(z)+D1(n)−D1(k))

≤ hN (Im z) − nω(z) + t

and

ũ(z) ≤ hK(Im z) − kω(z).(7.9)

We apply to the function ũ Theorem 7.5, then we find entire functions fz.
Let us take ζ ∈ V , then, by (7.8) and (7.6) for CN := max|x|≤1 hN(x):

log |fz(ζ)| ≤ max{ũ(ζ ′) : |ζ ′ − ζ | ≤ 1} + CV log(2 + |ζ |) ≤
≤ hN (Im ζ) + max

|x|≤1
hN (x) − nω(|ζ | − 1) + t + CV log(2 + |ζ |) ≤

≤ hN (Im ζ) + CN − n

(
ω(ζ)

A
− 1

)
+ t + CV ω(ζ)

≤ hN (Im ζ) − n′ω(ζ) + t+ CN + n.

On the other hand, (7.9) implies:

log |fz(ζ)| ≤ hK(Im ζ) − k′ω(ζ) + CK + k.

Analogously, since ũ ∈ PSH(V,N) we get also log |fz| ∈ PSH(V,N). We
apply IPL for logarithms of holomorphic functions to get

log |fz(ζ)| ≤ hM(Im ζ) −m′ω(ζ) + θt + max(CN + n, CK + k) + C ′.
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Let us take z ∈ V , then by (a) in Theorem 7.5, for C ′′ := max(CN +n, CK +
k) + C ′ + L2 and some ζ ∈ V , |ζ − z| ≤ 2 we get

u(z) ≤ log |fz(ζ)| + L2 + CV log(2 + |z|)
≤ hM (Im z) + max

|x|≤2
hM(x) −m′ω(|z| − 2) + θt + C ′′ + CV log(2 + |z|)

≤ hM (Im z) + 2CM −m′
(ω(z)

A2
− 1

A
− 1
)

+ θt+ CV ω(z) + C ′′

≤ hM (Im z) −mω(z) + θt+ 2CM +m′/A+m′ + C ′′.

We have finished the proof for t ≥ 0 with constant C = 2CM+m′/A+m′+C ′′.
For the case t ≤ 0 we use

u(z) ≤ hN(Im z) − nω(z),

u(z) ≤ hK(Im z) − kω(z) − t.

The proof is similar getting

u(z) ≤ hM (Im z) −mω(z) + (θ − 1)t+ const . �

We will need the following auxiliary lemma (comp. [55, Lemma 2.10]).

Lemma 7.6 Let V be an algebraic variety, A > 1. Assume that for some
fixed convex compact sets N � M � Rd the following condition holds:

∃ n ∀ m ∃ θ0(m) ∀ θ ∈ ]θ0(m), 1[ ∃ k(m, θ), C ∀ t ≥ 0 ∀ u ∈ PSH(V,N)

(a) + (b) ⇒ (c),

where

(a) ∀ z ∈ V u(z) ≤ hN(Im z) − nω(z) + t;

(b) ∀ z ∈ V u(z) ≤ AhM(Im z) − k(m, θ)ω(z);

(c) ∀ z ∈ V u(z) ≤ hM(Im z) −mω(z) + θt+ C.

Then

∀ p ≥ 2 ∃ n(p) > n ∀ m ∃ θ0(m, p) ∀ θ ∈ ]θ0(m, p), 1[ ∃ k(m, θ, p), C

∀ t ≥ 0 ∀ u ∈ PSH(V,N) (ap) + (bp) ⇒ (cp),

where

(ap) ∀ z ∈ V u(z) ≤ hN(Im z) − n(p)ω(z) + t;

(bp) ∀ z ∈ V u(z) ≤ AphM (Im z) − k(m, θ, p)ω(z);

(cp) ∀ z ∈ V u(z) ≤ hM(Im z) −mω(z) + θt+ C.

An analogous result holds for other IPL-type conditions, i.e., for t ≤ 0 or
for small θ.

Proof. We go by induction with respect to p for u applying the inductive
hypothesis for v := u/A. �
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We show that we can manipulate with the set Ω:

Proposition 7.7 Let Ω ⊆ Rd be an open convex set, V an arbitrary alge-
braic variety satisfying one of the IPL(Ω, ω) conditions. Then for every s > 0
and a ∈ Rd the variety V satisfies the same IPL condition with the sets

sΩ = {sx : x ∈ Ω}, Ω + a = {x + a : x ∈ Ω}, −Ω = {−x : x ∈ Ω}.
Proof. Let us observe that for any compact set K

hsK(x) = shK(x), hK+a(x) = hK(x) + 〈x, a〉, h−K(x) = hK(−x).

Observe also that if u(z) is plurisubharmonic then u(z)/s, u(z) + 〈Im z, a〉,
u(−z) are also plurisubharmonic functions with respect to z. The conclusion
follows easily. �

Proposition 7.8 Let Ω1 ⊂ Ω2 ⊂ · · · ⊂ R
d be an increasing sequence of

open convex sets such that an algebraic variety V satisfies IPL(Ωj , ω) for
any j ∈ N. Then V satisfies IPL(Ω, ω) for Ω =

⋃
j Ωj. The same result

holds for other IPL-conditions.

Proof. By Proposition 7.7, without loss of generality we may assume that
0 ∈ Ω1. Let KN � Ω arbitrary, then KN � Ωj for some j. By IPL(Ωj , ω)
there is KM � Ωj and KK , KM � KK � Ωj such that 0 ∈ IntKM and

∃ n ∀ m ∃ θ0(m) ∀ θ ∈ ]θ0(m), 1[ ∃ k(m, θ), C ∀ t ∀ u ∈ PSH(V,N)

(a) + (b) ⇒ (c),

where

(a) ∀ z ∈ V u(z) ≤ hN(Im z) − nω(z) + t,

(b) ∀ z ∈ V u(z) ≤ hK(Im z) − kω(z),

(c) ∀ z ∈ V u(z) ≤ hM(Im z) −mω(z) + θt+ C.

There is A > 1, AKM � KK , so that AhM (Im z) ≤ hK(Im z) and thus
assumptions of Lemma 7.6 are satisfied. Let us take any L � Ω, clearly for
some p ∈ N we have ApKM � L. The conclusion follows from Lemma 7.6
for IPL(Ω, ω). �

Now, we give a reformulation of IPL conditions.

Corollary 7.9 (i) The condition IPL(Ω, ω) is equivalent to

∀ N ∃ M ∀ ρ > 0 ∃ n ∀ m ∀ θ ∈]0, 1[ ∃ k, C ∀ t ∈ R ∀ u ∈ PSH(V,N)

(a) + (b) ⇒ (c),

where
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(a) ∀ z ∈ V u(z) ≤ hN(Im z) − nω(z) + t;

(b) ∀ z ∈ V u(z) ≤ ρ| Im z| − kω(z);

(c) ∀ z ∈ V u(z) ≤ hM(Im z) −mω(z) + θt + C.

(ii) The condition IPL(Rd, ω) is equivalent to

∃ A > 1 ∀ ρ > 0 ∃ n ∀ m ∀ θ ∈ ]0, 1[ ∃ k, C ∀ t ∈ R ∀ u ∈ PSH(V,N)

(a) + (b) ⇒ (c),

where KN = B(0, 1)

(a) ∀ z ∈ V u(z) ≤ | Im z| − nω(z) + t;

(b) ∀ z ∈ V u(z) ≤ ρ| Im z| − kω(z);

(c) ∀ z ∈ V u(z) ≤ A| Im z| −mω(z) + θt+ C.

On the other hand IPL(B(0, 1), ω) is equivalent to

∀ A > 1 ∀ ρ > 0 ∃ n ∀ m ∀ θ ∈ ]0, 1[ ∃ k, C ∀ t ∈ R ∀ u ∈ PSH(V,N)

(a) + (b) ⇒ (c),

where (a), (b) and (c) are the same as above.

(iii) The same results hold for other IPL-conditions.

Proof. (i): The condition implies the original IPL(Ω, ω) since

hK(Im z) ≤ ρ| Im z|
for some ρ. For the other direction, by Proposition 7.7 and its proof we
may assume without loss of generality that 0 ∈ KN � KM � Ω. The result
follows from Lemma 7.6. The proof of other cases is similar. �

8. Application to parameter dependence of solutions of

linear partial differential operators on spaces of dis-
tributions

We consider now the case of linear partial differential operators with con-
stant coefficients P (D) : D ′

(ω)(Ω) → D ′
(ω)(Ω), Ω ⊆ Rd convex, ω a non-

quasianalytic weight such that log(2 + |z|) = o(ω(z)) or ω(z) = log(2 + |z|).
First we observe that the only essential condition is (PΩ) or, equivalently,
the dual interpolation estimate for small θ.

Proposition 8.1 Every algebraic variety has IPL1(Ω, ω) and IPL−(Ω, ω).
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The result follows also by [6, Cor. 8.4] and [8, Prop. 5.4] from Theorem 7.1
at least for ω(z) = log(2+|z|) but we give below a much simpler direct proof.

Proof. By Prop. 7.7, we may assume that 0 ∈ K1 � Ω. Since IPL−(Ω, ω)
is equivalent to IPL1

−(Ω, ω) it suffices to prove IPL1(Ω, ω).
We observe that for a given N , M > N there is ε > 0 such that KM ⊇

KN + B(0, ε). We choose K arbitrary and find θ so close to 1 that (1 −
θ)hK(Im z) < ε| Im z| for any z ∈ Cd. Moreover, we find k so big that for
fixed m, n, we have m ≤ θn + (1 − θ)k. Then

θ(hN(Im z) − nω(z) + t) + (1 − θ)(hK(Im z) − kω(z)) ≤
≤ hM(Im z) −mω(z) + θt. �

Corollary 8.2 Let P ∈ C[z1, . . . , zd] be an arbitrary polynomial, V = {z :
P (−z) = 0} its zero variety, Ω ⊆ Rd a convex open set. If

P (D) : D ′
(ω)(Ω) → D ′

(ω)(Ω)

is a linear partial differential operator, then ker P (D) has the dual inter-
polation estimate for big θ, i.e., (PA) and (PΩ). Moreover, the following
assertions are equivalent:

(a) V has IPL(Ω, ω) or, it has one of the equivalent conditions: IPL0(Ω, ω),
IPL+(Ω, ω), IPL0

+(Ω, ω);

(b) ker P (D) ⊆ D ′
(ω)(Ω) has the dual interpolation estimate for all θ (or,

equiv., small θ);

(c) ker P (D) has (PΩ) ;

(d) P (D) : D ′
(ω)(Ω,A (U)) → D ′

(ω)(Ω,A (U)) is surjective;

(e) P (D) : D ′
(ω)(Ω,Λ

′
0(α)) → D ′

(ω)(Ω,Λ
′
0(α)) is surjective for some (all)

stable (regular) α;

(f) P (D) : D ′
(ω)(Ω, E{ω1}(U)) → D ′

(ω)(Ω, E{ω1}(U)) is surjective for some

(all) non-quasianalytic weights ω1.

Remark. The first part of the Corollary 8.2 is essentially known (see [6,
Cor. 8.4], [8, Prop. 5.4]) but the proof here is much simpler.

Proof. The first part and the equivalences of (a)–(c) follows from Theo-
rem 7.1 and Proposition 8.1. (d)⇔(b): Corollary 6.4. (c)⇔(e): [6, Cor. 3.9,
Th. 4.1, Th. 7.1]. (c)⇔(f): Corollary 6.5. �

By [80, Th. 14, Th. 3], we know that the kernel of P (D) : C∞(Ω) →
C∞(Ω) for convex Ω ⊆ Rd, d > 1, has never (Ω) and the same holds for
arbitrary Ω ⊆ R

d, d > 1, for elliptic P . Thus we prove part (a) of Theorem A
(use Corollary 2.3, Corollary 6.4 and Corollary 8.2):
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Corollary 8.3 Let d > 1. If P is hypoelliptic and Ω ⊆ R
d is convex or P

elliptic and Ω ⊆ Rd arbitrary then

P (D) : D ′(Ω,A (U)) → D ′(Ω,A (U))

is never surjective.

Corollary 8.4 For any pseudoconvex domain Ω ⊆ Cd, d arbitrary, the
Cauchy-Riemann operator

∂̄ : D ′(0,0)(Ω,A (U)) → ker ∂̄ ⊂ D ′(0,1)(Ω,A (U))

is never surjective.

Let us mention that Langenbruch and the author have proved recently
[20, Cor. 4.9] that no elliptic P (D) : C∞(Ω) → C∞(Ω) has real analytic
parameter dependence for any open Ω ⊆ Rd, d > 1.

Proof. Corollary 6.4 holds also for ∂̄ : D ′(0,p)(Ω) → ker ∂̄ ⊂ D ′(0,p+1)(Ω)
for p ≥ 0 since ∂̄ is open onto its image (for a simple functional analytic
proof of that fact see [23, proof of Cor. 2]). It is easily seen that ker ∂̄ has
a quotient isomorphic to the space H(U) of holomorphic functions over one
dimensional complex open set (just take restrictions to a one dimensional

complex line going through Ω). If ker ∂̄ has (PΩ), equivalently, (Ω) then

H(U) would have (Ω), a contradiction with Corollary 8.3. �

Remark. Since, by [65] or [68], the scalar Cauchy-Riemann complex splits
from the second term on, the Cauchy-Riemann operator:

∂̄ : D ′(0,p)(Ω,A (U)) → ker ∂̄ ⊂ D ′(0,p+1)(Ω,A (U))

has even a continuous linear right inverse (which implies surjectivity) for
p ≥ 1.

The next result (a part of Theorem B) is a surprisingly easy consequence
of the whole previous theory and it shows that the real analytic parameter
dependence is less restrictive if considered for distributions on the whole
plane.

Theorem 8.5 Let P ∈ C[z1, . . . , zd] be an arbitrary polynomial and Ω ⊆ Rd

an open convex set, ω a suitable weight. If

P (D) : D ′
(ω)(Ω,A (U)) → D ′

(ω)(Ω,A (U))

is surjective then

P (D) : D ′
(ω)(R

d,A (U)) → D ′
(ω)(R

d,A (U))

is surjective as well.
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Moreover, if v is an arbitrary vector such that the hyperplane

Hc(v) := {x : 〈x, v〉 = c}

is tangent to the boundary of Ω at x0 (the point of smoothness of the bound-
ary) then

P (D) : D ′
(ω)(H+(v),A (U)) → D ′

(ω)(H+(v),A (U))

is surjective as well, for H+(v) := {x : 〈x, v〉 > 0}.
Proof. By Corollary 8.2, it suffices to prove that IPL0

+(Ω, ω) implies
IPL0

+(Rd, ω) and IPL0
+(H+(v), ω). This follows by Prop. 7.7 and Prop 7.8

since if 0 ∈ Ω then Rd =
⋃

n>0 nΩ and if x0 = 0 then H+(v) =
⋃

n>0 nΩ. �
The second part of Theorem B, one of the main and most surprising

results of the paper requires a longer proof.

Theorem 8.6 Let P ∈ C[z1, . . . , zd] be an arbitrary polynomial and Pp its
principal part, Ω ⊆ Rd open convex set, ω arbitrary weight. If

P (D) : D ′
(ω)(Ω,A (U)) → D ′

(ω)(Ω,A (U))

is a surjective operator then

Pp(D) : D ′
(ω)(Ω) → D ′

(ω)(Ω)

has a linear continuous right inverse, in particular,

Pp(D) : D ′
(ω)(Ω,A (U)) → D ′

(ω)(Ω,A (U))

is surjective and has a linear continuous right inverse.

It implies that real analytic parameter dependence is a very restrictive
property.

Corollary 8.7 Let P ∈ C[z1, . . . , zd] be an arbitrary polynomial and Pp

its principal part, Ω ⊆ Rd bounded open convex set with C1-boundary, ω
arbitrary weight. If

P (D) : D ′
(ω)(Ω,A (U)) → D ′

(ω)(Ω,A (U))

is a surjective operator then Pp is proportional to a product of real linear
forms.

Proof. Apply Theorem 8.6 and [48, Th. 3.8], [55, Th. 3.3]. �
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Proof of Theorem 8.6. By Corollary 8.2, the zero variety V := {z :
P (−z) = 0} of P has IPL0

+(Ω, ω). Let Vp denote the zero variety of Pp. By
[52, Th. 5.5] and [55, Th. 3.3], if Vp has the so-called condition HPL(Ω, loc)
at zero then

Pp : D ′
(ω)(Ω) → D ′

(ω)(Ω)

has a continuous linear right inverse (and, of course, the same holds for the
vector valued version of Pp(D)). So it suffices to show that IPL0

+(Ω, ω) for V
implies HPL(Ω, loc) at zero for Vp, i.e., that there are open sets U1 ⊆ U2 ⊆
U3 � Cd, 0 ∈ U1 such that

∀ N ∃ M, δ > 0 ∀ u ∈ PSH(U3 ∩ V ) (α) + (β) ⇒ (γ),

where

(α) u(z) ≤ hN(Im z) + δ for z ∈ U3 ∩ V ;

(β) u(z) ≤ 0 for z ∈ U2 ∩ Rd ∩ V ;

(γ) u(z) ≤ hM(Im z) for z ∈ U1 ∩ V .

We will use some ideas of [55, Th. 4.1]. Let us define a maximal function

UE(z; h,V,D) :=

sup{u(z) : u ∈ PSH(V ∩D), u ≤ h on D ∩ V, u ≤ 0 on E ∩ V },

where D is a domain in Cd, h a function on D, E ⊆ D. For 0 < ε < 1 we
define

Kε := {z ∈ C
d : | Im z| ≤ ε|z| or |z| ≤ ε} ∩ B̄(0, 2),

E = R
d ∩ B̄(0, 2) =

⋂
ε>0

Kε,

Vj := {z/j : z ∈ V } for j ∈ N.

Our aim is to estimate for some M1, δ > 0 and all z ∈ B(0, 1) ∩ V :

UE(z, hN ◦ Im +δ, V, B(0, 3)) ≤ hM1(Im z)

which implies HPL(Ω, loc) for V at zero.
Let us take any N , without loss of generality (see Prop. 7.7) we may

assume that KN ⊃ B(0, 1). We find N1 > N such that

hN1(Im z) ≥ hN(Im z) + η| Im z| > | Im z|

for suitable η, 0 < η < 1, small enough.
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Choose δ > 0, δ < η/2. By IPL0
+(Ω, ω) and Corollary 7.9, there is M

such that for each ρ > 0 if ϕ ∈ PSH(V,N1) and for all z ∈ V

ϕ(z) ≤ hN1(Im z) − nω(z) + t,

ϕ(z) ≤ ρ| Im z| − kω(z)

then for all z ∈ V

(8.1) ϕ(z) ≤ hM(Im z) −mω(z) + θt + Cθ,m,ρ.

Choose an arbitrary ε, 0 < ε < 1, ρ1 so large that

hN1(Im z) ≤ ρ1| Im z|, ρ := ρ(ε) := 1 + ρ1 + δε−2 + ηε−2.

Let us fix j ∈ N. Take u ∈ PSH(Vj ∩B(0, 3)) satisfying

u(z) ≤ hN(Im z) + δ for Vj ∩ B(0, 3),

u(z) ≤ 0 for z ∈ Kε ∩ Vj.

Take an arbitrary fixed w = (w1, . . . , wd) ∈ Vj ∩ B(0, 1). Define for z =
(z1, . . . , zd) ∈ Cd

ψ : V ∩ {z ∈ C
d : |z − Re (jw)| ≤ j} → [−1,∞[

by

ψ(z) := max

{
ju(z/j) − ηj

2
Re
[ d∑

p=1

(
zp

j
− Re wp

)2 ]
, hN1(Im z)

}
.

We extend ψ to a plurisubharmonic function on the whole V . Indeed, observe
that for

z ∈ V, |z − Re (jw)| = j, i.e., | Im z| ≤ j,

we get

ju(z/j) − ηj

2
Re

[ d∑
p=1

(
zp

j
− Re wp

)2 ]
≤

≤ jhN

(
Im z

j

)
+ jδ + ηj

( | Im z|
j

− 1

2

)
≤ hN1(Im z).

Hence, we can extend ψ by taking

ψ(z) := hN1(Im z) for |z − Re (jw)| ≥ j.

For |z − Re (jw)| ≤ j we have
∣∣∣ Im z

j

∣∣∣ ≤ 1 and

(8.2)
ψ(z) ≤ max

(
hN (Im z) + jδ + ηj

∣∣∣∣Im z

j

∣∣∣∣
2

, hN1(Im z)

)
≤ hN1(Im z) + j(δ + η).
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Combining the two inequalities above we get

(8.3) ψ(z) ≤ hN1(Im z) + j(δ + η) for z ∈ V .

We will prove now that

(8.4) ψ(z) ≤ ρ| Im z| for z ∈ V .

We consider separately three cases, z ∈ V :

1o |z − Re (jw)| ≥ j;

2o |z − Re (jw)| < j, z/j ∈ Kε;

3o |z − Re (jw)| < j, z/j �∈ Kε.

1o. Clearly ψ(z) ≤ hN1(Im z) ≤ ρ1| Im z| ≤ ρ| Im z|.
2o. Since | Im z/j| ≤ 1 and z/j ∈ Kε, u(z/j) ≤ 0 and

ψ(z) ≤ max

{
−ηj

2
Re

[
d∑

p=1

(
zp

j
− Re wp

)2
]
, hN1(Im z)

}

≤ max {η| Im z|, hN1(Im z)} ≤ ρ| Im z|.
3o. As in (8.2) we observe that ψ(z) ≤ hN1(Im z) + j(δ + η). Since

j ≤ |z|/ε and |z| ≤ | Im z|/ε we get

ψ(z) ≤ hN1(Im z) +
(δ + η)| Im z|

ε2
≤ ρ| Im z|.

We have proved (8.4) for all z ∈ V .

Assume that 0 < γ < 1, (1 + γ)KM � KM1 � Ω. By Lemma 2.2, there
is a non-quasianalytic weight σ such that ω = o(σ), ω ≤ σ and there is a
plurisubharmonic function ϕk such that

−Ckσ(z) ≤ ϕk(z) ≤ γ| Im z| − kσ(z)

for k ∈ N and some Ck > 0. This is the first place where we have to assume
that ω is a non-quasianalytic weight.

We define a plurisubharmonic function ψ̃k on V (k depends on θ as in
IPL0

+(Ω, ω)):

ψ̃k(z) :=
ψ(z) + ϕ2k(z)

1 + γ
.

From (8.3) it follows for z ∈ V

ψ̃k(z) ≤ 1

1 + γ
· (hN1(Im z) + j(δ + η) + γ| Im z| − 2kσ(z))

≤ hN1(Im z) + j(δ + η) − kω(z)
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and analogously ψ̃k ∈ PSH(V,N1). Similarly, by (8.4), it follows for z ∈ V

ψ̃k(z) ≤ 1

1 + γ
· (ρ| Im z| + γ| Im z| − 2kσ(z)) ≤ ρ| Im z| − kω(z).

By (8.1), i.e., by IPL0
+(Ω, ω),

ψ̃k(z) ≤ hM (Im z) −mω(z) + θj(δ + η) + Cθ,m,ρ for z ∈ V .

By the definition of ψ̃k we get for z ∈ V

ψ(z) ≤ (1 + γ)(hM(Im z) −mω(z) + θj(δ + η) + Cθ,m,ρ) + C2kσ(z).

Let us take z = jw ∈ V , then |z − Re (jw)| = | Im(jw)| ≤ j|w| ≤ j and
ju(z/j) ≤ ψ(z). Hence

ju(w) = ju(z/j)

≤ hM1(Im(jw)) − (1 + γ)(mω(jw) − θj(δ + η) − Cθ,m,ρ) + C2kσ(jw).

We get for all w ∈ Vj ∩B(0, 1)

UKε(w, hN ◦ Im +δ, Vj, B(0, 3)) ≤
≤ hM1(Imw) − (1 + γ)(mω(jw)/j − θ(δ + η) − Cθ,m,ρ/j) + C2kσ(jw)/j.

Since Vj converge to Vp in the sense of [51, Def. 4.3], by [51, Th. 4.4], we
get as j → ∞ for z ∈ V ∩B(0, 1) the following inequality for regular points
z ∈ V ∩ B(0, 1)

UKε(z, hN ◦ Im +δ, V, B(0, 3)) ≤ hM1(Im z) + θ(1 + γ)(δ + η)

since ω(t)/t, σ(t)/t → 0 as t → ∞ (here non-quasianaliticity of ω and σ is
used). On singular points we define plurisubharmonic functions via upper
limits, so the same inequality holds for singular points as well. Since this is
true for any θ ∈ ]0, θ0[ we get for z ∈ V ∩B(0, 1)

UKε(z, hN ◦ Im +δ, V, B(0, 3)) ≤ hM1(Im z).

By [51, Prop. 4.2],

UE(z, hN ◦ Im +δ, V, B(0, 3)) ≤ hM1(Im z),

since E =
⋂

ε>0Kε. �
Now, we show that the real analytic parameter dependence of solutions

implies (is equivalent) to the existence of a linear continuous right inverse
in many cases. We start with homogeneous polynomials and part (d) of
Theorem A.
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Theorem 8.8 Let P ∈ C[z1, . . . , zd] be an arbitrary homogenenous polyno-
mial, Ω ⊆ Rd an open convex set, ω an arbitrary non-quasianalytic weight.
The operator

P (D) : D ′
(ω)(Ω,A (U)) → D ′

(ω)(Ω,A (U))

is surjective if and only if

P (D) : D ′
(ω)(Ω) → D ′

(ω)(Ω) (or, equivalently, P (D) : C∞(Ω) → C∞(Ω))

has a continuous linear right inverse. In particular, for bounded convex Ω
with C1-boundary it holds if and only if P is proportional to a product of
real linear forms.

Remarks. (1) This result shows a dramatic difference between real ana-
lytic and holomorphic or smooth dependence — the latter two holds always,
see [8].

(2) By [48], [52, Th. 5.6], for homogeneous P the existence of a right
inverse on D ′

(ω)(Ω) or E{ω}(Ω), ω non-quasianalytic, does not depend on ω

and it is equivalent to the existence of a right inverse on C∞(Ω).
In fact, the above result can be reformulated as a new elegant character-

ization of the existence of a continuous linear right inverse.

Proof of Theorem 8.8: The result follows immediately from Theorem 8.6,
[48, Th. 3.8] and [55, Th. 3.3]. One can also give a simpler direct proof – we
will sketch it. By [52, Th. 5.5], it suffices to show for homogeneous varieties V
that IPL0

+(Ω, ω) implies PL(Ω, ω) (see [55, Def. 2.5, Prop. 2.8]), i.e.,

∀ N ∃ M ≥ N ∀ K ≥M ∃ B > 0 ∀ u ∈ PSH(V ) (α) + (β) ⇒ (γ),

where

(α) u(z) ≤ hN(Im z) + C for some C and any z ∈ V ,

(β) u(z) ≤ hK(Im z) for any z ∈ V ,

(γ) u(z) ≤ hM(Im z) +Bω(z) for any z ∈ V .

Assume that KN ⊇ B(0, 1) (use Proposition 7.7) and u ∈ PSH(V ) satis-
fies (α) and (β). Let ε, 0 < ε < 1, be so small that (1 + ε)KM � KM1 � Ω.
By Lemma 2.2, we find a non-quasianalytic weight σ ≥ ω, ω = o(σ), and
ϕk ∈ PSH(Cd) such that

−Ckσ(z) ≤ ϕk(z) ≤ ε| Im z| − 2kσ(z).
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We apply IPL0
+(Ω, ω) to

vr,k(z) :=
(1/r)u(rz) + ϕk(z)

1 + ε
for r > 0

and then taking r → 0 and θ → 0 we get

u(ζ) ≤ hM1(Im ζ)

since σ(t)/t, ω(t)/t→ 0 as t→ ∞. �
Before we consider further cases we need the following lemma, a strength-

ening of [55, Lemma 4.7].

Lemma 8.9 Assume that V is an algebraic variety in Cd that satisfies
IPL0

+(Rd, ω) in the form described in Corollary 7.9. Let M > 0, then there
is a constant C such that

| Imw| ≤ Cω(w).

for any w = (w1, . . . , wd) ∈ V satisfying

| Imw| ≤M | Im z|
for all z in the connected component Vw of w in the set

V ∩ {z ∈ C
d : |z − w| < s| Imw|}

for some s ≥ 4A+ 4.

Proof. Assume that there is a sequence (wj)j∈N satisfying assumptions of

Lemma for fixed M such that
| Im wj |
ω(wj)

→ ∞. Since ω ≥ 1, |wj| → ∞ and

then we can construct a function h : [0,∞[→ [0,∞[ such that h(|wj|) =
| Imwj | for infinitely many j and ω = o(h). By Lemma 2.2 there is a non-

quasianalytic weight σ ≥ ω, ω = o(σ), σ = o(h). Clearly, then
| Im wj |
σ(wj)

→ ∞.

Summarizing, it suffices to prove

| Imw| ≤ Cσ(w).

We define u : Vw → R for z = (z1, . . . , zd) by

u(z) := max

{
(2A+ 1)| Imw| − 1

2s| Imw| Re

[ d∑
p=1

(zp − wp)
2

]
, | Im z|

}
.

For z ∈ V with |z − w| = s| Imw| we get

(2A+ 1)| Imw| − s| Imw|
2

Re

[
d∑

p=1

(
zp − wp

s| Imw|
)2
]
≤

≤ (2A+ 1)| Imw| + s| Imw|
( |Im(z − w)|

s| Imw| − 1

2

)
≤ | Im z|.
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Hence we can extend u to a plurisubharmonic function on V defining
u(z) = | Im z| outside Vw. Take ρ = (A + 1)M + 1, m arbitrary, θ ≤

1
2(2+2A)

and find k from IPL0
+(Rd, ω). Then we define, by Lemma 2.2, a

plurisubharmonic function ϕ on Cd such that

−Cσ(z) ≤ ϕ(z) ≤ | Im z| − 2kσ(z).

We take a function
v(z) := (u(z) + ϕ(z))/2.

Clearly, outside Vw we have

v(z) ≤ | Im z| − kσ(z),

thus v ∈ PSH(V,B(0, 1)). Moreover since on Vw we have | Imw| ≤ M | Im z|
thus

(8.5)
(2A+ 1)| Imw| − s| Imw|

2
Re

[
d∑

p=1

(
zp − wp

s| Imw|
)2
]
≤

≤ (2A+ 1)| Imw| + | Im z| + | Imw| ≤ ((2A+ 2)M + 1)| Im z|.
Clearly

v(z) ≤ ((A+ 1)M + 1)| Im z| − kσ(z) ≤ ρ| Im z| − kω(z).

On the other hand, by (8.5),

v(z) ≤ | Im z| + (A+ 1)| Imw| − kσ(z) ≤ | Im z| + (A+ 1)| Imw| − nω(z).

Taking t = (A+ 1)| Imw| we get by IPL0
+(Rd, ω)

v(z) ≤ A| Im z| −mω(z) + (1/4)| Imw|,
therefore

u(z) ≤ 2A| Im z| − 2mω(z) + (1/2)| Imw| + Cσ(z).

Applying the above inequality for z = w we get | Imw| ≤ 2Cσ(w). �

Proposition 8.10 Let d ∈ N, P ∈ C[z1, . . . , zd, zd+1, zd+2] be a polynomial
of the form

P (z1, . . . , zd+2) =

d∑
j=1

εjz
2
j + λzd+1 + μzd+2,

where εj = ±1, λ ∈ C \ R, μ ∈ R. Then the zero variety V (P ) has no
IPL0

+(Rd+2, ω) for any non-quasianalytic weight ω, ω(t) = o(t(1/2)).
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Proof. We take any non-quasianalytic weight σ, ω = o(σ), σ ≥ ω, σ(t) =
o(t1/2), comp. Lemma 2.2. Exactly as in the proof of [53, Lemma 4] we
prove the inequality (2) there using Lemma 8.9 instead of [55, Lemma 4.7]
and we get

R sin
δ

2
≤ Cω(R2) for R ≥ R0,

a contradiction. �
We are ready to solve the case of polynomials of order two and we prove

Theorem A (c).

Theorem 8.11 If P ∈ C[z1, . . . , zd] is an arbitrary polynomial of order two
such that there exists an open convex set Ω ⊆ R

d for which

P (D) : D ′(Ω,A (U)) → D ′(Ω,A (U))

is surjective then P (D) is as in Theorem A (c).

It is proved in [53, Th. 2] for P of order two that P (D) : D ′(Rd) → D ′(Rd)
has a continuous linear right inverse if and only if the necessary condition
above holds:

Corollary 8.12 If P ∈ C[z1, . . . , zd] is an arbitrary polynomial of second
order then

P (D) : D ′(Rd,A (U)) → D ′(Rd,A (U))

is surjective if and only if

P (D) : D ′(Rd) → D ′(Rd)

has a continuous linear right inverse.

Proof of Theorem 8.11. By Theorem 8.5 and Theorem 8.6, if

P (D) : D ′(Ω,A (U)) → D ′(Ω,A (U))

is surjective then

P (D) : D ′(Rd,A (U)) → D ′(Rd,A (U))

is surjective and
Pp(D) : D ′(Rd) → D ′(Rd)

has a continuous linear right inverse.
By [53, Lemma 2], there is λ ∈ C such that λPp is real. As in the proof

of [53, Lemma 3 (i)], the real analytic parameter dependence on Rd does not
change if we make either a real linear invertible change of variables or a
complex translation of variables in the symbol P . By [53, Lemma 2], doing
such changes of variables we may assume that P is one of the forms:

(i) P (z) =
∑r

j=1 z
2
j −

∑s
j=r+1 z

2
j + c, c ∈ C;
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(ii) P (z) =
∑r

j=1 z
2
j −

∑s
j=r+1 z

2
j + λzs+1, λ ∈ C \ {0};

(iii) P (z) =
∑r

j=1 z
2
j −

∑s
j=r+1 z

2
j + izs+1 + zs+2.

By Proposition 8.10, P cannot be of the form (iii) and in the form (ii) λ
must be real. Since

Pp(z) =
r∑

j=1

z2
j −

s∑
j=r+1

z2
j

and Pp(D) has a continuous linear right inverse, then by [53, Prop. 2], either
r = s = 1 or s > r. If in case (ii) r = s = 1 then

P (z) = z2
1 + λz2 λ ∈ R.

Of course, if P (D) has the real analytic parameter dependence on Rd, d > 2,
then it has such a dependence for R2 and the zero variety V (P ) ⊆ C2 has
IPL0

+(R2, log(2 + | · |)), see Cor. 8.2.
We will show by Lemma 8.9 that this is impossible. Take a point

zr := (−ir,−r2/λ) ∈ V (P ) for r ∈ R.

Let us fix s > 0, then for (−z, z2/λ) ∈ V (P ) if we have

(8.6) |(−z, z2/λ) − (−ir,−r2/λ)| ≤ s| Im zr| = s|r|,
then |z2 + r2| ≤ λs|r|. Hence for r big enough and suitable small δ:

|z| ≥ r/2, Arg z ∈ [π/2 − δ/2, π/2 + δ/2] ∩ [−π/2 − δ/2,−π/2 + δ/2].

Therefore if (8.6) holds then

| Im z| > (1/2)|z| ≥ r/4 = | Im zr|/4.
We have proved assumptions of Lemma 8.9, thus

r = | Im zr| ≤ O(log(2 + |zr|));
a contradiction. �

Finally, we consider polynomials of two variables.
We call a polynomial P (ω)-hyperbolic with respect to a vector v [54] for

a non-quasianalytic weight ω if Pp(v) �= 0 (i.e., v is non-characteristic) and

P (D) admits a fundamental solution E ∈ D ′
(ω)(R

d) with suppE ⊆ H+(v),
where

H+(v) := {x ∈ R
d : 〈x, v〉 > 0}.

A polynomial is (ω)-hyperbolic if it is (ω)-hyperbolic with respect to at least
one non-characteristic vector. It is known that for ω(t) = log(2+|t|), i.e., for
classical distributions D ′, (ω)-hyperbolicity is just the classical hyperbolicity
[54, Remark 2.2 (c)], [36, Def. 12.3.3, Th. 12.3.1, 12.5.1]. We are ready to
prove Theorem A (b).
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Theorem 8.13 Let P ∈ C[z1, z2] be an arbitrary polynomial. The following
assertions are equivalent:

(a) P (D) : D ′
(ω)(Ω,A (U)) → D ′

(ω)(Ω,A (U)) is surjective for some open

convex set Ω ⊆ R2;

(b) P (D) : D ′
(ω)(Ω) → D ′

(ω)(Ω) has a continuous linear right inverse for

all open convex sets Ω ⊆ R2;

(c) P (D) is (ω)-hyperbolic or, equivalently, (ω)-hyperbolic with respect to
all non-characteristic directions.

Remarks. 1. The paper [48] contains also the proof of (b)⇔(c) for the
classical space of distributions D ′(Ω). Unfortunately the proof of necessity
contained there is based on [48, Lemma 4.10] for which one can find a coun-
terexample P (z1, z2, z3) = z1 + z2z3. The general case (b)⇔(c) is contained
in [52, Th. 5.14]

2. By [16, Th. 1], hyperbolicity with respect to all non-characteristic
directions is equivalent to the fact that P and the principal part Pp are
equally strong and Pp is proportional to a product of linear functions with
real coefficients.

Proof. (b)⇒(a) Obvious. The equivalence of two conditions in part (c) is
proved in [52, Th. 5.14]. (c)⇒(b) is known [48, Th. 4.11], [52, Th. 5.14]. We
will prove (a)⇒(c):

Let us assume that P is irreducible. Let �v be a non-characteristic direc-
tion of P . Without loss of generality we may assume that �v = (1, 0).

Therefore, we may assume that

P (z1, z2) = zm
1 +

m−1∑
j=0

ej(z2)zj
1 for all (z1, z2) ∈ C

2.

Since Pp is a homogenenous polynomial of two variables, we find k, 0 ≤ k ≤
m, 0 �= αj ∈ C for 1 ≤ j ≤ k (if k > 0) such that

Pp(z1, z2) = zm−k
1

k∏
j=1

(z1 − αjz2) for all (z1, z2) ∈ C
2.

We assume that 1 ≤ k < m (other cases are even simpler). By Theorem 8.6
and 8.5,

Pp(D) : D ′
(ω)(R

2) → D ′
(ω)(R

2)

has a continuous linear right inverse. By [48, 4.7], for every irreducible
factor Q of Pp

dimR V (Q) ∩ R
2 = 1,

thus αj ∈ R for 1 ≤ j ≤ k.
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Note that V (P ) can be represented via Puiseux expansion. Therefore
there exists a constant B > 0 such that

V (P ) ∩ {(z1, z2) ∈ C
2 : |z2| ≤ B}

is compact and
V (P ) ∩ {(z1, z2) ∈ C

2 : |z2| ≥ B}
is a union of disjoint branches (Wj) each of them has the following expansion:
there is qj ∈ N such that for |z2| ≥ B elements of (z1, z2) ∈ Wj are of the
form (sj(z2), z2),

(8.7) sj(z2) =

qj∑
l=−∞

ajlz
l/qj

2 .

Let us observe that
1

t
(sj(tz2), tz2) → (ajqj

z2, z2) ∈ V (Pp), as t→ ∞,

for any z2 ∈ C. Thus ajqj
must be equal to some αj or to 0 and so it

is real. It is easily seen that there exists a constant B1 such that for any
z = (z1, z2) ∈ V (P )

(8.8) |z| ≤ B1(|z2| + 1).

Let us observe that for B ≤ |z2| ≤ B + 1

| Im(sj(z2) − ajqj
z2)| ≤ C

for some C not dependent on j.
That is why the function u defined for z = (z1, z2) ∈Wj , |z2| ≥ B by the

formula:
u(z) := max

(| Im(sj(z2) − ajqj
z2)| − C, 0

)
and u(z) := 0 for z = (z1, z2) ∈ V (P ) \Wj or z = (z1, z2) ∈ V (P ), |z2| ≤ B
is a plurisubharmonic function on V (P ).

We choose ι, λ such that α := λ/qι is the biggest among the numbers
l/qj such that ajl �= 0, l < qj , j arbitrary.

We will show that tα = O(ω(t)) and this will be the most part of the
proof below. Clearly it suffices to consider 0 < α < 1. If tα �= O(ω(t))
then there is a function h : [0,∞[→ [0,∞[ such that ω = o(h) and for some

sequence tj → ∞, h(tj) = tαj ,
h(tj )

ω(tj)
→ ∞.

We start with some useful estimates for u. First,

(8.9) u(z) ≤ D|z2|α
for all z = (z1, z2) ∈ V (P ). Since ajqj

are real

(8.10) u(z) ≤ | Im z1| +D1| Im z2| whenever D1 := maxj |ajqj
|.
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We need also estimates from below. If aιλ �∈ R then for z2 ∈ R:

| Im (sι(z2) − aιqιz2) | = | Im
λ∑

l=−∞
aιlz

l/qι

2 | ≥ D1|z2|α

for sufficiently big |z2|. If aιλ ∈ R, z2 ∈ R, then

zα
2 = |z2|α exp(i(Arg z2 + 2πp)α), p = 0, 1, . . . , qι − 1,

where Arg z2 = 0 for z2 > 0 and = π for z2 < 0. Choosing appropriately p
and Arg z2 we get for all suitable big |z2| that

| Im aιλz
α
2 | ≥ D3|z2|α.

Summarizing, there is a constant E > 0 such that for big real z2 we have

(8.11) | Im (sι(z2) − aιqιz2) | ≥ E|z2|α for suitable choice of sι(z2).

By Corollary 8.2, V (P ) has IPL0
+(R2, ω) in the form described in Corol-

lary 7.9 (ii). Let us fix w ∈ R, B ≤ |w| = R, μ = 4A ≥ 2. Define for
z = (z1, z2) ∈ V (P ):

ũ(z) =

{
max

(
μu(z) − R

2
Re
[(

z2−w
R

)2]
, | Im z|

)
for |z2 − w| ≤ R,

| Im z| otherwise on V (P ).

For |z2 − w| = R we have by (8.9)

μu(z) − R

2
Re

[(
z2 − w

R

)2
]

=

= μu(z) +
R

2

[∣∣∣∣Im
(
z2 − w

R

)∣∣∣∣
2

−
∣∣∣∣Re

(
z2 − w

R

)∣∣∣∣
2
]
≤

≤ μD|z2|α + | Im z2| −R/2 ≤ | Im z|
for sufficiently big R. Hence ũ is a plurisubharmonic function on V (P ).
Analogously, we obtain for z ∈ V (P )

(8.12) ũ(z) ≤ | Im z| + μD2αRα.

We take ρ := (μ+ μD1 + 3)/2, m arbitrary, θ = E/(2α+2D). We choose
by Lemma 2.2 a weight σ, ω(z) ≤ σ(z), ω = o(σ), σ = o(h) and we construct
a plurisubharmonic function ϕ such that

−Ckσ(z) ≤ ϕ(z) ≤ | Im z| − 2k(θ)σ(z).
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We define
v(z) := (ũ(z) + ϕ(z))/2.

Then, by (8.12)

v(z) ≤ | Im z| − k(θ)σ(z) + μD2α−1Rα.

Clearly v ∈ PSH(V,B(0, 1)) and

v(z) ≤ | Im z| − nω(z) + μDRα2α−1.

On the other hand, by (8.10) since for |z2 − w| ≤ R we have

−R
2

Re

[(z2 − w

R

)2
]
≤ | Im z2|

we get
ũ(z) ≤ μ| Im z1| + μD1| Im z2| + | Im z2| + | Im z|,

therefore,
v(z) ≤ ρ| Im z| − k(θ)ω(z).

By IPL0
+(R2, ω),

v(z) ≤ A| Im z| −mω(z) + θμDRα2α−1

and
ũ(z) ≤ 2A| Im z| − 2mω(z) + 2αθμDRα + Ckσ(z).

Taking z = (z1, w) ∈Wj we get μu(z) ≤ ũ(z) and

u(z) ≤ 1

2
| Im z| + 2αθDRα + Ckσ(z)/μ.

Moreover, u(z) = max(| Im z| − C, 0) since z2 = w ∈ R, ajqj
∈ R, hence

either | Im z| ≤ C or

| Im z| = u(z) + C ≤ 1

2
| Im z| + 2αθDRα + Ckσ(z)/μ+ C.

Therefore
| Im z| ≤ 2α+1θDRα + 2Ckσ(z)/μ+ 2C.

Using (8.11) and |w| = R we get by choosing suitable z1

ERα ≤ 2α+1θDRα + 2Ckσ(z)/μ+ 2C.

Since θ = E/(2α+2D),

Rα ≤ 4Ck

μE
σ(z) +

4C

E
.

By (8.8) σ(z) = O(σ(z2)) = o(h(R)); a contradiction.

We have proved that tα = O(ω(t)).
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Again applying (8.7) and the fact that all ajqj
are real we get for z =

(z1, z2) ∈ V (P ), z2 ∈ R,

| Im z1| ≤ F (1 + ω(z2))

for some constant F which implies (ω)-hyperbolicity with respect to �v by
the definition (see [54, Prop. 2.7]).

For reducible P it follows that each of its irreducible factors is (ω)-
hyperbolic with respect to each non-characteristic direction. The conclusion
follows by [54, Lemma 2.5]. �

Clearly, a careful reader will find several further results on the parameter
dependence following our theory, for instance, for ultradifferential depen-
dence instead of real analytic dependence — we omit details.

9. Open problems

We collect some open problems suggested by the theory described in this
paper. The first main problem is the following:

Problem 9.1 Is it true that for arbitrary polynomial P the positive solu-
tion of the real analytic parameter dependence problem for P (D) : D ′(Ω) →
D ′(Ω) is equivalent to the existence of continuous linear right inverse for the
same operator?

This problem is exactly equivalent to the following question (comp. [6,
Problem 9.5]):

Problem 9.2 Can we characterize existence of a continuous linear right
inverse for P (D) : D ′(Ω) → D ′(Ω) by the dual interpolation estimate for
the kernel of P (D)?

There are two tempting particular cases of Problem 9.1: Ω = H+ a
half space and Ω an open bounded set with C1-boundary. By Theorem 8.5
and [48, Cor. 2.10], a positive solution of the first case implies a positive
solution for the second one. In view of [48, Prop. 3.2] the problem reduces
to the question of hyperbolicity with respect to the normal direction to the
boundary of a H+.

By [23, Th. 1, Th. 3] (comp. [22]), P (D) : D ′(Ω) → D ′(Ω) has a con-
tinuous linear right inverse if and only if the kernel ker P (D) is a strict
PLS-space. The same holds for any operator T : D ′(Ω) → D ′(Ω) with
a translation invariant kernel or the so-called s′-friendly kernel. Therefore
Problem 9.1 is very close to the conjecture that every translation invariant

subspace of D ′
(ω)(Ω) with (PΩ) (or, with the dual interpolation estimate) is

strict. We do not know any counterexample although there is an example of
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a PLS-Köthe sequence space which is s′-friendly non-strict subspace of D ′

with (PΩ) and which is neither LB-space nor a Fréchet space.
Of course, one can consider Problem 9.1 and Problem 9.2 for ultradistri-

butions D ′
(ω)(Ω) and ultradifferentiable functions E{ω}(Ω) as well.

There are interesting cases not covered by Theorem 5.2.

Problem 9.3 Characterize Proj1 XεE = 0 for a PLN-space X and a PLS-
space E in terms of conditions (T ) or (Tε).

The problem is open even for Fréchet Schwartz E.
A truly challenging problem is to characterize in terms of the symbol

kernels of linear partial differential operators with variable coefficients on
D ′(Ω) or A (Ω) which have the dual interpolation estimate for small θ since
this would solve the real analytic parameter dependence problem for partial
differential operators with variable coefficients via Corollary 6.4. Creating a
suitable theory would require a nice description of the kernel — so it would
be the analogue of the fundamental principle for partial differential operators
with variable coefficients. It seems that we are very far from that.
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on algebraic varieties. J. Amer. Math. Soc. 11 (1998), 1–39.

[56] Meise, R. and Vogt, D.: Characterization of convolution operators on
spaces of C∞-functions admitting a continuous linear right inverse. Math.
Ann. 279 (1987), 141–155.

[57] Meise, R. and Vogt, D.: Introduction to functional analysis. Oxford
Graduate Texts in Mathematics 2. The Clarendon Press, Oxford University
Press, New York, 1997.



Real analytic parameter dependence of solutions of PDEs 237

[58] Meyer, T.: Surjectivity of convolution operators on spaces of ultradiffer-
entiable functions of Roumieu type. Studia Math. 125 (1997), 101–129.

[59] Mitjagin, B. S. and Henkin, G. M.: Linear problems of complex analy-
sis. Uspekhi Mat. Nauk 26 (1971), no. 4 (160), 93–152 (Russian). English
translation Russian Math. Surv. 26 (1971), 99–164.

[60] Narasimhan, R.: Analysis on real and complex manifolds. Advanced Stud-
ies in Pure Mathematics 1. North-Holland, Amsterdam, 1968.

[61] Ovchinnikov, V. I.: The methods of orbits in interpolation theory. Math.
Rep. 1 (1984), i–x and 349–515.

[62] Palamodov, V. P.: Linear differential operators with constant coefficients.
Nauka, Moscow, 1967 (Russian). English transl.: Die Grundlehren der math-
ematischen Wissenschaften 168. Springer-Verlag, New York-Berlin, 1970.

[63] Palamodov, V. P.: Functor of projective limit in the category of topologi-
cal vector spaces. Mat. Sb. 75 (1968), 567-603 (Russian). English translation:
Math. USSR Sbornik 17 (1972), 289–315.

[64] Palamodov, V. P.: Homological methods in the theory of locally convex
spaces. Uspekhi Mat. Nauk 26 (1971), no. 1 (157), 3–66 (Russian). English
transl.: Russian Math. Surveys 26 (1) (1971), 1–64.

[65] Palamodov, V. P.: On a Stein manifold the Dolbeault complex splits in
positive dimensions. Mat. Sb. (N.S.) 88 (1972), 287–315 (Russian). English
transl.: Math. USSR Sbornik 17 (1972) 289–315.

[66] Petzsche, H. J.: Some results of Mittag-Leffler-type for vector valued func-
tions and spaces of class A. In Functional analysis: surveys and recent re-
sults, II (Proc. Second Conf. Functional Anal., Univ. Paderborn, Paderborn,
1979), 183–204. North-Holland Math. Stud. 38. North-Holland, Amsterdam-
New York, 1980.

[67] Piszczek, K.: On a property of PLS-spaces inherited by their tensor prod-
ucts. Bull. Belg. Math. Soc. Simon Stevin (to appear).
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domanski@amu.edu.pl

The research of the author was supported in years 2007-2010 by Ministry of Science and
Higher Education, Poland, grant no. NN2012740 33. Part of the research was done during
author’s stay at Bergische Universität Wuppertal supported by Alexander von Humboldt
Stiftung.


