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Adams inequality
on metric measure spaces

Tero Mäkäläinen

Abstract

In this paper, we prove the Adams inequality in complete metric
spaces supporting a Poincaré inequality with a doubling measure. We
also prove the trace inequalities for the Riesz potentials.

1. Introduction

In the Euclidean spaces we have the following Adams inequality, see e.g. [1],
[21], [27] or [28]:

Theorem 1.1. Let ν be a Radon measure on R
n and let 1 ≤ p < q < ∞

with p < n. Suppose that there is a constant M such that for all balls
B(x, r) ⊂ R

n,

ν(B(x, r)) ≤ Mrα,

where α = q(n − p)/p. Then

(1.1)

(∫
Rn

|u|qdν

)1/q

≤ CM1/q

(∫
Rn

|∇u|pdx

)1/p

,

for all u ∈ C∞
0 (Rn), where C = C(p, q, n) > 0.

In potential theory, this type of inequalities arise from investigation
of imbeddings G : Lp(µ) → Lq(ν), where G is a potential, [2]. These
imbeddings are often referred to as trace inequalities. In the Euclidean set-
ting a necessary and sufficient condition for trace type theorems is proven,

2000 Mathematics Subject Classification: 46E35, 31C15, 26D10.
Keywords : Trace inequality, Riesz potential, metric space, Sobolev function, the Poincaré
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see [2, Chapter 7.2]. The sharp result is a growth condition for the mea-
sure ν involving Riesz capacity of a ball. See also [28, Chapter 4] for more
discussions on the Adams type inequality.

For Sobolev functions, inequality (1.1) is an extension of the Sobolev
inequality, since if ν is n-dimensional Lebesgue measure, then

q = p∗ =
np

n − p
.

In this paper, we study the Adams type inequality and trace inequalities for
Riesz potential on metric measure spaces. Before we state our main results,
we discuss the standard assumptions on the spaces and the background of
analysis on metric measure spaces.

The results in this paper are formulated for Lipschitz functions. In a
metric space (X, d), a function u : X → R is said to be Lipschitz continuous,
denoted by u ∈ Lip(X), if for some constant L > 0∣∣u(x) − u(y)

∣∣ ≤ Ld(x, y),

for every x, y ∈ X. We also use the notation u ∈ Lip0(X) when the function
u has compact support. For a Lipschitz function u : X → R, we define

Lip u(x) := lim sup
y→x

|u(x) − u(y)|
d(x, y)

.

We require the following standard conditions on the mass and on the
geometry of the metric space. First, we assume that the space is equipped
with a doubling measure. A measure µ is doubling if balls have positive and
finite measure and there exists a constant Cd ≥ 1 such that for all balls
B(x, r) in X,

µ(B(x, 2r)) ≤ Cdµ(B(x, r)).

Note that the doubling measure µ has a density lower bound [11, pp. 103-
104]: There exist constants c, s > 0 that depend only on the doubling
constant of µ, such that

(1.2)
µ(B(y, r))

µ(B(x, R))
≥ c

( r

R

)s

,

whenever r < R, x ∈ X and y ∈ B(x, R). Usually we consider s to be the
natural dimension of the space X, and in this paper we assume that s > 1.
We call such spaces doubling spaces, or spaces of homogeneous type.

Second, we assume that the space admits a Poincaré inequality:
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Definition 1.2. A metric measure space (X, d, µ) is said to admit a weak
(1, p)-Poincaré (or weak p-Poincaré) inequality, 1 ≤ p < ∞, with constants
Cp > 0 and τ ≥ 1, if

(1.3) −
∫

B(x,r)

∣∣u − uB(x,r)

∣∣ dµ ≤ Cpr

(
−
∫

B(x,τr)

(
Lip u

)p
dµ

)1/p

for all balls B(x, r) ⊂ X and for every Lipschitz function u : X → R. Here
barred integrals mean integral averages and uB is the average value of u
over B.

There are also different definitions for the Poincaré inequality on a met-
ric measure space. However many definitions coincide when the space is
complete and supports a doubling Borel regular measure, see discussion in
[13, Chapter 1.2] and references therein. The Poincaré inequality forces the
space to be sufficiently regular in a geometric sense.

Recently there has been progress in the theory of Sobolev spaces in gen-
eral metric measure spaces, see for instance [7], [10], [9], [12], [14], [20], [24]
and references therein. In [24], Shanmugalingam constructs a Sobolev type
space on metric spaces, which yields the same space studied by Cheeger
in [7]. When the metric space satisfies our general assumptions, the Sobolev
type spaces introduced by Haj�lasz [9] also coincide with the spaces men-
tioned above.

If the metric space is equipped with a doubling measure and it supports
a Poincaré inequality, then Lipschitz functions are dense in the space of
Sobolev functions on the metric measure space, see [25]. Therefore the
results in this paper can also be applied to the Sobolev functions.

When these standard assumptions on the space and on the measure hold,
the space has nice geometric properties and allows us to conduct deep analy-
sis of such a space, and recently such analysis was done in many areas of
studies. For instance, in [12], [20] quasiconformal mappings in metric spaces
are studied. Also some results of Euclidean potential theory can be gener-
alized to metric spaces, see [17], [18], [19] and [25]. Thanks to Cheeger’s
definition of partial derivatives [7], it is even possible to study partial differ-
ential equations on such spaces, see [4] and [6]. In [10], the Sobolev inequality
is shown to be true in this setting.

The aim of this paper is to show that the Adams-type inequality also
holds on metric spaces under some general assumptions. In this paper we
prove a trace inequality for a Riesz potential (Theorem 4.1). Similar results
for other similar potentials can be found in [8, Theorem 6.2.1].

We could not obtain the sharp results as in [2] for general metric measure
spaces, since our measure is not assumed to be (Ahlfors) Q-regular and hence
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we do not have connection between the measure and the capacity. When
the measure µ is Q-regular, the results are achieved easily from proofs in
the Euclidean case, basically by replacing the Lebesgue measure with the
measure µ. In this paper the difficulty comes from the fact that only the
lower bound for the measure µ is needed, see (1.2), without any upper bound.

Similar problems as in this paper are studied also in [15], with a different
approach.

The case p = 1 needs a special treatment as usual. We prove the following
global Adams inequality in the case p = 1.

Theorem 1.3. Let (X, d, µ) be a complete metric measure space such that it
admits a weak (1, 1)-Poincaré inequality and µ is a doubling Radon measure.
Let ν be a Radon measure on X. Suppose that there are M ≥ 0 and q ≥ 1,
such that for all balls B(x, r) ⊂ X of radius r < diam X, it holds

ν(B(x, r))

µ(B(x, r))q
≤ Mr−q.

Then (∫
X

|u|qdν

)1/q

≤ CM1/q

∫
X

Lip u dµ,

for all u ∈ Lip0(X), where the constant C > 0 depends only on q, s, the
doubling constant and the constants in the Poincaré inequality.

Two key elements in the proof of Theorem 1.3 are isoperimetric inequality
and co-area formula (Theorem 2.3), which are already studied by Ambro-
sio [3] and Miranda [22]. We follow the approach in [28, Lemma 4.9.1], which
can be easily generalized to our setting by using Lemma 3.1.

For the case p > 1, we have the following theorem.

Theorem 1.4. Let (X, d, µ) be a complete metric measure space such that
it admits a weak (1, t)-Poincaré inequality for some 1 ≤ t < p, and µ is a
doubling Radon measure. Suppose that ν is a Radon measure on X, satisfy-
ing

ν(B(x, r))

µ(B(x, r))
≤ Mrα with α =

sq

p
− s − q

t
,

for all balls B(x, r) ⊂ X of radius r < diam X, where 1 < p < q < ∞,
p/t < s and M is a positive constant. Here s is from (1.2). If u ∈ Lip0(B0)
for some ball B0 = B(x0, r0) ⊂ X, for which r0 < diam X/10, we have(∫

B0

∣∣u∣∣qdν

)1/q

≤ Cµ(B0)
1/q−1/p r

t−1
t

+ s
p
− s

q

0 M1/q

(∫
B0

(
Lip u

)p
dµ

)1/p

,

where C = C(p, q, s, t, Cd, Cp, τ) > 0.
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In a forthcoming paper the author applies the Adams inequality to study
p-harmonic functions on metric measure spaces and to characterize remov-
able sets for Hölder continuous Cheeger p-harmonic functions.

The proof splits into two steps. First, we prove the inequality

|u|p ≤ CI1,B

(
(Lip u)p

)
,

where I1,B is a generalization of the Riesz potential, see Theorem 3.2 and
Remark 3.3. Second part is to apply the Adams inequality for the Riesz
potential, also called as the Fractional Integration Theorem, which states
that

I1,B : Lp(B, µ) −→ Lq(B, ν)

is a bounded operator, see Corollary 4.2.
In Theorem 1.4, we assume that weak (1, t)-Poincaré inequality holds for

some 1 ≤ t < p. This better Poincaré inequality follows from the weak (1, p)-
Poincaré inequality by the result in [13]. The case p = s is not included in
the Theorem 1.4 when the weak (1, 1)-Poincaré inequality holds. This case
is more delicate and is treated in Section 6.

The case p > s is not interesting, since the claim follows from [10, The-
orem 5.1 (3)].

This paper is organized as follows. In section 2 we give the main defin-
itions and some preliminary results. A few key lemmas are proven in sec-
tion 3. The Adams inequality for Riesz potential is discussed in Section 4.
Section 5 contains the proofs of Theorem 1.3 and Theorem 1.4. Finally, in
section 6 we prove the Adams inequality for borderline case p = s.

2. Preliminaries

Throughout the paper we denote by C > 0 a constant, whose value may
vary between each usage, even in the same line.

The triple (X, d, µ) denotes a complete metric measure space. The
equipped measure µ is assumed to be a Radon measure, which means that
the measure is Borel regular and the measure of every compact set is finite.
We also assume that the measure of every nonempty open set is positive

The ball with center x ∈ X and radius r > 0 is denoted by

B(x, r) =
{
y ∈ X : d(y, x) < r

}
and we use the notation σB(x, r) = B(x, σr). We write

uA =
1

µ(A)

∫
A

u dµ = −
∫

A

u dµ,

for a measurable A ⊂ X and a measurable function u : X → [−∞,∞].
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The norm of v in Lp(X, µ) = Lp(X) is denoted by

||v||p = ||v||p,µ =

(∫
X

|v|pdµ

)1/p

.

Definition 2.1. The Riesz potential of a nonnegative, measurable func-
tion f on a metric measure space (X, d, µ) is

I1(f)(x) =

∫
X

f(y)d(x, y)

µ
(
B(x, d(x, y))

)dµ(y),

We will also use the notation

I1,A(f)(x) =

∫
A

f(y)d(x, y)

µ
(
B(x, d(x, y))

)dµ(y),

for a measurable sets A ⊂ X.

For properties of the above natural generalization of the Riesz potential,
we refer the reader to [11, Theorem 3.22]. From other sources, the reader
may find other generalizations of the Riesz potential to metric spaces. Rela-
tions between different definitions depend on regularity assumptions of the
measure.

Following [3] and [22], we define the class of sets of finite perimeter on
metric measure spaces.

Definition 2.2. Let E ⊂ X be a Borel set and A ⊂ X an open set. The
perimeter of E in A is

P (E, A) := inf
{

lim inf
h→∞

∫
A

Lip uh dµ : (uh)⊂ Liploc(A), uh → χE in L1
loc(A)

}
,

where χE denotes the characteristic function of E. We say that E has finite
perimeter in X if P (E, X) < ∞.

Next we give the generalized isoperimetric inequality and co-area for-
mula. For proofs see [3, Theorem 4.3] and [22].

Theorem 2.3. Let (X, d, µ) be a complete doubling metric measure space,
and E ⊂ X be a set of finite perimeter. Then

(i) if (X, d, µ) admits a weak (1, 1)-Poincaré inequality, the following rel-
ative isoperimetric inequality holds for all balls B = B(x, r) ⊂ X:

min{µ(E ∩ B), µ((X \ E) ∩ B)} ≤ C

(
rs

µ(B)

)1/(s−1)

[P (E, τB)]
s

s−1 ,

where s > 1 is any exponent satisfying (1.2).



Adams inequality on metric measure spaces 539

(ii) for any nonnegative u ∈ Liploc(X) the co-area formula holds:∫ ∞

−∞
P ({u > t}, B(x, r)) dt =

∫
B(x,r)

Lip u dµ,

for every ball B(x, r) ⊂ X.

Here we state the Marcinkiewicz Interpolation Theorem without proof.
For more discussion on the theorem, see [26, Appendix B].

Let (p0, q0) and (p1, q1) be pairs of numbers such that 1 ≤ pi ≤ qi < ∞
for i = 0, 1, p0 < p1, and q0 	= q1, and let ν be a Radon measure on X. An
subadditive operator T is of weak-type (pi, qi) if there is a constant Ci such
that for all u ∈ Lpi(X) and α > 0,

ν
({x : |(Tu)(x)| > α}) ≤ (α−1Ci||u||pi

)qi.

Theorem 2.4. (Marcinkiewicz Interpolation Theorem) Let ν be a Radon
measure on X. Suppose an operator T is simultaneously of weak-types
(p0, q0) and (p1, q1). If for some 0 < θ < 1

1

p
=

1 − θ

p0

+
θ

p1

and
1

q
=

1 − θ

q0

+
θ

q1

,

then T is of strong type (p, q), i.e. for all u ∈ Lp(X)

||Tu||q,ν ≤ CC1−θ
0 Cθ

1 ||u||p,

where C = C(pi, qi, θ), i = 0, 1.

3. Several Lemmas

First, to prove Theorem 1.3 we need the following metric space version of
boxing inequality. It is also proven in [16, Theorem 3.1], but for reader’s
convenience we give the proof here.

Lemma 3.1. Let (X, d, µ) be a complete doubling metric measure space
supporting a weak (1, 1)-Poincaré inequality. Let E ⊂ X be a bounded open
set of finite perimeter. Then there exist a constant C > 0 and a sequence of
balls B(xi, ri) with xi ∈ E such that

E ⊂
∞⋃
i=1

B(xi, ri)
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and ∞∑
i=1

µ(B(xi, ri))

ri
≤ CP (E, X),

where C depends only on the doubling constant and the constants in the
Poincaré inequality.

Proof. If µ(X) < ∞, let x0 ∈ E and balls B(x0, ri), where

ri =
µ(X)

P (E, X)
2i.

Now the lemma holds with the balls B(x0, ri) and C = 1. So we may assume
µ(X) = ∞.

Now for any x ∈ E we define

f(r) =
µ(B(x, r) ∩ E)

µ(B(x, r))
.

Since E is open we can find r1 > 0 such that f(r1) = 1. By the assumption
that E is bounded, f(r) → 0 when r → ∞. Let i0 = min{i : f(2ir1) < 1/2},
and we get that f(2i0−1r1) ≥ 1/2 and f(2i0r1) < 1/2.

Now by the doubling property of µ and by the choice of i0 we obtain

1

2Cd
≤ µ(B(x, 2i0−1r1) ∩ E)

Cdµ(B(x, 2i0−1r1))
≤ µ(B(x, 2i0r1) ∩ E)

µ(B(x, 2i0r1))
<

1

2
.

Set rx = 2i0r1. Then

min
{
µ(B(x, rx) ∩ E), µ(B(x, rx) ∩ (X \ E))

} ≥ 1

2Cd
µ
(
B(x, rx)

)
.

We may assume that s > 1 is an exponent satisfying (1.2). By the relative
isoperimetric inequality (Theorem 2.3(i))[

1

2Cd

µ(B(x, rx))

] s−1
s

≤ C
rx

µ(B(x, rx))1/s
P (E, B(x, τrx)).

Thus

(3.1)
µ(B(x, rx))

rx

≤ CP (E, B(x, τrx)).

Next we choose a cover for E: Let B = B(x, τrx) be the family of all balls
such that x ∈ E and rx chosen as before. Since E is bounded, rx are uni-
formly bounded w.r.t x and by the basic covering theorem ([11, Thm. 1.2])
we obtain a sequence of disjoint balls B(xi, τrxi

) ∈ B so that

∞⋃
i=1

B(xi, 5τrxi
) ⊃ E.
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Let B(xi, ri) = B(xi, 5τrxi
). Now by the doubling property of µ and (3.1)

∑ µ(B(xi, ri))

ri
≤ C

∑
P (E, B(xi, τrxi

)) ≤ CP (E, X). �

Second, we prove a lemma, needed in proof of Theorem 1.4. Here we
need the chain condition.

We say that X satisfies a chain condition if for every λ ≥ 1 there is a
constant M such that for each x ∈ X and all 0 < ρ < R < diam(X)/4 there
is a sequence of balls B0, B1, B2, . . . , Bk for some integer k with

1. λB0 ⊂ X \ B(x, R) and λBk ⊂ B(x, ρ),

2. M−1 diam(λBi) ≤ dist(x, λBi) ≤ M diam(λBi) for i = 0, 1, 2, . . . , k,

3. there is a ball Ri ⊂ Bi ∩ Bi+1, such that

Bi ∪ Bi+1 ⊂ MRi

for i = 0, 1, 2, . . . , k − 1,

4. no point of X belongs to more than M balls λBi.

The chain condition above is a bit different from the one stated in [10,
Ch.6]. With a minor change of the proof in [10, Ch.6], we can show that
each connected doubling space satisfies the chain condition above. We need
to cover each annuli with balls of radii equal to ε2jλ−1 instead of ε2j. Then
the argument in [10, Ch.6] shows that for a fixed σ > 0, the balls Bi can be
chosen such that λBi ⊂ B(x, (1 + σ)R) for all i.

In the next theorem and remark, we show that if the space admits a
weak Poincaré inequality, then we have the following pointwise inequality
for Lipschitz continuous functions, see also [11, Thm. 9.5].

Theorem 3.2. Assume that (X, d, µ) admits a weak (1, p)-Poincaré in-
equality with a doubling Borel measure µ. Let u ∈ Lip(X) and fix a ball
B(y, r) ⊂ X. Then for each x ∈ B(y, r) there exists a ball

B(zx, r/8) ⊂ B(y, 2r)

such that

∣∣u(x) − uB(zx,r/8)

∣∣p ≤ Crp−1I1,B(y,2r)

(
(Lip u)p

)
(x).
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Proof . Let λ = τ and R = r/8 in the chain condition. Let x ∈ B(y, r).
For any small ρ > 0, we have a chain {Bi}k

i=0, for which

|u(x) − uB0 | ≤
k−1∑
i=0

|uBi+1
− uBi

| + |u(x) − uBk
|

≤
k−1∑
i=0

(|uBi+1
− uRi

| + |uBi
− uRi

|)+ ρ||Lip u||L∞

≤
k−1∑
i=0

(
−
∫

Ri

|u − uBi+1
|dµ + −

∫
Ri

|u − uBi
|dµ

)
+ ρ||Lip u||L∞

≤ C
k∑

i=0

−
∫

Bi

|u − uBi
|dµ + ρ||Lip u||L∞

≤ C
k∑

i=0

ri

(
−
∫

τBi

(Lip u)pdµ

)1/p

+ ρ||Lip u||L∞.

In the second step, we used the Lipschitz continuity of u. Here the number
of balls k depends on ρ. We may assume that τBi ⊂ B(y, 3

2
r) for all i. Next

we choose our ball Bz := B(zx, r/8) ⊂ B(y, 2r) where zx is the center of the
ball B0. We have

|uB0 − uBz | ≤ C −
∫

Bz∪B0

|u − uBz∪B0 |dµ ≤ Cr

(
−
∫

τBz∪τB0

(Lip u)pdµ

)1/p

.

Putting the above two estimates together gives us

|u(x) − uBz | ≤ |u(x) − uB0 | + |uB0 − uBz |

≤ Cr(p−1)/p

(
k∑

i=0

ri −
∫

τBi

(Lip u)pdµ

)1/p

+ Cr(p−1)/p

(
r −
∫

τBz∪τB0

(Lip u)pdµ

)1/p

+ ρ||Lip u||L∞

≤ Cr(p−1)/p

(∫
B(y,2r)

(Lip u(w))pd(x, w)

µ(B(x, d(x, w)))
dµ(w)

)1/p

+ ρ||Lip u||L∞,

where the condition 2 of the chain and the finite overlap property of the
balls τBi are needed. The claim follows by letting ρ → 0. �

Note that in Theorem 3.2, it is possible to replace B(y, 2r) by B(y, (1 +
ε)r) and B(zx, r/8) by B(zx, εr/8), where ε > 0 is any small fixed number.
Notice also that, in this case the constant depends on ε.
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Remark 3.3. If r < diam X/10 and u = 0 in X \B(y, r) in Theorem 3.2, we
can prove that

|u(x)|p ≤ Crp−1I1,B(y,r)((Lip u)p)(x),

for all x ∈ B(y, r). The proof is similar to that of Theorem 3.2. The only
change is that by choosing R = 5

2
r, we find a ball B(zx, r) ⊂ B(y, 5r) such

that B(zx, r)∩B(y, r) = ∅. In this case, we may assume that τBi ⊂ B(y, 4r)
for all balls Bi in the chain.

The next lemma is due to Muckenhoupt and Wheeden in the setting of
Euclidean spaces, see [23] and [2, Theorem 3.6.1]. We generalize it to the
setting of metric measure spaces.

Lemma 3.4. Assume that (X, d, µ) is complete and µ is doubling. Let
1 < p < ∞ and fix a ball B0 = B(x0, r0) ⊂ X and let ν be any positive
Radon measure on B0. Then(∫

4B0

Î3r0(ν)pdµ

)1/p

≤ C
r0

µ(B0)1/s

(∫
4B0

M1(ν)pdµ

)1/p

,

where C = C(s, p, Cd) > 0 is a constant, M1 is the fractional maximal
operator

M1(ν)(x) = sup
r>0

(
ν(B(x, r))

µ(B(x, r))1−1/s

)

and Î3r0 is a local Riesz potential

Î3r0(ν)(x) =

∫
B(x,3r0)

d(x, y)

µ(B(x, d(x, y)))
dν(y).

Proof . By (1.2) and by the doubling property of µ there exists C > 0
depending only on s and Cd such that

(3.2) Csr
s ≤ µ(B(x, r)), where Cs = Cµ(B0)r−s

0 ,

for all balls B(x, r) ⊂ X with x ∈ 4B0 and r < 8r0. We use Cs in this proof
to clarify notations.

The claim is a consequence of the following inequality: There exist a > 1
and b > 1, depending only on s and the doubling constant of µ, such that

for any λ > 0 and any 0 < ε < C
1/s
s C

1−s
s

1 C−1
4 ,

µ({Î3r0(ν) > aλ}) ≤ bC
1

1−s
s ε

s
s−1 µ({Î3r0(ν) > λ})

+ Cµ({x ∈ 4B0 : M1(ν)(x) > ελ}),
(3.3)

where C ≥ 1 is depending only on the doubling constant of µ, C1 =
C1(Cd, s) ≥ 1 is from (3.5) and C4 = C4(Cd) ≥ 1 is from (3.11).
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Indeed, multiplying both sides of (3.3) by λp−1 and integrating with
respect to λ, we obtain for any R > 0,∫ R

0

µ({Î3r0(ν) >aλ})λp−1 dλ ≤ bC
1

1−s
s ε

s
s−1

∫ R

0

µ({Î3r0(ν) > λ})λp−1 dλ

+ C

∫ R

0

µ({x ∈ 4B0 : M1(ν)(x) > ελ})λp−1 dλ.

Thus by changing variables, we have

a−p

∫ aR

0

µ({Î3r0(ν) >λ})λp−1 dλ ≤ bC
1

1−s
s ε

s
s−1

∫ R

0

µ({Î3r0(ν) > λ})λp−1 dλ

+ Cε−p

∫ εR

0

µ({x ∈ 4B0 : M1(ν)(x) > λ})λp−1 dλ.

All integrals above are finite, since Î3r0(ν) = 0 in X \ 4B0. Next we choose

ε = min

{
1

2
, C

1−s
s

1 C−1
4

(
1

2
a−pb−1C1/(s−1)

s

) s−1
s
}

,

and it follows that

a−p

∫ aR

0

µ({Î3r0(ν)>λ})λp−1 dλ ≤ Cε−p

∫ εR

0

µ({x ∈ 4B0 : M1(ν)>λ})λp−1 dλ.

Letting R → ∞, we obtain

(3.4) a−p

∫
4B0

Î3r0(ν)pdµ ≤ Cε−p

∫
4B0

M1(ν)pdµ,

which proves the Lemma.
It remains to prove (3.3). We begin by considering an easy case, that is,

{Î3r0(ν) > λ} ⊃ B0. Then for any x ∈ 4B0, we have by the weak-estimate
of the Riesz potential, see [11, Theorem 3.22],

µ(B0) ≤ µ({Î3r0(ν) > λ}) ≤ CC
1

1−s
s

(
1

λ

∫
B0

dν

) s
s−1

= CC
1

1−s
s λ

s
1−s µ(B(x, 5r0))

(
ν(B(x, 5r0))

µ(B(x, 5r0))
s−1

s

) s
s−1

≤ C1C
1

1−s
s λ

s
1−s µ(B0)M1(ν)(x)

s
s−1 ,

(3.5)

where C1 = C1(Cd, s) ≥ 1, and in the last step, we used the doubling
property of µ. Hence, for all x ∈ 4B0

M1(ν)(x) ≥ C1/s
s C

1−s
s

1 λ.
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Thus (3.3) is true with any ε < C
1/s
s C

1−s
s

1 , since {Î3r0(ν) > λ} ⊂ 4B0, and

4B0 ⊂ {x ∈ 4B0 : M1(ν)(x) ≥ C
1/s
s C

1−s
s

1 λ}.

Thus, we may assume that there exists x ∈ B0 such that Î3r0(ν)(x) ≤ λ.
Now we prove (3.3) in two cases. First, we consider the set {x ∈ 5

4
B0 :

Î3r0(ν)(x) > aλ}. Let δ > 0 be any small number. Let A ⊂ 4B0 be an open
set such that {Î3r0(ν) > λ} ⊂ A and µ(A) ≤ µ({Î3r0(ν) > λ}) + δ. The set
A has a Whitney covering with countable family of balls Ŵ = {Bi}, where
the balls {1

2
B : B ∈ Ŵ} are pairwise disjoint, see [5, Chapter 3] for the

Whitney coverings in metric spaces. Now we only consider the balls which
intersect the set 5

4
B0 and we denote W = {B ∈ Ŵ : B ∩ 5

4
B0 	= ∅}. By the

construction of the Whitney covering, for every Bi = B(xi, ri) ∈ W there
exists y1 ∈ 4B0 such that Î3r0(ν)(y1) ≤ λ and

(3.6) 8ri ≤ dist(y1, B
i) ≤ 16ri.

Moreover, Bi ⊂ 2B0, since we assumed that Î3r0(ν)(x) ≤ λ for some x ∈ B0.
In our case, we can show by a geometric argument that for any Bi =

B(xi, ri) ∈ W there exists y0 ∈ 2B0 such that Î3r0(ν)(y0) ≤ λ and

(3.7) dist(y0, B
i) ≤ 54ri.

Indeed, when y1 ∈ 2B0 in (3.6), the claim is clear with y0 = y1. So assume
that y1 ∈ 4B0 \ 2B0 in (3.6). Since Bi ∩ 5

4
B0 	= ∅, we have dist(y1, B

i) +
diam Bi ≥ 3

4
r0. Now by (3.6) we get that ri ≥ 1

24
r0. In addition, we

know that there exists y0 ∈ B0 such that Î3r0(ν)(y0) ≤ λ and therefore
dist(y0, B

i) ≤ 9
4
r0 ≤ 54ri.

Let B1 = B(x1, r1) ∈ W be any ball in W and assume that a > 1,
which we will fix later. Suppose B1 intersects the set {M1(ν) ≤ ελ}. Let
B2 = B(x1, 56r1) and denote ν1 = ν|B2 and ν2 = ν − ν1. By the weak-
estimate of the Riesz potential, see [11, Theorem 3.22],

µ({Î3r0(ν1) > aλ/2}) ≤ C2C
1

1−s
s

(
1

aλ

∫
X

dν1

) s
s−1

.

Let x3 ∈ B1 such that M1(ν)(x3) ≤ ελ and let B3 = B(x3, 58r1), when
B2 ⊂ B3. Then by the definition of the fractional maximal function M1,∫

X

dν1 =

∫
B2

dν ≤
∫

B3

dν ≤ M1(ν)(x3)µ(B3)
s−1

s ≤ ελµ(B3)
s−1

s .

Thus by the doubling property,(
1

aλ

∫
X

dν1

) s
s−1

≤ C3

(ε

a

) s
s−1

µ(1
2
B1).
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So with b = C/as/(s−1), where C = C2C3 ≥ 1 depends only on Cd and s, we
have

(3.8) µ
({x ∈ B1 : Î3r0(ν1)(x) > aλ/2}) ≤ bC

1
1−s
s ε

s
s−1 µ(1

2
B1).

Now we estimate Î3r0(ν2) in B1. If B0 ⊂ B2, then Î3r0(ν2)(x) = 0 for
all x ∈ B1 and (3.9) follows. Assume that B0 \ B2 	= ∅. If x4 ∈ 2B0 is a
point with d(x4, B1) ≤ 54r1, then because of the choice of B2, for all x ∈ B1

and for all y ∈ X \ B2 we have d(x4, y) ≤ d(x4, x) + d(x, y) ≤ 3d(x, y)
and d(x, y) ≤ d(x, x4) + d(x4, y) ≤ 56r1 + d(x4, y) ≤ 57d(x4, y). Thus, if in
addition we assume, as we may, that Î3r0(ν)(x4) ≤ λ, then for any x ∈ B1

Î3r0(ν2)(x) =

∫
B(x,3r0)

d(x, y)

µ(B(x, d(x, y)))
dν2(y)

≤ Ĉ

∫
B0

d(x4, y)

µ(B(x, 6d(x, y)))
dν2(y)

≤ Ĉ

∫
B(x4,3r0)

d(x4, y)

µ(B(x4, d(x4, y)))
dν2(y)

≤ ĈÎ3r0(ν)(x4) ≤ Ĉλ,

where we used the doubling property of µ and the facts that B(x4, d(x4, y)) ⊂
B(x, 6d(x, y)), the support of ν2 is in B0 and x ∈ 2B0. Here Ĉ = Ĉ(Cd) ≥ 1.
Now we choose a as a = 2Ĉ, when we have Î3r0(ν2)(x) ≤ aλ/2. It follows
that, whenever x ∈ B1 such that Î3r0(ν)(x) > aλ, we have Î3r0(ν2)(x) ≤ aλ/2
and thus Î3r0(ν1)(x) > aλ/2. In other words, we have shown that, either

B1 ⊂
{
x : M1(ν)(x) > ελ

}
or

(3.9)
{
x ∈ B1 : Î3r0(ν)(x) > aλ

} ⊂ {x ∈ B1 : Î3r0(ν1)(x) > aλ/2
}
.

In the second case, it follows from (3.8) that

µ
({x ∈ B1 : Î3r0(ν)(x) > aλ}) ≤ bC

1
1−s
s ε

s
s−1 µ(1

2
B1).

Now adding over all Bi ∈ W and letting δ → 0, we get

µ({x ∈ 5
4
B0 : Î3r0(ν) > aλ}) ≤ bC

1
1−s
s ε

s
s−1 µ({x ∈ 2B0 : Î3r0(ν) > λ})

+ Cµ({x ∈ 2B0 : M1(ν)(x) > ελ}),(3.10)

where C = C(Cd) > 1. Here we needed the finite overlap property of
balls Bi, see [5, Lemma 3.4].
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Second, we consider the set {x ∈ 4B0 \ 5
4
B0 : Î3r0(ν)(x) > aλ}. For any

x ∈ 4B0 \ 5
4
B0, we have

Î3r0(ν)(x) ≤
∫

B(x,3r0)\B(x, 1
4
r0)

d(x, y)

µ(B(x, d(x, y)))
dν(y)

≤ ν(B0)

µ(B(x, 1
4
r0))

3r0 ≤ C4
5r0

µ(B(x, 5r0))1/s

ν(B(x, 5r0))

µ(B(x, 5r0))1−1/s

≤ C4C
−1/s
s M1(ν)(x),

(3.11)

where we used the doubling property of µ in the third step, and the condi-
tion (3.2) in the last step. We can choose C4 = 3

5
C5

d . So (3.11) implies that

if x ∈ 4B0 \ 5
4
B0 and Î3r0(ν)(x) > λ, then M1(ν)(x) > ελ, with ε < C

1/s
s C−1

4 .

Thus, for any 0 < ε < C
1/s
s C−1

4

µ
({x ∈ 4B0 \ 5

4
B0 : Î3r0(ν)(x) > λ}) ≤ µ

({x ∈ 4B0 : M1(ν)(x) > ελ}).
Now by this estimate and (3.10), we obtain (3.3). �

4. Adams inequality for Riesz potential

Notice that in [8, Thm. 6.2.1] one has a result similar to the following the-
orem, but the potential they studied is different from ours. Still, if we
make an assumption, as in Theorem 4.1, that Csr

s ≤ µ(B(x, r)) for all
balls B(x, r) ⊂ X of radius r < diam X, and additional assumptions that
1/p − 1/q − 1/s ≥ 0 and µ(X) = ∞, then Theorem 4.1 follows from [8,
Thm. 6.2.1]. However the additional assumptions for the exponents and for
the measure of the space is not needed in the following proof. Here the the
proof is similar to that of [28, Thm. 4.7.2], but we need a different approach
in many estimates, since our measure is not Ahlfors regular.

Theorem 4.1. Let (X, d, µ) be a metric measure space, where µ is a doubling
Radon measure, and 1 < p < s. Let ν be a Radon measure in X. Suppose
that there are positive constants M and Cs such that

Csr
s ≤ µ(B(x, r)) and

ν(B(x, r))

µ(B(x, r))
≤ Mrα,

for all balls B(x, r) ⊂ X of radius r < diam X, where α = sq
p
− s − q and

1 < p < q < ∞. Then(∫
X

I1(|f |)qdν

)1/q

≤ CC
1
q
− 1

p
s M

1
q

(∫
X

|f |pdµ

)1/p

,

for all f ∈ Lp(X, µ), where C = C(p, q, Cd, s) > 0.
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Proof . In this proof, we assume diam X = ∞. When the diameter of X
is finite, a few minor technical changes are needed in the following proof.
Indeed, we only need to integrate over [0, diam X] instead of [0,∞[ in (4.2).

For t > 0, let At = {x : I1(|f |)(x) > t} and νt = ν|At . We may
assume that ν(At) > 0. First, we have by Fubini’s theorem and the doubling
property of µ that

tν(At) ≤
∫

At

I1(|f |)dν =

∫
X

I1(|f |)dνt

≤ Cd

∫
X

∫
X

|f(x)|d(x, y)

µ(B(y, 2d(x, y)))
dµ(x)dνt(y)

≤ Cd

∫
X

∫
X

|f(x)|d(x, y)

µ(B(x, d(x, y)))
dνt(y)dµ(x)

= Cd

∫
X

I1(νt)(x)|f(x)| dµ(x).

(4.1)

Next we estimate I1(νt) in the following way. We set rj = 2j.

I1(νt)(x) =

∫
X

d(x, y)

µ(B(x, d(x, y)))
dνt(y)

=
+∞∑

j=−∞

∫
{rj<d(x,y)≤rj+1}

d(x, y)

µ(B(x, d(x, y)))
dνt(y)

≤
+∞∑

j=−∞

rj+1

µ(B(x, rj))
νt(B(x, rj+1))

≤ Cd

+∞∑
j=−∞

νt(B(x, rj+1))

µ(B(x, rj+1))
rj+1 ≤ C2

d

∫ ∞

0

νt(B(x, r))

µ(B(x, r))
dr,

where in the last two steps we used the doubling property of µ. Now for
some R > 0, to be fixed later, we have

tν(At) ≤ C

∫ R

0

∫
X

|f(x)|νt(B(x, r))

µ(B(x, r))
dµ(x)dr

+ C

∫ ∞

R

∫
X

|f(x)|νt(B(x, r))

µ(B(x, r))
dµ(x)dr = J1 + J2.

(4.2)

We will estimate J1 and J2 in the following way. First, to estimate J1,
we have by the growth condition for the measures that, with 1/p+ 1/p′ = 1,

νt(B(x, r))

µ(B(x, r))
=

[
νt(B(x, r))

µ(B(x, r))

]1/p [
νt(B(x, r))

µ(B(x, r))

]1/p′

≤ (Mrα)1/p

[
νt(B(x, r))

µ(B(x, r))

]1/p′

.
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By the Hölder inequality and the above estimate,

J1 ≤ C

∫ R

0

||f ||p
(∫

X

[
νt(B(x, r))

µ(B(x, r))

]p′

dµ(x)

)1/p′

dr

≤ C||f ||pM1/p

∫ R

0

(∫
X

[
νt(B(x, r))

µ(B(x, r))

]
dµ(x)

)1/p′

rα/pdr.

(4.3)

For r > 0, we define the set

Er = (X × X) ∩ {(x, y) : d(x, y) < r}
and by Fubini’s theorem, we obtain∫

X

νt(B(x, r))

µ(B(x, r))
dµ(x) =

∫
X

1

µ(B(x, r))

∫
B(x,r)

dνt(y)dµ(x)

=

∫
X

∫
X

χEr(x, y)

µ(B(x, r))
dµ(x)dνt(y) ≤ Cdν(At),

(4.4)

where the last step follows from

(4.5)

∫
X

χEr(x, y)

µ(B(x, r))
dµ(x) ≤ Cd

for all y ∈ X, which in turn follows from the doubling property of µ. Indeed,∫
X

χEr(x, y)

µ(B(x, r))
dµ(x) =

∫
B(y,r)

1

µ(B(x, r))
dµ(x)

≤ Cd

∫
B(y,r)

1

µ(B(x, 2r))
dµ(x) ≤ Cd

∫
B(y,r)

1

µ(B(y, r))
dµ(x) = Cd,

since B(y, r) ⊂ B(x, 2r). Combining (4.3) and (4.4), we arrive at

J1 ≤ C||f ||pM1/pν(At)
1/p′
∫ R

0

rα/pdr = C||f ||pM1/pν(At)
1/p′Rα/p+1,

since 1 + α
p

= 1
p
( s

p
− 1)(q − p) > 0.

Next, we estimate J2. By the assumption on the measure µ,

νt(B(x, r))

µ(B(x, r))
=

[
νt(B(x, r))

µ(B(x, r))

]1/p [
νt(B(x, r))

µ(B(x, r))

]1/p′

≤ C−1/p
s r−s/pν(At)

1/p

[
νt(B(x, r))

µ(B(x, r))

]1/p′

,
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which gives us

J2 ≤ C

∫ ∞

R

||f ||p
(∫

X

[
νt(B(x, r))

µ(B(x, r))

]p′

dµ(x)

)1/p′

dr

≤ CC−1/p
s ||f ||p ν(At)

1/p

∫ ∞

R

(∫
X

νt(B(x, r))

µ(B(x, r))
dµ(x)

)1/p′

r−s/pdr.

By (4.4),

J2 ≤ CC−1/p
s ||f ||pν(At)

∫ ∞

R

r−s/pdr ≤ CC−1/p
s ||f ||pν(At)R

1−s/p,

since 1 − s/p < 0.

Now we have

J1 + J2 ≤ C||f ||p
(
M1/pν(At)

1/p′Rα/p+1 + C−1/p
s ν(At)R

1−s/p
)

.

By choosing

R =

(
ν(At)

MCs

) 1
α+s

,

we arrive at

J1 + J2 ≤ CC1/q−1/p
s ||f ||pM1/qν(At)

1−1/q.

Now from (4.2) and the previous inequality, it follows

tν(At)
1/q ≤ CC1/q−1/p

s M1/q||f ||p.

Thus the Riesz potential operator I1(·) is of weak type (p, q), whenever

1 < p < q < ∞, p < s,

and the claim follows from the Marcinkiewicz Interpolation, Theorem 2.4. �

When µ is a doubling measure on X and B0 = B(x0, r0) ⊂ X, then

C̃sr
s ≤ µ(B(x, r)), where C̃s =

cµ(B0)

2srs
0

,

for all balls B(x, r) ⊂ X with x ∈ B0 and r < 2r0. Here c is from (1.2).

Now we have the following local version of Adams inequality for Riesz
potentials.
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Corollary 4.2. Let (X, d, µ) be a metric measure space, where µ is a dou-
bling Radon measure, and 1 < p < s. Assume that ν is a Radon measure
such that

ν(B(x, r))

µ(B(x, r))
≤ Mr

sq
p
−s−q

for all balls B(x, r) ⊂ X of radius r < diam X, where M is a positive con-
stant and 1 < p < q < ∞. If f ∈Lp(B0, µ) for some ball B0 = B(x0, r0) ⊂X,
we have(∫

B0

I1,B0(|f |)qdν

)1/q

≤ Cµ(B0)
1/q−1/p r

s
p
− s

q

0 M1/q

(∫
B0

|f |pdµ

)1/p

,

where C = C(p, q, Cd, s) > 0 is a constant.

5. Proofs of Theorem 1.3 and Theorem 1.4

First we prove the Adams type inequality in a case p = 1.

Proof of Theorem 1.3. Let u ∈ Lip0(X). First, we consider the case q = 1.
We may assume that u ≥ 0. For t > 0, define Et = {x : u(x) > t}. The
set Et is open and bounded, since u is continuous and has compact support.
In addition, the set Et is of finite perimeter for a.e. t ∈ [0,∞[. Lemma 3.1
imply that for all such t there exists a covering of Et by a sequence of balls
Bi := B(xi, ri) such that

∞∑
i=1

µ(Bi)

ri

≤ CP (Et, X).

Hence by the assumption on the measure ν in the theorem, we have

ν(Et) ≤
∑

i

ν(Bi) ≤ M
∑

i

µ(Bi)

ri
≤ CMP (Et, X).

Now applying the co-area formula (Theorem 2.3), we get∫
X

u dν =

∫ ∞

0

ν(Et)dt ≤ CM

∫ ∞

0

P (Et, X)dt ≤ CM

∫
X

Lip u dµ.

Next, we prove the case q > 1. Let f ∈ Lq′(X, ν), f ≥ 0 and B(x, r) ⊂ X.
By Hölder inequality we get

∫
B(x,r)

f dν ≤
(∫

B(x,r)

f q′ dν

)1/q′

ν(B(x, r))1/q ≤ M1/q||f ||q′;ν µ(B(x, r))

r
.
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So the measure fdν satisfies the assumptions of Theorem 1.3 with q = 1,
which was proved above. Hence if u ∈ Lip0(X),∫

X

ufdν ≤ CM1/q||f ||q′,ν
∫

X

Lip u dµ,

for all f ∈ Lq′(X, ν), f ≥ 0. Because u ≥ 0 and hence

||u||q;ν = sup

{∫
X

ufdν : ||f ||q′;ν ≤ 1, f ≥ 0

}
,

we have (∫
X

|u|qdν

)1/q

≤ CM1/q

∫
X

Lip u dµ.
�

Next we prove a version of Theorem 1.4 for all Lipschitz functions, not
necessarily with compact support. From now on, we assume that p > 1.

Theorem 5.1. Suppose that the assumptions in Theorem 1.4 hold for the
space X and for measures µ and ν. Let u ∈ Lip(X). For all balls B =
B(x, r) ⊂ X(∫

B

|u − uB|qdν

)1/q

≤ Cµ(B)1/q−1/p r
t−1

t
+ s

p
− s

q M1/q

(∫
2τB

(Lip u)pdµ

)1/p

,

where C = C(p, q, s, t, Cd, Cp, τ) > 0 is a constant.

Proof. Fix a ball B = B(x, r) ⊂ X. By Theorem 3.2, we have for each
y ∈ B

(5.1) |u(y) − uB(zy ,r/8)|t ≤ Crt−1I1,B(x,2r)((Lip u)t)(y),

for some ball B(zy, r/8) ⊂ B(x, 2r).

By the Minkowski inequality,(∫
B

|u(y) − uB|qdν(y)

)1/q

≤
(∫

B

|u(y) − uB(zy ,r/8)|qdν(y)

)1/q

+

(∫
B

|uB(zy,r/8) − uB|qdν(y)

)1/q

.

(5.2)

To estimate last two terms in (5.2), we observe that

|uB(zy ,r/8) − uB| ≤ |uB(zy,r/8) − u2B| + |uB − u2B|
≤ −
∫

B(zy ,r/8)

|u − u2B| dµ + −
∫

B

|u − u2B| dµ ≤ C −
∫

2B

|u − u2B| dµ,

where in the last step, we used the doubling property of µ.
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Thus by the Poincaré inequality,

(∫
B

|uB(zy,r/8) − uB|qdν(y)

)1/q

≤ Cν(B)1/q −
∫

2B

|u − u2B|dµ

≤ Cν(B)1/qr

(
−
∫

2τB

(Lip u)pdµ

)1/p

≤ CM1/qr
s
p
− s

q
− 1

t µ(B)
1
q
− 1

p r

(∫
2τB

(Lip u)pdµ

)1/p

.

To estimate other term in (5.2) we apply the pointwise estimate (5.1)
and Corollary 4.2, where in this case q̃ = q/t and p̃ = p/t

(∫
B

|u(y) − uB(zy ,r/8)|qdν(y)

)1/q

=

(∫
B

(|u(y) − uB(zy ,r/8)|t)q/tdν(y)

)1/q

≤ Cr
t−1

t

(∫
2B

(I1,2B((Lip u)t))q/tdν

)1/q

≤ Cµ(B)
1
q
− 1

p r
t−1

t
+ s

p
− s

q M1/q

(∫
2B

((Lip u)t)p/tdµ

)1/p

.

The claim follows from (5.2) and the two estimates above. �

Proof of Theorem 1.4. From Remark 3.3: For each y ∈ B0,

|u(y)|t ≤ Crt−1
0 I1,B0((Lip u)t)(y).

By this estimate and by Corollary 4.2,

(∫
B0

|u(y)|qdν(y)

)1/q

≤ Cr
t−1

t
0

(∫
B0

(I1,B0((Lip u)t))q/tdν

)1/q

≤ Cµ(B0)
1
q
− 1

p r
t−1

t
+ s

p
− s

q

0 M1/q

(∫
B0

((Lip u)t)p/tdµ

)1/p

.

�

6. Borderline cases

Here we prove some results in the borderline case p = s. First, a version of
Adams type inequality for Riesz potential is considered. Here we are only
able to prove a weak-type local inequality for the Riesz potential; it would
be interesting to know if a strong-type inequality can be achieved.
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Theorem 6.1. Let (X, d, µ) be a metric measure space, where µ is a doubling
Radon measure. Let B0 = B(x0, r0) ⊂ X and suppose that ν is a Radon
measure in B0 with

(6.1) ν
(
B(x, r)

) ≤ M
(

log
r0

r

) 1−s
s

q

,

for all balls B(x, r)⊂X such that x∈ 2B0 and r< r0/2. Here 1 < s < q < ∞
and M is a positive constant. Then

tν
({x ∈ B0 : I1,B0(|f |)(x) > t})1/q ≤ Cr0µ(B0)

−1/sM
1
q

(∫
B0

|f |sdµ

)1/s

,

for all t > 0 and all f ∈ Ls(B0, µ), where C = C(s, q, Cd) is a positive
constant.

Proof. We use the same techniques here as in the proof of Theorem 4.1,
but we need a different approach to obtain some estimates. For t > 0, let
At = {x ∈ B0 : I1,B0(|f |)(x) > t} and νt = ν|At . We may assume that
ν(At) > 0. By the estimate (4.1) and by the Hölder inequality

tν(At) ≤ Cd

∫
B0

I1,B0(νt)(x)|f(x)| dµ(x)

≤ Cd||f ||s
(∫

B0

I1,B0(νt)
s′dµ

)1/s′

≤ Cd||f ||s
(∫

4B0

Î3r0(νt)
s′dµ

)1/s′

,

(6.2)

where Î3r0 is the local Riesz potential as in Lemma 3.4. We shall apply
Lemma 3.4 to estimate the norm of Î3r0 . First, for each x ∈ 4B0 and
0 < r < 5r0,

νt(B(x, r))

µ(B(x, r))1−1/s
≤ C

(∫ 2r

r

[
νt(B(x, ξ))

µ(B(x, ξ))1−1/s

]s′
dξ

ξ

)1/s′

≤ C

(∫ 10r0

0

[
νt(B(x, ξ))

µ(B(x, ξ))1−1/s

]s′
dξ

ξ

)1/s′

.

Thus

M1(νt)(x) ≤ C

(∫ 10r0

0

[
νt(B(x, r))

µ(B(x, r))1−1/s

]s′
dr

r

)1/s′

,

where M1 is the fractional maximal operator as in Lemma 3.4. Now by
Lemma 3.4,

(6.3)

∫
4B0

Î3r0(νt)
s′dµ ≤ Crs′

0 µ(B0)1−s′
∫

4B0

∫ 10r0

0

νt(B(x, r))s′

µ(B(x, r))

dr

r
dµ(x).
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We now divide integration with respect to r into two parts. Let R1 be any
number with 0 < R1 ≤ r0/2, to be fixed later. We estimate integrals on the
right hand side of (6.3) in the following way. First, to estimate the integral
with respect to r from 0 to R1, we use the growth condition of ν, Fubini’s
theorem and (4.4), to get∫

4B0

∫ R1

0

νt(B(x, r))s′

µ(B(x, r))

dr

r
dµ(x)

≤
∫ R1

0

Ms′−1
(

log
r0

r

)−q/s

r−1

∫
4B0

νt(B(x, r))

µ(B(x, r))
dµ(x) dr

≤ CMs′−1ν(At)

∫ R1

0

r−1
(

log
r0

r

)−q/s

dr

≤ CMs′−1ν(At)

(
log

r0

R1

)1−q/s

.

(6.4)

Second, we get the estimate for the remaining part of the integral in (6.3)
by (4.4), as follows∫

4B0

∫ 10r0

R1

νt(B(x, r))s′

µ(B(x, r))

dr

r
dµ(x)

≤
∫ 10r0

R1

ν(At)
s′−1r−1

∫
4B0

νt(B(x, r))

µ(B(x, r))
dµ(x) dr

≤ Cν(At)
s′
∫ 10r0

R1

r−1 dr ≤ Cν(At)
s′ log

r0

R1

.

(6.5)

Now from (6.3), we get by (6.4) and (6.5) that∫
4B0

Î3r0(νt)
s′dµ ≤ Crs′

0 µ(B0)
1−s′
[
Ms′−1ν(At)

(
log

r0

R1

)1−q/s

+ ν(At)
s′ log

r0

R1

]
.

Now, we choose 0 < R1 ≤ r0/2 such that

log
r0

R1
=

(
M

ν(At)

)s′/q

.

This is always possible, if M ≥ (log 2)q/s′ν(B0), which we may assume.
Indeed, (6.1) shows that M ≥ cν(B0) for some constant c > 0, independent
of ν and B0. Thus, multiplying M by a constant, we may assume that
M ≥ (log 2)q/s′ν(B0). Therefore we arrive at∫

4B0

Î3r0(νt)
s′dµ ≤ Crs′

0 µ(B0)1−s′Ms′/qν(At)
s′(1−1/q).
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Now by the estimate above and (6.2), we obtain that

tν(At)
1/q ≤ Cr0µ(B0)

−1/sM1/q||f ||s.
This completes the proof of the Theorem. �

Next we obtain the following Adams inequality for Lipschitz functions
when p = s.

Theorem 6.2. Let (X, d, µ) be a complete metric measure space such that it
supports weak (1, 1)-Poincaré inequality and µ is a doubling Radon measure.
Let B0 = B(x0, r0) ⊂ X such that r0 < diam X/10 and suppose that ν is a
Radon measure in B0 with

ν(B(x, r)) ≤ M
(

log
r0

r

) 1−s
s

q

,

for all balls B(x, r)⊂X such that x∈ 2B0 and r < r0/2. Here 1 < s < q <∞
and M is a positive constant. Then(∫

B0

|u|qdν

)1/q

≤ Cr0µ(B0)
−1/sM1/q

(∫
B0

(Lip u)sdµ

)1/s

,

for all u ∈ Lip0(B0), where C = C(q, s, Cd, Cp, τ) > 0 is a constant.

Proof. By Remark 3.3 and Theorem 6.1

ν
({x ∈ B0 : |u(x)| > t})tq ≤ Ĉqν

({x ∈ B0 : I1,B0(Lip u)(x) > t/Ĉ})(t/Ĉ)q

≤ CA

(∫
B0

(Lip u)sdµ

)q/s

,(6.6)

where A = rq
0µ(B0)

−q/sM and Ĉ is a constant from Remark 3.3. We may
assume that u ≥ 0, since positive and negative parts of u can be esti-
mated separately in the following way. We use a truncation argument to
prove a strong-type inequality from the weak-type inequality above. By
the truncation property, see [10, Chapter 2], for every 0 < t1 < t2 < ∞
the weak Poincaré inequality holds for the pair ut2

t1 , (Lip u)χ{t1<u≤t2}, where
ut2

t1 = min{max{0, u − t1}, t2 − t1} and χE is the characteristic function of
the set E. Thus (6.6) also holds for this pair. Now∫

B0

uq dν ≤
∞∑

k=−∞
2kqν({u ≥ 2k−1}) =

∞∑
k=−∞

2kqν({u2k−1

2k−2 ≥ 2k−2})

≤ CA
∞∑

k=−∞

(∫
B0

(Lip u)sχ{2k−2≤u<2k−1}dµ

)q/s

≤ CA

( ∞∑
k=−∞

∫
B0

(Lip u)sχ{2k−2≤u<2k−1}dµ

)q/s

≤ CA

(∫
B0

(Lip u)sdµ

)q/s

,

where in the second to the last step we used the inequality q/s ≥ 1. �
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