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Extension of Cm,ω-Smooth Functions
by Linear Operators

Charles Fefferman

Abstract
Let Cm,ω(Rn) be the space of functions on R

n whose mth deriv-
atives have modulus of continuity ω. For E ⊂ R

n, let Cm,ω(E) be
the space of all restrictions to E of functions in Cm,ω(Rn). We show
that there exists a bounded linear operator T : Cm,ω(E) → Cm,ω(Rn)

such that, for any f ∈ Cm,ω(E), we have Tf = f on E.

0. Introduction

Let f be a real-valued function defined on a subset E ⊂ R
n. Continu-

ing from [10,...,14], we study the problem of extending f to a function F,
defined on all of R

n, and belonging to Cm(Rn) or Cm,ω(Rn). (See also
Whitney [23, 24, 25], Glaeser [16], Brudnyi-Shvartsman [3,. . . ,9, 18, 19, 20],
and Bierstone-Milman-Paw�lucki [1, 2]). Here, Cm,ω(Rn) denotes the space of
all Cm functions on R

n whose mth derivatives have modulus of continuity ω.
In this paper and [15], we show that an essentially optimal F can be found
by applying a linear operator to f. We begin with a few basic definitions.

As usual, Cm(Rn) consists of all real-valued Cm functions F on R
n, for

which the norm
‖ F ‖Cm(Rn) = max

|β|≤m
sup
x∈Rn

|∂βF(x)|

is finite.
Similarly, for suitable functions ω : [0, 1] → [0, 1], the space Cm,ω(Rn)

consists of all real-valued Cm functions F on R
n, for which the norm

(1) ‖ F ‖Cm,ω(Rn)= max

{
‖ F ‖Cm(Rn) , max

|β|=m
sup

x,y∈Rn

0<|x−y|≤1

|∂βF(x) − ∂βF(y)|

ω(|x − y|)

}

is finite.
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We require that ω be a “regular modulus of continuity”, which means
that it satisfies the following conditions:

ω(0) = lim
t→0+

ω(t) = 0 ;

ω(1) = 1;

ω(t) is increasing;

ω(t)/t is decreasing.

(We do not require that ω(t) be strictly increasing, or that ω(t)/t be strictly
decreasing.) This is a very mild restriction on ω.

Now let E be an arbitrary subset of R
n. We write Cm(E) for the Banach

space of all restrictions to E of functions F ∈ Cm(E). The norm on Cm(E)

is given by

(2) ‖ f ‖Cm(E) = inf
{‖ F ‖Cm(Rn) : F ∈ Cm(Rn) and F = f on E

}
.

Similarly, we write Cm,ω(E) for the space of all restrictions to E of functions
in Cm,ω(Rn). The norm on Cm,ω(E) is given by

‖ f ‖Cm,ω(E) = inf
{‖ F ‖Cm,ω(Rn) : F ∈ Cm,ω(Rn) and F = f on E

}
.

Theorem 1. Given a non-empty set E ⊂ R
n, and given m ≥ 1, there

exists a linear map
T : Cm(E) → Cm(Rn),

with the following properties.

(A) The norm of T is bounded by a constant depending only on m and n.

(B) For any f ∈ Cm(E), we have Tf = f on E.

Theorem 2. Given a non-empty set E ⊂ R
n, a regular modulus of conti-

nuity ω, and an integer m ≥ 1, there exists a linear map

T : Cm,ω(E) → Cm,ω(Rn),

with the following properties.

(A) The norm of T is bounded by a constant depending only on m and n.

(B) For any f ∈ Cm,ω(E), we have Tf = f on E.

This paper contains the proof of Theorem 2, together with a substantial
generalization of Theorem 2 that will be needed for the proof of Theorem 1.
The proof of Theorem 1 appears in [15].
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To state our generalization of Theorem 2, we introduce some notation and
definitions, most of which come from [12,14]. We fix m, n ≥ 1 throughout
this paper. We write Rx for the ring of m-jets of (real-valued) smooth
functions at x ∈ R

n. If F ∈ Cm(Rn), then we write Jx(F) for the m-jet of F

at x. We identify Jx(F) with the Taylor polynomial

y �→ ∑
|β|≤m

1

β!
(∂βF(x)) · (y − x)β.

Thus, as a vector space, Rx is identified with the vector space P of mth

degree polynomials on R
n.

Now suppose we are given a point x ∈ R
n, a subset σ ⊆ Rx, and a

positive real number A. We say that “σ is Whitney convex with Whitney
constant A” if the following two conditions hold.

(I) The set σ is closed, convex, and symmetric (i.e., P ∈ σ implies −P ∈ σ).

(II) Let P ∈ σ, Q ∈ Rx, δ ∈ (0, 1]. Suppose that P and Q satisfy

(a) |∂βP(x)| ≤ δm−|β| for |β| ≤ m, and

(b) |∂βQ(x)| ≤ δ−|β| for |β| ≤ m.

Then P � Q ∈ Aσ, where � denotes multiplication in Rx.
If ω is a regular modulus of continuity, then we say that “σ is Whitney

ω-convex with Whitney constant A”, provided (I) and (II) hold, with (II)(a)
replaced by

|∂βP(x)| ≤ ω(δ) · δm−|β| for |β| ≤ m .

Note that whenever σ is Whitney convex with Whitney constant A, it follows
trivially that σ is also Whitney ω-convex with Whitney constant A.

The notion of Whitney convexity is not well understood, but there are
interesting examples of Whitney convex sets. Moreover, Whitney convexity
plays a crucial role in our solution [12] of “Whitney’s extension problem”,
which is closely related to Theorem 1, and which we discuss later in this
introduction.

Now let E ⊂ R
n be non-empty, and suppose that, for each x ∈ E, we are

given a convex, symmetric subset σ(x) ⊆ Rx.
We will define a space Cm(E, σ(·)), generalizing Cm(E).

This space consists of families of m-jets,

f = (f(x))x∈E, with f(x) ∈ Rx for each x ∈ E.

We say that f belongs to Cm(E, σ(·)) if there exist a function F ∈ Cm(Rn)

and a finite constant M, such that

(3) ‖ F ‖Cm(Rn)≤ M , and Jx(F) ∈ f(x) + Mσ(x) for all x ∈ E .

The seminorm ‖f‖Cm(E,σ(·)) is defined as the infimum of all possible M in (3).
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Similarly, let E, σ(x) be as above, and suppose once more that f =
(f(x))x∈E, with f(x) ∈ Rx for each x ∈ E. Let ω be a regular modulus of
continuity. We say that f belongs to Cm,ω(E, σ(·)) if there exist a function
F ∈ Cm,ω(Rn) and a finite constant M such that

(4) ‖ F ‖Cm,ω(Rn)≤ M , and Jx(F) ∈ f(x) + Mσ(x) for all x ∈ E .

The seminorm ‖ f ‖Cm,ω(E,σ(·)) is defined as the infimum of all possible M

in (4).
Thus, Cm(E, σ(·)) and Cm,ω(E, σ(·)) are vector spaces equipped with

seminorms.
We are now in position to state our generalization of Theorem 2.

Theorem 3. Let ω be a regular modulus of continuity, and let E ⊂ R
n

be non-empty. For each x ∈ E, let σ(x) ⊆ Rx be Whitney ω-convex, with a
Whitney constant A independent of x. Then there exists a linear map

T : Cm,ω(E, σ(·)) → Cm,ω(Rn)

with the following properties:

(A) The norm of T is bounded by a constant depending only on m, n and A.

(BBBB ) If ‖ f ‖Cm,ω(E,σ(·))≤ 1, then Jx(Tf) ∈ f(x) + A′σ(x) for all x ∈ E,
with A′ depending only on m, n and A.

To recover Theorem 2 from Theorem 3, we simply take

(5) σ(x) = {P ∈ Rx : P = 0 at x} for each x ∈ E .

One checks trivially that σ(x) is Whitney ω-convex with Whitney con-
stant 1. Theorem 3 for the case (5) easily implies Theorem 2. (To see this,
we use a natural injection i from Cm,ω(E) into Cm,ω(E, σ(·)) with σ as
in (5). The injection is given by (if)(x) = [the constant polynomial f(x)] for
f ∈ Cm,ω(E) and x ∈ E.)

An intermediate result between Theorems 2 and 3 may be obtained as
follows. Let ω be a regular modulus of continuity, let E ⊂ R

n be non-empty,
and let σ̂ : E → [0, ∞).
We say that F : E → R belongs to Cm,ω(E, σ̂) if there exist a function
F ∈ Cm,ω(Rn) and a constant M < ∞ such that

(6) ‖ F ‖Cm,ω(Rn)≤ M and |F(x) − f(x)| ≤ Mσ̂(x) for all x ∈ E .

The norm ‖ f ‖Cm,ω(E,�σ) is defined as the infimum of all possible M in (6).
Taking

(7) σ(x) = {P ∈ Rx : |P(x)| ≤ σ̂(x)} for each x ∈ E ,

we again find that σ(x) is Whitney ω-convex, with Whitney constant 1.
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In this case, Theorem 3 specializes to the following result.

Theorem 4. Let ω be a regular modulus of continuity, let E ⊂ R
n be

non-empty, and let σ̂ : E → [0, ∞). Then, there exists a linear map

T : Cm,ω(E, σ̂) → Cm,ω(Rn)

with the following properties.

(A) The norm of T is bounded by a constant depending only on m and n.

(B) If ‖ f ‖Cm,ω(E,�σ)≤ 1, then |Tf(x)− f(x)| ≤ Cσ̂(x) for all x ∈ E, with C

depending only on m and n.

Theorem 4 specializes to Theorem 2 by taking σ̂ ≡ 0.
The case ω(t) = t of Theorem 4 was proven in [10].

We are interested in Theorem 3 in full generality, primarily because it
easily implies the following result, which forms a first step in our proof of
Theorem 1 in [15].

Theorem 5. Let E ⊂ R
n be a non-empty finite set.

For each x ∈ E, let σ(x) ⊆ Rx be Whitney convex, with Whitney constant A.
Then there exists a linear map

T : Cm(E, σ(·)) → Cm(Rn)

with the following properties.

(A) The norm of T is bounded by a constant depending only on m, n and A.

(B) If ‖ f ‖Cm(E,σ(·))≤ 1, then Jx(Tf) ∈ f(x) + A′σ(x) for all x ∈ E, with A′

depending only on m, n and A.

To deduce Theorem 5 from Theorem 3, we invoke the following version
of the classical

Whitney Extension Theorem. Let ω be a regular modulus of continuity, and
let E ⊂ R

n be closed and non-empty. Suppose we associate to each x ∈ E a
polynomial Px ∈ P. Assume that the Px satisfy the estimates

(a) |∂βPx(x)| ≤ 1 for |β| ≤ m, x ∈ E; and

(b) |∂β(Px −Py)(y)| ≤ ω(|x−y|) · |x−y|m−|β| for |β| ≤ m, |x−y| ≤ 1,
x, y ∈ E.

Then there exists a function F ∈ Cm,ω(Rn), with the following properties.

(A) ‖ F ‖Cm,ω(Rn)≤ C, with C depending only on m and n.

(B) Jx(F) = Px for all x ∈ E.
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Now let E and σ(·) be as in the hypotheses of Theorem 5. Since E is
finite, the constant δ = minx,y∈E,x�=y |x − y| is strictly positive. We define
ω(t) = min{δ−1t, 1} for t ∈ [0, 1]. One checks trivially that ω is a regular
modulus of continuity. Since each σ(x) is Whitney convex with Whitney
constant A, we know that σ(x) is Whitney ω-convex with Whitney constant
A. Moreover, we have ω(|x − y|) = 1 for any two distinct points x, y ∈ E.
Consequently, the Whitney Extension Theorem tells us that

Cm,ω(E, σ(·)) = Cm(E, σ(·)) , and that(8)

c1 ‖ f ‖Cm(E,σ(·))≤‖ f ‖Cm,ω(E,σ(·))≤ C1 ‖ f ‖Cm(E,σ(·))(9)

for all f ∈ Cm(E, σ(·)), with c1 and C1 depending only on m, n.

In view of (8) and (9), Theorem 5 follows at once from Theorem 3, by
taking ω as above.

Thus, Theorems 2,. . . , 5 all follow from Theorem 3. We give the proof
of Theorem 3 in Sections 1,. . . , 5 below. See also Section 6, where we give
refinements of Theorems 2,. . . , 5.

This paper is part of an effort by several authors, going back to Whit-
ney [23, 24, 25], addressing the following questions.

Whitney Extension Problems. Suppose we are given a subset E ⊂ R
n, and

a Banach space X of functions on R
n. (We might take X = Cm(Rn) or

X = Cm,ω(Rn).)

Let X(E) denote the Banach space of all restrictions to E of functions in X.

Problem 1: How can we tell whether a given function on E belongs to X(E)?

Problem 2: Is there a bounded linear map T : X(E) → X such that Tf
∣∣
E

= f

for all f ∈ X(E)?

Whitney [24] settled these questions for X = Cm(R) in one dimension
(n = 1) using finite differences; and he discovered the classical Whitney
extension theorem.

G. Glaeser [16] settled the case X = C1(Rn) in terms of a geometrical
object called the “iterated paratangent space”. Glaeser’s work influenced
all subsequent work on Whitney’s problems.

A series of papers [3,. . . ,9, 18, 19, 20] by Y. Brudnyi and P. Shvartsman
conjectured solutions to Problems 1 and 2 for X = Cm,ω(Rn) and related
spaces. They proved their conjectures for the case m = 1 by the elegant
method of “Lipschitz selection”, which is of independent interest. Their work
on Problem 1 involves restricting attention to an arbitrary subset of E with
cardinality bounded by a constant k# determined by the space X. See [9],
which produces linear extension operators from (m−1)-jets into Cm,ω(Rn).
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This may be viewed as an instance of our Theorem 3. We refer the reader
to [3,. . . , 9, 18, 19, 20] for additional results and conjectures.

The next progress on the Whitney problems was the work of E. Bierstone,
P. Milman and W. Paw�lucki [1]. They discovered an analogue of Glaeser’s
iterated paratangent space relevant to Cm(Rn). They conjectured a geo-
metrical solution to Problem 1 for X = Cm(Rn) based on their paratangent
space, and they showed that a version of their conjecture holds for subana-
lytic sets E.

My own papers [10,. . . ,15] study Problems 1 and 2 above for X=Cm,ω(Rn)
and X = Cm(Rn), and broaden the discussion by introducing σ(x) and σ̂(x)
as in Theorems 3 and 4 above. See also Bierstone-Milman-Paw�lucki [2] in
connection with [12].

Theorems 1 and 2, as stated here, solve Problem 2 for X = Cm(Rn) and
for X = Cm,ω(Rn).

We refer the reader also to A. Brudnyi and Y. Brudnyi [4] for results
on the analogue of Problem 2 for X = Lip(1), with R

n replaced by a more
general metric space. See also N. Zobin [26, 27] for the solution of another
problem, also going back to Whitney’s work, that may be closely related to
Problems 1 and 2.

We know very little about Problems 1 and 2 for function spaces other
than Cm and Cm,ω.

It is a pleasure to acknowledge the influence of E. Bierstone, Y. Brudnyi,
P. Milman, W. Paw�lucki, P. Shvartsman, and N. Zobin. I am grateful to
Gerree Pecht for LATEXing my paper to the highest standards.

1. Plan of the Proof

In this section, we explain our plan for the proof of Theorem 3. We recall
the main result of [14], namely

Theorem 6. Given m, n ≥ 1, there exists k#, depending only on m and n,
for which the following holds.

Let ω be a regular modulus of continuity, let E ⊂ R
n, and let A > 0.

For each x ∈ E, suppose we are given an m-jet f(x) ∈ Rx, and a Whitney
ω-convex subset σ(x) ⊆ Rx with Whitney constant A. Suppose that, given
S ⊆ E with cardinality at most k#, there exists FS ∈ Cm,ω(Rn), satisfying

‖ FS ‖Cm,ω(Rn)≤ 1 and Jx(F
S) − f(x) ∈ σ(x) for all x ∈ S.

Then there exists F ∈ Cm,ω(Rn), satisfying

‖ F ‖Cm,ω(Rn)≤ A′ , and Jx(F) − f(x) ∈ A′σ(x) for all x ∈ E.

Here, A′ depends only on m, n and on the Whitney constant A.
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We will prove a modification of Theorem 6 in which the m-jet f(x) and
the function F depend on a parameter ξ. We take ξ to belong to a vector
space Ξ, equipped with a seminorm | · |.

We don’t assume that our seminorm is a norm, or that Ξ is complete.

Our modification of Theorem 6 is as follows.

Theorem 7. Given m, n ≥ 1, there exists k#, depending only on m and n,
for which the following holds.

Let Ξ be a vector space with a seminorm | · |. Let ω be a regular modulus
of continuity, let E ⊂ R

n, and let A > 0.

For each x ∈ E, suppose we are given a linear map ξ �→ fξ(x) from Ξ

into Rx.

Also, for each x ∈ E, suppose we are given a Whitney ω-convex subset
σ(x) ⊆ Rx, with Whitney constant A.

Assume that, given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with cardinality
at most k#, there exists FS

ξ ∈ Cm,ω(Rn), satisfying

(1) ‖ FS
ξ ‖Cm,ω(Rn)≤ 1 , and Jx(F

S
ξ) − fξ(x) ∈ σ(x) for all x ∈ S.

Then there exists a linear map ξ �→ Fξ, from Ξ into Cm,ω(Rn), such that,
whenever |ξ| ≤ 1, we have

‖ Fξ ‖Cm,ω(Rn)≤ A′ , and Jx(Fξ) − fξ(x) ∈ A′σ(x) for all x ∈ E .

Here, A′ depends only on m, n, and on the Whitney constant A.

Theorem 3 follows easily from Theorem 7. To see this, assume the hy-
potheses of Theorem 3, and take Ξ = Cm,ω(E, σ(·)), equipped with the
seminorm |ξ| = 2 ‖ f ‖Cm,ω(E,σ(·)) for ξ = f ∈ Cm,ω(E, σ(·)). There is a
tautological linear map ξ �→ fξ(x) from Ξ into Rx, for each x ∈ E. In fact,
for ξ = (f(x))x∈E ∈ Cm,ω(E, σ(·)), we just set fξ(x) = f(x).

We check that hypothesis (1) of Theorem 7 holds here.

In fact, suppose ξ = f = (f(x))x∈E ∈ Ξ, with |ξ| ≤ 1.

Then ‖ f ‖Cm,ω(E,σ(·))≤ 1/2. By definition, this implies that there exists
F ∈ Cm,ω(Rn), satisfying

‖ F ‖Cm,ω(Rn)≤ 1, and Jx(F) − f(x) ∈ σ(x) for all x ∈ E .

Consequently, given any subset S ⊆ E, (1) holds with FS
ξ = F.

Thus, (1) holds here, as claimed.
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Applying Theorem 7, we obtain a linear map f �→ Ff, from Cm,ω(E, σ(·))
into Cm,ω(Rn), such that, for f = (f(x))x∈E ∈ Cm,ω(Rn) with ‖ f ‖Cm,ω(E,σ(·))
≤ 1/2, we have

‖ Ff ‖Cm,ω(Rn)≤ A′, and Jx(Ff) − f(x) ∈ A′σ(x) for all x ∈ E.

This immediately yields the conclusion of Theorem 3, with 2A′ in place
of A′. The reduction of Theorem 3 to Theorem 7 is complete. We turn our
attention to the proof of Theorem 7.

Except at a few key points, we can simply carry along the proof of Theo-
rem 6, and every relevant quantity will depend linearly on our parameter ξ.
However, at a few key points, the proof of Theorem 6 makes non-linear con-
structions. Here, new arguments are needed. We proceed by adapting [10],
where a transition like that from Theorem 6 to Theorem 7 was carried out
in an easier case.

After a few elementary results on convex sets (given in Section 2 below),
we prove in Section 3 the basic lemmas that preserve linear dependence on ξ

in the few crucial places where the arguments in [14] depart from it. The
adaptations of [14] needed for Theorem 7 are then given in Section 4. At
every point in Section 4 where one needs an idea, we apply a result from
Section 3.

We will use freely the classical Whitney extension theorem for Cm,ω(Rn),
which we now state in the case of finite sets E.

Whitney’s Extension Theorem for Finite Sets.

For a finite set E ⊂ R
n, let C(E) denote the space of maps x �→ Px from E

into P.
Then, given a finite set E ⊂ R

n and a regular modulus of continuity ω,
there exists a linear map T : C(E) → Cm,ω(Rn), with the following proper-
ties.

(A) Suppose F = T�P, with �P = (x �→ Px) ∈ C(E).

Then Jx(F) = Px for all x ∈ E.

(B) Suppose F = T�P, with �P = (x �→ Px) ∈ C(E).

Assume that �P satisfies

(i) |∂αPx(x)| ≤ 1 for |α| ≤ m, x ∈ E ; and

(ii) |∂α(Px−Py)(y)| ≤ ω(|x−y|)·|x−y|m−|α| for |α| ≤ m, x, y ∈ E , |x−y| ≤ 1.

Then ‖ F ‖Cm,ω(Rn)≤ C, with C depending only on m and n.

A proof of Whitney’s extension theorem as stated here (but without the
restriction to finite sets) may be found in [16, 17, 21, 23].
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2. Elementary Properties of Convex Sets

We start by recalling the Lemma of Fritz John.

Lemma 2.1. Let σ ⊂ R
d be a compact, convex, symmetric set with non-

empty interior. Then there exists a positive-definite quadratic form g on R
d

such that
{x ∈ R

d : g(x) ≤ c} ⊂ σ ⊂ {x ∈ R
d : g(x) ≤ 1},

with c > 0 depending only on the dimension d.

For a proof of Lemma 2.1, see e.g. [22].
We need to weaken the hypotheses of Fritz John’s Lemma. To do so, we

first prove the following.

Lemma 2.2. Let σ be a closed, convex, symmetric subset of R
d.

Then we can write R
d as a direct sum of vector spaces R

d = I1⊕ I2⊕ I3,
in terms of which we have σ = σ1 ⊕ I2 ⊕ {0}, with σ1 ⊂ I1 compact, convex,
and symmetric, and having non-empty interior in I1.

Proof. Set
I =

⋂
λ>0

λσ and I+ =
⋃
λ>0

λσ.

One checks trivially that I and I+ are vector subspaces of R
d, with I ⊆ I+.

Hence, we may write R
d as a direct sum

(1) R
d = I1 ⊕ I2 ⊕ I3, with

(2) I = I2 and I+ = I1 ⊕ I2.

Note that if v ∈ σ and w ∈ I, then v + w ∈ σ. To see this, let τ ∈ (0, 1),
and write

(1 − τ)v + w = (1 − τ)v + τ(τ−1w) ∈ (1 − τ)σ + τσ = σ .

Letting τ → 0+, and recalling that σ is closed, we obtain v + w ∈ σ as
claimed.

We have also σ ⊆ I+. These remarks show that, in terms of the direct
sum decomposition (1), we have

σ = σ1 ⊕ I2 ⊕ {0},

with σ1 ⊆ I1 closed, convex, and symmetric.
It remains to show that σ1 is compact and has non-empty interior in I1.
By virtue of (2), any non-zero x ∈ I1 ⊕ {0} ⊕ {0} belongs to I+ but not

to I. Consequently,

(3) Given x ∈ I1 � {0}, there exist λ, λ′ > 0 with x ∈ λσ1 but x /∈ λ′σ1.
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Let e1, . . . , em be a basis for I1. By (3), there exist λ1, . . . , λm > 0, with
ei ∈ λiσ1 for i = 1, . . . , m. Consequently, if |t1|, |t2|, . . . , |tm| ≤ 1, then
t1e1 + · · · + tmem belongs to (λ1 + · · · + λm)σ1. It follows that σ1 contains
a neighborhood U of the origin in I1.

Next, let S be the unit sphere in I1, and suppose we are given x̂ ∈ S.
Then, for some λ̂ > 0, we have x̂ /∈ λ̂σ1, thanks to (3). If x ∈ S is so close

to x̂ that x̂ − x ∈ 1
2
λ̂U, then we cannot have x ∈ 1

2
λ̂σ. (Otherwise, x̂ − x

and x would both belong to 1
2
λ̂σ1, hence x̂ ∈ λ̂σ1.) Hence, given x̂ ∈ S,

there exist a neighborhood Û of x̂ in S, and a positive number λ̂, such that
x /∈ λ̂σ1 for all x ∈ Û. By compactness of S, it follows that there exists λ̃ > 0

such that no point of S belongs to λ̃σ1. It follows that λ̃σ1 is contained in
the open unit ball in I1. (If x ∈ λ̃σ1 with |x| ≥ 1, then |x|−1x ∈ λ̃σ1 ∩ S.)

Thus, σ1 is bounded. Since also σ1 is closed, it is compact.
The proof of Lemma 2.2 is complete. �
Combining Lemmas 2.1 and 2.2, we obtain at once the following result.

Lemma 2.3. Let σ ⊆ R
d be closed, convex, and symmetric.

Then there exist a vector subspace I ⊆ R
d and a positive semidefinite

quadratic form g on I, such that

{P ∈ I : g(P) ≤ c} ⊆ σ ⊆ {P ∈ I : g(P) ≤ 1},

with c > 0 depending only on the dimension d.

Next, we prove a variant of Helly’s theorem [22]. In [10], we proved the
following result.

Lemma 2.4. Let (σα)α∈A be a finite collection of compact, convex, sym-
metric subsets of R

d, with each σα having non-empty interior.
Then there exist α1, α2, . . . , αd·(d+1) ∈ A, such that

d·(d+1)⋂
i=1

σαi
⊆ C ·

⋂
α∈A

σα,

with C depending only on the dimension d.

We will need the following variant of the above result.

Lemma 2.5. Let (σα)α∈A be a finite collection of compact, convex, sym-
metric subsets of R

d.
Then there exist α1, α2, . . . , α(d+1)2 ∈ A, such that

(d+1)2⋂
i=1

σαi
⊆ C ·

⋂
α∈A

σα,

with C depending only on the dimension d.
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Proof of Lemma 2.5. By Lemma 2.2, for each α ∈ A there exist a vector
space Iα ⊆ R

d and a positive number εα, such that

(4) {x ∈ Iα : |x| < εα} ⊆ σα ⊆ Iα.

Let Î =
⋂

α∈A Iα, and let σ̂ =
⋂

α∈A σα. Since A is finite, (4) shows that

(5) σ̂ ⊆ Î, and

(6) σ̂ contains a neighborhood of 0 in Î.

For each α ∈ A, let σ̂α = σα ∩ Î. Thus, each σ̂α is a compact, convex, sym-
metric subset of Î. Moreover, each σ̂α has non-empty interior in Î, thanks
to (6). We have also

σ̂ =
⋂
α∈A

σ̂α, by (5).

Hence, we may apply Lemma 2.4, with Î in place of R
d. Thus, there exist

α1, . . . , αd·(d+1) ∈ A, such that

d·(d+1)⋂
i=1

σ̂αi
⊆ C ·

⋂
α∈A

σ̂α, with C depending only on d.

That is,

(7) Î ∩
d·(d+1)⋂

i=1

σαi
⊆ C ·

⋂
α∈A

σα.

Next, we pick successively β1, β2, · · · ∈ A by the following rule.
Once we have picked β1, · · · , βi−1 (which is true vacuously when i = 1),

we pick any βi ∈ A such that dim(Iβ1
∩ · · · ∩ Iβi

) < dim(Iβ1
∩ · · · ∩ Iβi−1

).
If there is no such βi ∈ A, then the process of picking β’s stops with βi−1.
Since 0 ≤ dim(Iβ1

∩ · · · ∩ Iβi
) ≤ d − i + 1 by induction on i, the process of

picking β1, β2 · · · must end with some βs, s ≤ d + 1.
Given any β ∈ A, we cannot have dim(Iβ1

∩· · ·∩Iβs∩Iβ) < dim(Iβ1
∩· · ·∩

Iβs), since the process of picking β1, β2, · · · stops with βs. Consequently,

(8) Î =
⋂
β∈A

Iβ = Iβ1
∩ · · · ∩ Iβs .

From (4) and (8), we see that σβ1
∩ · · · ∩ σβs ⊆ Î, and therefore (7) implies

(9) σβ1
∩ · · · ∩ σβs ∩

d·(d+1)⋂
i=1

σαi
⊆ C ·

⋂
α∈A

σα,

with C depending only on the dimension d. Since s ≤ d + 1, the number of
σ’s being intersected on the left in (9) is at most (d+1)+d·(d+1) = (d+1)2.

The proof of Lemma 2.5 is complete. �
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Although I haven’t found Lemmas 2.3 and 2.5 in the literature, these
elementary results are very likely known, and in a sharper form than the
versions stated here.

We will need also the following slight variant of Lemma 2.4.

Lemma 2.6. Let (σα)α∈A be a collection of compact, convex symmetric
subsets of R

d. Assume that

(10)
⋂
α∈A

σα has non-empty interior in R
d .

Then there exist α1, . . . , αd·(d+1) ∈ A, such that

d·(d+1)⋂
i=1

σαi
⊆ C ·

⋂
α∈A

σα .

with C depending only on the dimension d.

Lemma 2.6 differs from Lemma 2.4 in that we now assume (10) in place
of the finiteness of A. Since the finiteness of A was used in the proof of
Lemma 2.4 in [10] only to establish (10), that proof gives us Lemma 2.6 as
well.

3. Linear Selection by Least Squares

The results in this section show that certain choices can be made to
depend linearly on a parameter ξ in a vector space Ξ, by using least squares.

Lemma 3.1. Suppose we are given a vector space Ξ equipped with a semi-
norm | · |, a constant A > 0, a point x0 ∈ R

n, a number δ ∈ (0, 1], a regular
modulus of continuity ω, a closed convex symmetric subset σ0 ⊆ Rx0

, and a
linear map ξ �→ f0,ξ from Ξ into Rx0

.
Assume that, whenever ξ ∈ Ξ with |ξ| ≤ 1, there exists F ∈ Cm(Rn), with

(a) |∂βF(x0)| ≤ Aω(δ) · δm−|β| for |β| ≤ m ; and

(b) Jx0
(F) ∈ f0,ξ + Aσ0 .

Then there exists a linear map ξ �→ F̃ξ, from Ξ into Cm,ω(Rn), such that,
whenever ξ ∈ Ξ with |ξ| ≤ 1, the following hold.

(A) |∂βF̃ξ(x)| ≤ CAω(δ) · δm−|β| for |β| ≤ m , x ∈ R
n .

(B) |∂βF̃ξ(x
′)−∂βF̃ξ(x

′′)| ≤ CAω(|x′ −x′′|) for |β| = m , |x′ − x′′| ≤ 1

x′, x′′ ∈ R
n.

(C) Jx0
(F̃ξ) ∈ f0,ξ + CAσ0.

Here, C depends only on m and n.
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Proof. In the proof of Lemma 3.1, we call a constant “controlled” if it
depends only on m, n; and we write c, C, C′, etc. to denote controlled
constants.

By Lemma 2.3, there exist a vector space I0 ⊆ Rx0
, and a positive

semidefinite quadratic form g0 on I0, such that

(1) {P ∈ I0 : g0(P) ≤ c} ⊆ σ0 ⊆ {P ∈ I0 : g0(P) ≤ 1} .

Fix I0 and g0 as in (1). For ξ ∈ Ξ and P ∈ I0, define

(2) Q(ξ, P) =
∑

|α|≤m

(
∂α(f0,ξ + P)(x0)

A ω(δ) · δm−|α|

)2

+
g0(P)

A2
.

Note that

Q(ξ, P) = Q0(ξ) + Q1(ξ, P) + Q2(P) ,

where Q0(ξ) is a quadratic form in ξ; Q1(ξ, P) is a bilinear form in ξ, P; and
Q2(P) is a positive-definite quadratic form in P.
Hence, for each fixed ξ ∈ Ξ, there is a unique minimizer Pξ ∈ I0 for the
function P �→ Q(ξ, P) (P ∈ I0); moreover, Pξ depends linearly on ξ.

Next, suppose |ξ| ≤ 1. With F as in (a), (b) above, we set P̂ = Jx0
(F) −

f0,ξ ∈ A σ0 ⊆ I0. From (a) we obtain

(3) |∂α(f0,ξ + P̂)(x0)| ≤ A ω(δ)δm−|α| for |α| ≤ m .

From (b) and (1), we obtain

(4) g0(P̂) ≤ A2 .

Putting (3) and (4) into (2), we see that Q(ξ, P̂) ≤ C, with P̂ ∈ I0. Since Pξ

minimizes Q(ξ, P) over all P ∈ I0, it follows that Q(ξ, Pξ) ≤ C. This means
that

|∂α(f0,ξ + Pξ)(x0)| ≤ CA ω(δ) · δm−|α| for |α| ≤ m , |ξ| ≤ 1 ; and(5)

Pξ ∈ I0 and g0(Pξ) ≤ CA2 for |ξ| ≤ 1 .(6)

Comparing (6) with (1), we find that

(7) Pξ ∈ CA σ0 for |ξ| ≤ 1 .

Next, we apply the classical Whitney Extension Theorem for finite sets (see
Section 1), with E = {x0}. Composing the linear map T from Whitney’s
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extension theorem, with the linear map ξ �→ f0,ξ + Pξ, we obtain a linear
map ξ �→ Fξ, from Ξ into Cm,ω(Rn), with the following properties.

If |ξ| ≤ 1 , then ‖ Fξ ‖Cm,ω(Rn)≤ CA .(8)

If |ξ| ≤ 1 , then Jx0
(Fξ) ∈ f0,ξ + CA σ0 .(9)

If |ξ| ≤ 1 , then |∂αFξ(x0)| ≤ CA ω(δ) · δm−|α| for |α| ≤ m .(10)

In fact, (8) and (10) follow from (5); and (9) follows from (7).
Next, we fix a cutoff function θ ∈ Cm+1(Rn), with

supp θ ⊂ B(x0,
1
2
δ) ;(11)

|∂αθ(x)| ≤ Cδ−|α| for |α| ≤ m + 1 , x ∈ R
n ; and(12)

Jx0
(θ) = 1 .(13)

We set F̃ξ = θ · Fξ for ξ ∈ Ξ.

Thus, ξ �→ F̃ξ is a linear map from Ξ into Cm,ω(Rn), and we have

|ξ| ≤ 1 implies Jx0
(F̃ξ) ∈ f0,ξ + CA σ0,

by (9) and (13). Thus, conclusion (C) of Lemma 3.1 holds for the linear

map ξ �→ F̃ξ. We check that conclusions (A) and (B) hold as well. This will
complete the proof of Lemma 3.1.

Let ξ ∈ Ξ be given, with |ξ| ≤ 1. From (8) we have

|∂βFξ(x) − ∂βFξ(x0)| ≤ CA ω(|x − x0|) ≤ CA ω(δ) for |β| = m, x∈B(x0, δ).

Together with (10), this yields

(14) |∂βFξ(x)| ≤ CA ω(δ) for |β| = m , x ∈ B(x0, δ) .

From (14) and another application of (10), we find that

(15) |∂βFξ(x)| ≤ CA ω(δ) · δm−|β| for |β| ≤ m , x ∈ B(x0, δ) .

Assertion (A) of Lemma 3.1 now follows from (11), (12), (15). We turn
to assertion (B). Again, we suppose |ξ| ≤ 1.

If |x′ − x′′| ≥ 1
10

δ, then we have ω(|x′ − x′′|) ≥ 1
10

ω(δ), since ω is a
regular modulus of continuity. Hence, assertion (B) in this case follows from
assertion (A), which we already know.

Also, if |x′ − x′′| < 1
10

δ and either x′ or x′′ lies outside B(x0, δ), then
both x′ and x′′ lie outside B(x0,

1
2
δ). Hence, in this case, assertion (B) holds

trivially, since ∂βF̃ξ(x
′) = ∂βF̃ξ(x

′′) = 0 by (11).
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Thus, to prove assertion (B), we may assume that

(16) x′, x′′ ∈ B(x0, δ) and |x′ − x′′| <
1

10
δ .

In this case, we argue as follows. For |β| = m, we have

∂βF̃ξ(x
′) − ∂βF̃ξ(x

′′) = θ(x′)∂βFξ(x
′) − θ(x′′)∂βFξ(x

′′)(17)

+
∑

β′ + β′′=β
|β′′| < m

c(β′, β′′) ·
[
∂β′

θ(x′) · ∂β′′
Fξ(x

′) − ∂β′
θ(x′′) · ∂β′′

Fξ(x
′′)

]
.

For β′ + β′′ = β, |β′′| < m, we have

|�{(∂β′
θ) · (∂β′′

Fξ)}| ≤ CA ω(δ) · δm−|β′|−|β′′|−1 = CA ω(δ) · δ−1 on B(x0, δ),

thanks to (12) and (15). Hence, for x′, x′′ as in (16), and for β′, β′′ in (17),
we have

|∂β′
θ(x′)∂β′′

Fξ(x
′) − ∂β′

θ(x′′)∂β′′
Fξ(x

′′)| ≤ CA ω(δ) δ−1 · |x′ − x′′| .

Hence, in case (16), equation (17) yields

|∂β F̃ξ(x
′) − ∂βF̃ξ(x

′′)|(18)

≤ |θ(x′)∂βFξ(x
′) − θ(x′′)∂βFξ(x

′′)| + CA ω(δ) · δ−1 · |x′ − x′′|

≤ |θ(x′)| · |∂βFξ(x
′) − ∂βFξ(x

′′)| + |θ(x′) − θ(x′′)| · |∂βFξ(x
′′)|

+ CA ω(δ) · δ−1 · |x′ − x′′|

≤ CA ω(|x′ − x′′|) + CA ω(δ) · δ−1 · |x′ − x′′| ,

thanks to (8), (11), (15). In case (16), we have ω(δ) · δ−1 · |x′ − x′′| ≤
ω(|x′ − x′′|), since ω is a regular modulus of continuity. Hence, (18) shows
that assertion (B) holds in case (16), completing the proof of Lemma 3.1 �

From the special case δ = 1 of Lemma 3.1, we obtain at once the following
result.

Corollary 3.1.1. Suppose we are given a vector space Ξ with a seminorm |·|,
a positive constant A, a regular modulus of continuity ω, a point x0 ∈ R

n,
a closed convex symmetric set σ0 ⊆ Rx0

, and a linear map ξ �→ f0,ξ from Ξ

into Rx0
.

Assume that, whenever |ξ| ≤ 1, there exists F ∈ Cm,ω(Rn), with ‖F‖Cm,ω(Rn)

≤ A and Jx0
(F) ∈ f0,ξ + A σ0.

Then there exists a linear map ξ �→ f̃ξ, from Ξ into Rx0
, such that,

whenever |ξ| ≤ 1, we have

|∂βf̃ξ(x0)| ≤ CAfor |β| ≤ m, and f̃ξ ∈ f0,ξ + CA σ0,

with C depending only on m, n.
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For the next lemma, let D = dim P.

Lemma 3.2. Suppose k# ≥ (D + 1)10 · k
#
1 , k

#
1 ≥ 1, A > 0.

Let Ξ be a vector space, with a seminorm | · |. Let ω be a regular modulus
of continuity.

Suppose we are given a finite set E ⊂ R
n; and for each point x ∈ E,

suppose we are given a closed convex symmetric set σ(x) ⊆ Rx and a linear
map ξ �→ fξ(x) from Ξ into Rx.

Assume that, given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with cardinality
at most k#, there exists FS

ξ ∈ Cm,ω(Rn), with

‖ FS
ξ ‖Cm,ω(Rn)≤ A, and Jx(F

S
ξ) ∈ fξ(x) + Aσ(x) for each x ∈ S.

Let y0 ∈ R
n. Then there exists a linear map ξ �→ Pξ, from Ξ into Ry0

, with
the following property:

Given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with cardinality at most k
#
1 ,

there exists FS
ξ ∈ Cm,ω(Rn), with

‖ FS
ξ ‖Cm,ω(Rn)≤ CA , Jx(F

S
ξ) ∈ fξ(x)+CA σ(x) for x ∈ S , and Jy0

(FS
ξ) = Pξ .

Here, C depends only on m, n and k#.

Note that the functions FS
ξ in Lemma 3.2 needn’t depend linearly on ξ.

Proof of Lemma 3.2. In this proof, we will call a constant “controlled” if
it depends only on m, n, and k#; we write c, C, C′, etc. to denote controlled
constants.

The proof of Lemma 10.1 in [14] shows that, whenever ξ ∈ Ξ with |ξ| ≤ 1,

there exists a polynomial P̂ξ, with the following property:

(19) Given S ⊆ E with cardinality at most (D + 1)9 · k#
1 , there exists FS

ξ ∈
Cm,ω(Rn), with

‖ FS
ξ ‖Cm,ω(Rn)≤ A, Jx(F

S
ξ) ∈ fξ(x) + A σ(x) for x ∈ S , and Jy0

(FS
ξ) = P̂ξ .

We do not assert that P̂ξ or FS
ξ depend linearly on ξ.

For S ⊆ E, we introduce the set

σ(S) = {Jy0
(F) : F ∈ Cm,ω(Rn), ‖F‖Cm,ω(Rn)≤ 1, Jx(F) ∈ σ(x) for x ∈ S}.(20)

Note that each σ(S) is a compact, convex, symmetric subset of P.
(To check that σ(S) is compact, we recall that the closed unit ball of
Cm,ω(Rn) is compact in the topology of Cm convergence on compact sets,
thanks to Ascoli’s theorem.)
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We set

(21) σ̂ = ∩ {σ(S) : S ⊆ E , #(S) ≤ (D + 1)6 · k
#
1 } ⊆ P ,

where #(S) denotes the cardinality of S.
Since E is assumed to be finite, there are only finitely many σ(S), each

of which is a compact, convex, symmetric subset of P. Hence, Lemma 2.5
applies, i.e., there exist S1, . . . , S(D+1)2 ⊆ E, with #(Si) ≤ (D + 1)6 · k

#
1 ,

such that ⋂
1≤ i≤ (D+1)2

σ(Si) ⊆ Cσ̂.

We define S̄ = S1 ∪ · · · ∪ S(D+1)2 . Note that

(22) S̄ ⊆ E , #(S̄) ≤ (D + 1)8 · k
#
1 ≤ k# ,

and

σ(S̄) ⊆ σ(Si) for i = 1, . . . , (D + 1)2.

Consequently,

σ(S̄) ⊆ Cσ̂,

i.e.,

(23) σ(S̄) ⊆ Cσ(S) for any S ⊆ E with #(S) ≤ (D + 1)6 · k
#
1 .

Next, we apply Lemma 2.3 to σ(x) for each x ∈ S̄.
Thus, for each x ∈ S̄, we may pick a subspace Ix ⊆ P, and a positive

semidefinite quadratic form gx on Ix, such that

(24) {P ∈ Ix : gx(P) ≤ c} ⊆ σ(x) ⊆ {P ∈ Ix : gx(P) ≤ 1} for each x ∈ S̄ .

We have to argue slightly differently for the two cases y0 ∈ S̄ and y0 /∈ S̄.
Therefore, we define

Š = S̄ ∪ {y0} ;(25)

Ǐx = Ix for x ∈ S̄ ;(26)

Ǐy0
= P if y0 /∈ S̄ ;(27)

f̌ξ(x) = fξ(x) for x ∈ S̄ , ξ ∈ Ξ ;(28)

f̌ξ(y0) = 0 if y0 /∈ S̄ .(29)

Thus, for each x ∈ Š, Ǐx is a subspace of P, and ξ �→ f̌ξ(x) is a linear
map from Ξ into P.
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Now, for ξ ∈ Ξ and �P = (Px)x∈Š ∈ ⊕
x∈Š

Ǐx, we define

Q(ξ, �P) =
∑

|β|≤m

∑
x∈Š

(∂β[f̌ξ(x) + Px](x))2(30)

+
∑

|β|≤m

∑
x,y∈Š

0<|x−y| ≤ 1

(
∂β[f̌ξ(x) + Px − f̌ξ(y) − Py](y)

ω(|x − y|) · |x − y|m−|β|

)2

+
∑
x∈S̄

gx(P
x) .

Note that
Q(ξ, �P) = Q0(ξ) + Q1(ξ, �P) + Q2(�P),

where Q0(ξ) is a quadratic form in ξ; Q1(ξ, �P) is bilinear in ξ, �P; and Q2(�P)

is a positive-definite quadratic form in �P. Hence, for fixed ξ ∈ Ξ, there is a
unique minimizer

(31) �Pξ = (Px
ξ)x∈Š ∈ ⊕

x∈Š
Ǐx

for the function �P �→ Q(ξ, �P) (�P ∈ ⊕
x∈Š

Ǐx); moreover

(32) �Pξ depends linearly on ξ .

We define

(33) Pξ = P
y0

ξ + f̌ξ(y0)

for ξ ∈ Ξ, with P
y0

ξ arising from (31).

From (31), (32), (33), we see that

(33a) ξ �→ Pξ is a linear map from Ξ into P = Ry0
.

We will show that this linear map has the property asserted in the state-
ment of Lemma 3.2. This will complete the proof of the Lemma.

Let ξ ∈ Ξ be given, with |ξ| ≤ 1.
From the hypotheses of Lemma 3.2, and from (22), we obtain a function

FS̄
ξ ∈ Cm,ω(Rn), with

(34) ‖ FS̄
ξ ‖Cm,ω(Rn)≤ A , and Jx(F

S̄
ξ) ∈ fξ(x) + A σ(x) for x ∈ S̄ .

For x ∈ Š, we define

(35) P̌x = Jx(F
S̄
ξ) − f̌ξ(x) .
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In particular, (34), (35) and (28) give P̌x ∈ Aσ(x) for all x ∈ S̄, hence

(36) P̌x ∈ Ix and gx(P̌
x) ≤ A2 , for all x ∈ S̄.

Also,

(37) P̌y0 ∈ Ǐy0
.

In fact, (37) is immediate from (36) in case y0 ∈ S̄, and from (27) otherwise.
Thus,

(38) P̌ = (P̌x)x∈Š ∈ ⊕
x∈Š

Ǐx .

In view of (34) and (35), we have

(39)
∣∣∂β[f̌ξ(x) + P̌x](x)

∣∣ ≤ CA for |β| ≤ m, x ∈ Š ; and

(40)
∣∣∂β[f̌ξ(x) + P̌x − f̌ξ(y) − P̌y](y)

∣∣ ≤ CA ω(|x − y|) · |x − y|m−|β|

for |β| ≤ m , x, y ∈ Š, |x − y| ≤ 1 .

In view of (36), (39), (40) and the definition (30) of Q(ξ, �P), we have

(41) Q(ξ, P̌) ≤ CA2 .

From (38), (41), and the minimizing property of �Pξ, we have also

(42) Q(ξ, �Pξ) ≤ CA2 .

By definition of Q, this shows that �Pξ = (Px
ξ)x∈Š ∈ ⊕

x∈Š
Ǐx satisfies:

(43) Px
ξ ∈ Ix for x ∈ S̄ (see (26)) ;

(44)
∣∣∂β[f̌ξ(x) + Px

ξ](x)
∣∣ ≤ CA for |β| ≤ m , x ∈ Š ;

(45)
∣∣∂β[f̌ξ(x) + Px

ξ − f̌ξ(y) − P
y
ξ](y)

∣∣ ≤ CA ω(|x − y|) · |x − y|m−|β|

for |β| ≤ m , |x − y| ≤ 1 , x, y ∈ Š ; and

(46) gx(P
x
ξ) ≤ CA2 for x ∈ S̄ .

From (43), (46) and (24), we obtain

(47) Px
ξ ∈ CA σ(x) for x ∈ S̄ .
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In view of (44), (45), and Whitney’s extension theorem for finite sets
(see Section 1), there exists a function F̌ξ ∈ Cm,ω(Rn), with

(48) ‖ F̌ξ ‖Cm,ω(Rn)≤ CA ,

and

(49) Jx(F̌ξ) = f̌ξ(x) + Px
ξ for all x ∈ Š .

In particular,

(50) Jy0
(F̌ξ) = Pξ (see (33)) ,

and

(51) Jx(F̌ξ) = fξ(x) + Px
ξ ∈ fξ(x) + CA σ(x) for x ∈ S̄ (see (28) and (47)) .

On the other hand, (19) and (22) produce a function FS̄
ξ ∈ Cm,ω(Rn), with

‖ FS̄
ξ ‖Cm,ω(Rn)≤ A ,(52)

Jx(F
S̄
ξ) ∈ fξ(x) + A σ(x) for x ∈ S̄ , and(53)

Jy0
(FS̄

ξ) = P̂ξ .(54)

From (48), (52) we obtain

(55) ‖ F̌ξ − FS̄
ξ ‖Cm,ω(Rn)≤ CA ,

while (51), (53) yield

(56) Jx(F̌ξ − FS̄
ξ) ∈ CA σ(x) for x ∈ S̄ ,

and (50), (54) imply

(57) Jy0
(F̌ξ − FS̄

ξ) = Pξ − P̂ξ .

Comparing (55), (56), (57) with the definition (20) of σ(S), we find that

Pξ − P̂ξ ∈ CA σ(S̄). Hence, (23) implies

(58) Pξ − P̂ξ ∈ CA σ(S) for any S ⊆ E with #(S) ≤ (D + 1)6 · k
#
1 .

Again recalling the definition of σ(S), we conclude from (58) that, given

S ⊆ E with #(S) ≤ (D + 1)6 · k
#
1 , there exists F̃S

ξ ∈ Cm,ω(Rn), with

‖ F̃S
ξ ‖Cm,ω(Rn)≤ CA, Jx(F̃

S
ξ) ∈ CA σ(x) for x ∈ S ,(59)

and Jy0
(F̃S

ξ) = Pξ − P̂ξ .
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Now, given S ⊆ E with #(S) ≤ k
#
1 , let FS

ξ be as in (19), and let F̃S
ξ be as

in (59). Then, from (19) and (59), we have

‖ FS
ξ + F̃S

ξ ‖Cm,ω(Rn)≤ CA ,(60)

Jx(F
S
ξ + F̃S

ξ) ∈ fξ(x) + CA σ(x) for x ∈ S , and(61)

Jy0
(FS

ξ + F̃S
ξ) = Pξ .(62)

Thus, we can achieve (60), (61), (62) whenever ξ ∈ Ξ with |ξ| ≤ 1 and
S ⊆ E with #(S) ≤ k

#
1 .

Our results (33a) and (60), (61), (62) immediately imply the conclusions
of Lemma 3.2.

The proof of the Lemma is complete. �
In [15], we will use the following variant of Lemma 3.2 for infinite sets E.

We write #(S) for the cardinality of a set S. Also, we adopt the convention
that |x − y|m−|β| = 0 in the degenerate case x = y, |β| = m.

Lemma 3.3. Suppose k# ≥ (D + 1)10 · k#
1 , k

#
1 ≥ 1, A > 0, δ > 0. Let Ξ

be a vector space, with a seminorm | · |. Let E ⊆ R
n, and let x0 ∈ E. For

each x ∈ E, suppose we are given a vector subspace I(x) ⊆ Rx, and a linear
map ξ �→ fξ(x) from Ξ into Rx.

Assume that the following conditions are satisfied.

(a) Given ξ ∈ Ξ and S ⊆ E, with |ξ| ≤ 1 and #(S) ≤ k#, there exists
FS

ξ ∈ Cm(Rn), with ‖ FS
ξ ‖Cm(Rn)≤ A, and Jx(F) ∈ fξ(x) + I(x) for each

x ∈ S.

(b) Suppose P0 ∈ I(x0), with |∂βP0(x0)| < δ for |β| ≤ m. Then, given
x1, . . . , xk# ∈ E, there exist P1 ∈ I(x1), . . . , Pk# ∈ I(xk#), with

|∂βPi(xi)| ≤ 1 for |β| ≤ m, 0 ≤ i ≤ k#; and

|∂β(Pi − Pj)(xj)| ≤ |xi − xj|
m−|β| for |β| ≤ m, 0 ≤ i, j ≤ k#.

Then there exists a linear map ξ �→ f̃ξ(x0), from Ξ into Rx0
, with the fol-

lowing property:

(c) Given ξ ∈ Ξ with |ξ| ≤ 1, and given x1, . . . , xk#
1
∈ E, there exist polyno-

mials P0, . . . , Pk#
1
∈ P, with:

P0 = f̃ξ(x0) ;

Pi ∈ fξ(xi) + I(xi) for 0 ≤ i ≤ k
#
1 ;

|∂βPi(xi)| ≤ CA for |β| ≤ m , 0 ≤ i ≤ k
#
1 ; and

|∂β(Pi − Pj)(xj)| ≤ CA |xi − xj|
m−|β| for |β| ≤ m , 0 ≤ i, j ≤ k

#
1 .

Here, C depends only on m, n, and k#.
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Proof of Lemma 3.3. We follow the idea of the proof of Lemma 3.2.
In this proof, we call a constant “controlled” if it is determined by m, n, k#;
and we write c, C, C′, etc. to denote controlled constants.

If dim I(x0) = 0, then Lemma 3.3 is trivial; we simply take f̃ξ(x0) =
fξ(x0). From now on, we suppose dim I(x0) > 0.

We introduce the following convex sets.

For S ⊆ E with x0 ∈ S, we define σ(S) ⊆ I(x0) as follows.

P0 ∈ σ(S) if and only if there exists a family of polynomials (Px)x∈S, with
Px ∈ I(x) for x ∈ S; |∂βPx(x)| ≤ 1 for |β| ≤ m, x ∈ S; |∂β(Px − Py)(y)| ≤
|x − y|m−|β| for |β| ≤ m, x, y ∈ S; and Px0 = P0.

For ξ ∈ Ξ, M ∈ (0, ∞), and S ⊆ E with x0 ∈ S, we define Γξ(S, M) ⊆
fξ(x0) + I(x0) as follows.

P0 ∈ Γξ(S, M) if and only if there exists a family of polynomials (Px)x∈S,
with Px ∈ fξ(x) + I(x) for x ∈ S; |∂βPx(x)| ≤ M for |β| ≤ m, x ∈ S;
|∂β(Px − Py)(y)| ≤ M |x − y|m−|β| for |β| ≤ m, x, y ∈ S; and Px0 = P0.

For k ≥ 1, we define

σ(k) = ∩{σ(S) : S ⊆ E with x0 ∈ S and #(S) ≤ k}.

For k ≥ 1, ξ ∈ Ξ, M ∈ (0, ∞), we define

Γξ(k, M) = ∩{Γξ(S, M) : S ⊆ E with x0 ∈ S and #(S) ≤ k}.

Note that σ(S) and σ(k) are compact, convex, symmetric subsets of I(x0),
while Γξ(S, M) and Γξ(k, M) are compact, convex subsets of fξ(x0) + I(x0).

We give a few basic properties of the above convex sets.

First of all, note that σ(k) has non-empty interior in I(x0), for 1 ≤
k ≤ k#, thanks to hypothesis (b). We take k = (D + 1)6 · k#

1 , and apply
Lemma 2.6, with I(x0) in place of R

d. Thus, there exist S1, . . . , SD·(D+1) ⊆ E,

with #(Si) ≤ (D + 1)6 · k#
1 and x0 ∈ Si for each i, such that

σ(S1) ∩ · · · ∩ σ(SD· (D+1)) ⊆ C · σ((D + 1)6 · k
#
1 ) .

We define S̄ = S1 ∪ · · · ∪ SD· (D+1). Note that

(63) S̄ ⊆ E, x0 ∈ S̄, #(S̄) ≤ (D + 1)8 · k
#
1 ,

and σ(S̄) ⊆ σ(Si) for each i. Consequently,

(64) σ(S̄) ⊆ Cσ(S) for any S ⊆ E with #(S) ≤ (D + 1)6 · k
#
1 and x0 ∈ S .
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We turn to the Γξ(S, M). Suppose |ξ| ≤ 1, S ⊆ E, #(S) ≤ k#, and
x0 ∈ S. Then Γξ(S, CA) is non-empty, by hypothesis (a). (For x ∈ S, we
take Px = Jx(F

S
ξ), with FS

ξ as in (a).)

Next, suppose |ξ| ≤ 1, and S1, . . . , SD+1 ⊆ E, with #(Si) ≤ (D+ 1)8 · k#
1

and x0 ∈ Si, for each i. Then S = S1 ∪ · · · ∪ SD+1 ⊆ E, with #(S) ≤ k#

and x0 ∈ S. Consequently, Γξ(S, CA) is non-empty. On the other hand,
Γξ(S, CA) ⊆ Γξ(Si, CA) for each i. Therefore, Γξ(S1, CA)∩· · ·∩Γξ(SD+1, CA)

is non-empty.
Applying Helly’s theorem on convex sets (see, e.g., [22]), we therefore

obtain the following result.

(65) Γξ ((D + 1)8 · k
#
1 , CA) is non-empty, for |ξ| ≤ 1 .

Now, for ξ ∈ Ξ and �P = (Px)x∈S̄ ∈ ⊕
x∈S̄

I(x), we define

Q(ξ, �P) =
∑

|β|≤m

∑
x∈S̄

(∂β[fξ(x) + Px] (x))2(66)

+
∑

|β|≤m

∑
x,y∈S̄
x �=y

(
∂β[fξ(x) + Px − fξ(y) − Py](y)

|x − y|m−|β|

)2

.

Here, S̄ is as in (63), (64).

Note that Q(ξ, �P) = Q0(ξ)+Q1(ξ, �P)+Q2(�P), where Q0(ξ) is a quadratic

form in ξ; Q1(ξ, �P) is a bilinear form in ξ and �P; and Q2(�P) is a positive-

definite quadratic form in �P. Hence, for fixed ξ ∈ Ξ, there is a unique
minimizer

(67) �Pξ = (Px
ξ)x∈S̄ ∈ ⊕

x∈S̄
I(x)

for the function �P �→ Q(ξ, �P) (�P ∈ ⊕
x∈S̄

I(x)).
Moreover,

(68) �Pξ depends linearly on ξ ∈ Ξ .

For ξ ∈ Ξ we define

(69) f̃ξ(x0) = fξ(x0) + P
x0

ξ ,

with P
x0
ξ arising from (67).

In view of (68) and the assumed linearity of ξ �→ fξ(x), we have

(70) ξ �→ f̃ξ(x0) is a linear map from Ξ into Rx0
.

We will show that f̃ξ(x0) satisfies property (c). This will complete the
proof of the lemma.
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Let FS̄
ξ be as in hypothesis (a) with S = S̄ (see (63)), and set

P̌x = Jx(F
S̄
ξ) − fξ(x) for x ∈ S̄.

The defining properties of FS̄
ξ tell us that

P̌ = (P̌x)x∈S̄ ∈ ⊕
x∈S̄

I(x) ;(71)

|∂β[fξ(x) + P̌x] (x)| ≤ CA for |β| ≤ m , x ∈ S̄ ; and(72)

|∂β[fξ(x) + P̌x − fξ(y) − P̌y] (y)| ≤ CA |x − y|m−|β|(73)

for |β| ≤ m, x, y ∈ S̄ .

Together with the definition of Q, our results (71), (72), (73) show that

Q(ξ, P̌) ≤ CA2,

and therefore

(74) Q(ξ, �Pξ) ≤ CA2

by the minimizing property of �Pξ.
From (74) and the definition of Q, we learn that

Px
ξ ∈ I(x) for x ∈ S̄ ;(75)

|∂β[fξ(x) + Px
ξ] (x)| ≤ CA for |β| ≤ m , x ∈ S̄ ; and(76)

|∂β[fξ(x) + Px
ξ − fξ(y) − P

y
ξ] (y)| ≤ CA |x − y|m−|β|(77)

for |β| ≤ m , x, y ∈ S̄ .

On the other hand, fix

(78) P̂ξ ∈ Γξ((D + 1)8 · k
#
1 , CA)

(See (65), and note that P̂ξ need not depend linearly on ξ.) In view of (63),
we have

P̂ξ ∈ Γξ(S̄ , CA).

Consequently, there exists a family of polynomials (P̂x)x∈S̄, with the following
properties.

P̂x ∈ I(x) for x ∈ S̄ .(79)

|∂β[fξ(x) + P̂x](x)| ≤ CA for |β| ≤ m , x ∈ S̄ .(80)

|∂β[fξ(x) + P̂x − fξ(y) − P̂y](y) | ≤ CA |x − y|m−|β|(81)

for |β| ≤ m , x, y ∈ S̄ .

fξ(x0) + P̂x0 = P̂ξ .(82)
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Comparing (75),...,(77) with (79),...,(81); and comparing (69) with (82), we
learn the following.

[Px
ξ − P̂x] ∈ I(x) for x ∈ S̄.

|∂β[Px
ξ − P̂x](x)| ≤ CA for |β| ≤ m, x ∈ S̄.

|∂β{[Px
ξ − P̂x] − [Py

ξ − P̂y]}(y)| ≤ CA |x − y|m−|β| for |β| ≤ m, x, y ∈ S̄.

[Px0
ξ − P̂x0 ] = f̃ξ(x0) − P̂ξ.

These properties, and the definition of σ(S̄), show that f̃ξ(x0)−P̂ξ ∈ CAσ(S̄).
Consequently, (64) tells us that

f̃ξ(x0) − P̂ξ ∈ CAσ(S)(83)

for any S ⊆ E with #(S) ≤ (D + 1)6 · k#
1 and x0 ∈ S.

On the other hand, (78) gives

(84) P̂ξ ∈ Γξ(S, CA) for any S ⊆ E with #(S) ≤ (D+1)6 · k#
1 and x0 ∈ S .

From (83), (84), and the definitions of σ(S) and Γξ(S, CA), we conclude that

f̃ξ(x0) ∈ Γξ(S, CA).

Thus, we have proven the following result.

f̃ξ(x0) ∈ Γξ (S, CA)(85)

for |ξ| ≤ 1 , S ⊆ E with #(S) ≤ (D + 1)6 · k
#
1 and x0 ∈ S.

This result trivially implies the desired property (c) of f̃ξ(x0). In fact,
given ξ ∈ Ξ with |ξ| ≤ 1, and given x1, . . . , xk#

1
∈ E, we set S = {x0, . . . , xk#

1
},

and apply (85).
By definition of Γξ(S, CA), there exists a family of polynomials (Px)x∈S, with

Px0 = f̃ξ(x0);

Px ∈ fξ(x) + I(x) for all x ∈ S;

|∂βPx(x)| ≤ CA for |β| ≤ m, x ∈ S; and

|∂β(Px − Py)(y)| ≤ CA |x − y|m−|β| for |β| ≤ m, x, y ∈ S.

Setting Pi = Pxi for i = 0, . . . , k
#
1 , we obtain all the properties asserted

in (c).
The proof of Lemma 3.3 is complete. �
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4. Adapting Previous Results

In this section, we show how to adapt [14], using the results of Section 3
above, to prove a local version of our present Theorem 7, in the case of
(arbitrarily large) finite subsets E ⊂ R

n. We assume from here on that the
reader is completely familiar with [14].

Sections 2 and 3 of [14] require no changes. In Section 4 of [14], the
statements of the two main lemmas should be changed to the following.

Weak Main Lemma for A: There exists k#, depending only on m and n, for
which the following holds.

Suppose we are given a vector space Ξ with a seminorm | · |; constants
C, a0; a regular modulus of continuity ω; a finite set E ⊂ R

n; a point
y0 ∈ R

n; and a family of polynomials Pα ∈ P, indexed by α ∈ A. Suppose
also that, for each x ∈ E, we are given a linear map ξ �→ fξ(x) from Ξ

into Rx, and a subset σ(x) ⊂ Rx.
Assume that the following conditions are satisfied.

(WL0) For each x ∈ E, the set σ(x) is Whitney ω-convex, with Whitney
constant C.

(WL1) ∂βPα(y0) = δβα for all β, α ∈ A.

(WL2) |∂βPα(y0) − δβα| ≤ a0 for all α ∈ A, β ∈ M .

(WL3) Given α ∈ A and S ⊂ E with #(S) ≤ k#, there exists ϕS
α ∈

Cm,ω
�oc (Rn), with

(a) |∂βϕS
α(x)−∂βϕS

α(y)|≤ a0·ω(|x−y|) for |β|=m, x, y∈R
n, |x−y|≤1;

(b) Jx(ϕ
S
α) ∈ C σ(x) for all x ∈ S ; and

(c) Jy0(ϕS
α) = Pα .

(WL4) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with #(S) ≤ k#, there
exists FS

ξ ∈ Cm,ω(Rn), with

(a) ‖ FS
ξ ‖Cm,ω(Rn)≤ C ; and

(b) Jx(F
S
ξ) ∈ fξ(x) + C σ(x) for all x ∈ S .

(WL5) a0 is less than a small enough positive constant determined by C, m, n.

Then there exists a linear map ξ �→ Fξ, from Ξ into Cm,ω(Rn), such that,
for any ξ ∈ Ξ with |ξ| ≤ 1, we have

(WL6) ‖ Fξ ‖Cm,ω(Rn)≤ C′ , and

(WL7) Jx(Fξ) ∈ fξ(x) + C′ σ(x) for all x ∈ E ∩ B(y0, c′).

Here, C′ and c′ in (WL6,7) depend only on C, m, n.
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Strong Main Lemma for A: There exists k#, depending only on m and n,
for which the following holds.

Suppose we are given a vector space Ξ with a seminorm | · |; constants
C, ā0; a regular modulus of continuity ω; a finite set E ⊂ R

n; a point
y0 ∈ R

n; and a family of polynomials Pα ∈ P, indexed by α ∈ A. Suppose
also that, for each x ∈ E, we are given a linear map ξ �→ fξ(x) from Ξ

into Rx, and a subset σ(x) ⊆ Rx.

Assume that the following conditions are satisfied.

(SL0) For each x ∈ E, the set σ(x) is Whitney ω-convex, with Whitney
constant C.

(SL1) ∂βPα(y0) = δβα for all β, α ∈ A.

(SL2) |∂βPα(y0)| ≤ C for all β ∈ M, α ∈ A with β ≥ α.

(SL3) Given α ∈ A and S ⊆ E with #(S) ≤ k#, there exists

ϕS
α ∈ Cm,ω

�oc (Rn),

with

(a) |∂βϕS
α(x) − ∂βϕS

α(y)| ≤ ā0ω(|x − y|) + C|x − y|

for |β| = m , x, y ∈ R
n , |x − y| ≤ 1 ;

(b) Jx(ϕ
S
α) ∈ Cσ(x) for all x ∈ S ; and

(c) Jy0(ϕS
α) = Pα.

(SL4) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with #(S) ≤ k#, there
exists

FS
ξ ∈ Cm,ω(Rn),

with

(a) ‖ FS
ξ ‖Cm,ω(Rn)≤ C , and

(b) Jx(F
S
ξ) ∈ fξ(x) + Cσ(x) for all x ∈ S .

(SL5) ā0 is less than a small enough positive constant determined by C, m, n.

Then there exists a linear map ξ �→ Fξ, from Ξ into Cm,ω(Rn), such that,
for any ξ ∈ Ξ with |ξ| ≤ 1, we have

(SL6) ‖ Fξ ‖Cm,ω(Rn)≤ C′ , and

(SL7) Jx(Fξ) ∈ fξ(x) + C′σ(x) for all x ∈ E ∩ B(y0, c′) .

Here, C′ and c′ in (SL6, 7) depend only on C, m, n.
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In Section 5 of [14], Lemmas 5.1, 5.2, 5.3 are to be left unchanged. The
“Local Theorem” should be changed to read as follows.

Local Theorem: There exists k#, depending only on m and n, for which the
following holds.

Suppose we are given a vector space Ξ with a seminorm | · |; a regular
modulus of continuity ω; a finite set E ⊂ R

n; and, for each x ∈ E, a linear
map ξ �→ fξ(x) from Ξ into Rx, and a subset σ(x) ⊆ Rx.

Assume that the following conditions are satisfied.

(I) For each x ∈ E, the set σ(x) is Whitney ω-convex, with Whitney con-
stant C.

(II) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with #(S) ≤ k#, there exists

FS
ξ ∈ Cm,ω(Rn),

with

‖ FS
ξ ‖Cm,ω(Rn)≤ C , and Jx(F

S
ξ) ∈ fξ(x) + Cσ(x) for each x ∈ S .

Let y0 ∈ R
n be given. Then there exists a linear map ξ �→ Fξ, from Ξ into

Cm,ω(Rn), such that, given any ξ ∈ Ξ with |ξ| ≤ 1, we have

‖ Fξ ‖Cm,ω(Rn)≤ C′ , and Jx(Fξ) ∈ fξ(x) + C′σ(x) for each x ∈ E∩B(y0, c′).

Here, C′ and c′ depend only on C, m, n in (I) and (II).

Note that in the two Main Lemmas and the Local Theorem, we do not
assume that FS

ξ depends linearly on ξ, but we assert that Fξ depends linearly
on ξ.

In Section 6 of [14], the proof of Lemma 5.1 may be left unchanged,
except that, in the discussion of (14), (15), (16) in that section, FS should
be replaced by FS

ξ, and f should be replaced by fξ, for a given ξ ∈ Ξ with
|ξ| ≤ 1.

In Section 7 of [14], Lemma 7.1 and its proof may be left unchanged,
except for the paragraph including (30), (31), (32). In that paragraph, we
replace “we obtain F ∈ Cm,ω(Rn)” by “we obtain a linear map ξ �→ Fξ

from Ξ into Cm,ω(Rn)”; and we replace F, f by Fξ, fξ in (30), (31), (32), for
a given ξ ∈ Ξ with |ξ| ≤ 1.

In Section 8 of [14], we make the following changes.

In the statement of Lemma 8.1, the phrase “we are given an m-jet f(x) ∈
Rx” should be changed to “we are given a linear map ξ �→ fξ(x) from Ξ

into Rx,”. Also, hypothesis (G4) of Lemma 8.1 should be replaced by the
following.
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(G4) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with #(S) ≤ k
#
old, there

exists
FS

ξ ∈ Cm,ω(Rn),

with

(a) ‖ ∂βFS
ξ ‖C0(Rn)≤ A · ω(δQ) · δ

m−|β|
Q for |β| ≤ m;

(b) |∂βFS
ξ(x

′) − ∂βFS
ξ(x

′′)| ≤ A · ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ R
n,

|x′ − x′′| ≤ δQ;

(c) Jx(F
S
ξ) ∈ fξ(x) + A · σ(x) for all x ∈ S.

Moreover, the conclusion of Lemma 8.1 should be replaced by the fol-
lowing.
Then there exists a linear map ξ �→ Fξ from Ξ into Cm,ω(Rn), such that, for
any ξ ∈ Ξ with |ξ| ≤ 1, we have

(G5) ‖ ∂βFξ ‖C0(Rn)≤ A′ · ω(δQ) · δm−|β| for |β| ≤ m;

(G6) |∂βFξ(x
′) − ∂βFξ(x

′′)| ≤ A′ · ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ R
n,

|x′ − x′′| ≤ δQ;

(G7) Jx(Fξ) ∈ fξ(x) + A′ · σ(x) for all x ∈ E ∩ Q∗.

Here, A′ is determined by A, m, n.
Again, note that we do not assume that FS

ξ depends linearly on ξ, but
we assert that Fξ depends linearly on ξ.

In the proof of Lemma 8.1 in [14], we must insert subscript ξ’s on F’s and
f’s, as in our discussion of the changes to be made in Sections 6 and 7. More
seriously, the paragraph containing (37) and (38) requires changes, because
f̃(x

¯
) there may depend non-linearly on ξ. We change that paragraph to the

following.
Applying (G4), we obtain, for any ξ ∈ Ξ with |ξ| ≤ 1, a function Fξ ∈

Cm,ω(Rn), with

‖ Fξ ‖Cm,ω(Rn)≤ A, and Jx
¯
(Fξ) ∈ fξ(x

¯
) + Aσ(x

¯
).

Hence, we may apply Corollary 3.1.1 (from Section 3 of this paper, not
from [14]), with f0,ξ = fξ(x

¯
), and with σ0 = σ(x

¯
).

Thus, there exists a linear map ξ �→ f̃ξ(x
¯
), from Ξ into Rx

¯
, such that,

whenever |ξ| ≤ 1, we have

(37) |∂β[f̃ξ(x
¯
)] (x

¯
)| ≤ CA for |β| ≤ m, and f̃ξ(x

¯
) ∈ fξ(x

¯
) + CAσ(x

¯
).

In view of (37) and (G4), we have the following property of f̃ξ.
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(38) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with #(S) ≤ k#, there
exists

FS
ξ ∈ Cm,ω(Rn),

with

(a) ‖ ∂βFS
ξ ‖C0(Rn)≤ A for |β| ≤ m;

(b) |∂βFS
ξ(x

′) − ∂βFS
ξ(x

′′)| ≤ A · ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ R
n,

|x′ − x′′| ≤ 1;

(c) Jx(F
S
ξ) ∈ f̃ξ(x) + CA · σ(x) for all x ∈ S.

Note that, in the old (38) in Section 8 of [14], part (c) reads

Jx(F
S) ∈ f̃(x) + 2A · σ(x) for all x ∈ S.

Our new (38) has CA in place of 2A.
Hence, in Claim (39) and its proof (in Section 8 of [14]), we must replace 2A

by CA.
From this point on, the arguments in Section 8 of [14] go through with

only minor changes of the sort discussed for Sections 6 and 7.
In Section 9 of [14], the first few paragraphs should be changed to read

as follows.
In this section, we give the set-up for the proof of Lemma 5.2 in the

monotonic case. We fix m, n ≥ 1 and A ⊆ M.
We let k# be a large enough integer, determined by m and n, to be

picked later. We suppose we are given the following data:

• A vector space Ξ with a seminorm | · |.

• Constants C0, a1, a2 > 0.

• A regular modulus of continuity ω.

• A finite set E ⊂ R
n.

• For each x ∈ E, a linear map ξ �→ fξ(x) from Ξ into Rx, and a set
σ(x) ⊂ Rx.

• A point y0 ∈ R
n.

• A family of polynomials Pα ∈ P, indexed by α ∈ A.

We fix Ξ, C0, a1, a2, ω, E, ξ �→ fξ(·), σ(·), y0, (Pα)α∈A until the end of
Section 16.

We make the following assumptions.
Also, in Section 9 of [14], we replace (SU8) by the following.
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(SU8) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊆ E with #(S) ≤ k#, there
exists FS

ξ ∈ Cm,ω(Rn), with

(a) ‖ FS
ξ ‖Cm,ω(Rn)≤ C0; and

(b) Jx(F
S
ξ) ∈ fξ(x) + C0σ(x) for all x ∈ S.

Moreover, we replace Lemma 9.1 in [14] by the following.

Lemma 9.1. Assume (SU0),. . . ,(SU8).
Then there exists a linear mapping ξ �→ Fξ, from Ξ into Cm,ω(Rn), such

that, for any ξ ∈ Ξ with |ξ| ≤ 1, we have

(a) ‖ Fξ ‖Cm,ω(Rn)≤ A, and

(b) Jx(Fξ) ∈ fξ(x) + Aσ(x) for all x ∈ E ∩ B(y0, a);

here, A and a are determined by a1, a2, m, n, C0.

Lemma 9.2 and its proof require no changes.

In Section 10 of [14], we make the following changes:
In place of (1) and (2) in that section, we make the following definitions.
For M > 0, S ⊂ E, y ∈ R

n, ξ ∈ Ξ, we define

(1) Kξ(y, S, M) = {Jy(F) : F ∈ Cm,ω(Rn), ‖ F ‖Cm,ω(Rn)≤ M

and Jx(F) ∈ fξ(x) + Mσ(x) for all x ∈ S}.

For M > 0, k ≥ 1, y ∈ R
n, ξ ∈ Ξ, we define

(2) Kξ(y, k, M) = ∩ {Kξ(y, S, M) : S ⊂ E, #(S) ≤ k} .

Wherever we referred to Kf in Section 10 of [14], we refer now to Kξ, with
ξ ∈ Ξ assumed to satisfy |ξ| ≤ 1.
Also, in place of K

#
f (y, k, M) from Section 10 of [14], we define

K
#
ξ (y, k, M) = {P ∈ Kξ(y, k, M) : ∂βP(y) = 0 for all β ∈ A}.

With these changes, Lemmas 10.1 through 10.5 and their proofs go through
just as in [14]. We shall also require another lemma, not essentially contained
in [14]. That result is as follows.

Lemma 10.6. Suppose k# ≥ (D+1)10 · k
#
1 and k

#
1 ≥ 1. Then, for a large

enough controlled constant C∗, the following holds.
Given y ∈ B(y0, a1), there exists a linear map ξ �→ P

y
ξ, from Ξ into P,

such that, for any ξ ∈ Ξ with |ξ| ≤ 1, we have

P
y
ξ ∈ K

#
ξ (y, k

#
1 , C∗).
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Sketch of Proof of Lemma 10.6. Suppose k#≥(D+1)10 ·k#
1 and k

#
1 ≥1.

Let y ∈ B(y0, a) be given. In view of hypothesis (SU8) and Lemma 3.2
(from this paper, not [14]), there exists a linear map ξ �→ Pξ from Ξ into P,
with the following property.

Given ξ ∈ Ξ with |ξ| ≤ 1, we have Pξ ∈ Kξ(y, k
#
1 , C).

We can now repeat the proof of Lemma 10.5 in [14], using the above Pξ

in place of the polynomial P ∈ Kf(y, k
#
1 , C) from that proof. In particular,

the polynomial called P̃ in the proof of Lemma 10.5 in [14] now depends
linearly on ξ ∈ Ξ.

From the proof of Lemma 10.5, we obtain P̃ ∈ K
#
ξ (y, k

#
1 , C∗) for |ξ| ≤ 1.

This concludes our sketch of the proof of Lemma 10.6. �
Sections 11, 12 and 13 in [14] require no changes here.
Section 14 in [14] requires only the following trivial changes:

We replace f, Kf, K
#
f by fξ, Kξ, K

#
ξ respectively.

We add to each of the lemmas in Section 14 the additional hypotheses ξ ∈ Ξ,
|ξ| ≤ 1.

Once these trivial changes are made, the proofs of Lemmas 14.1,...,14.5
go through unchanged.

Section 15 in [14] requires no changes here.

In Section 16 of [14], we make the following changes.
We replace (2) in that section by

(2) k# = (D + 1)30 · k
#
old.

We replace the remarks immediately after (2) by the following.
For each ν, Lemma 10.6 gives us a linear map ξ �→ Pν,ξ, from Ξ into P,

such that

(3) Pν,ξ ∈ K
#
ξ (yν, (D + 1)20 · k

#
old , C) for |ξ| ≤ 1.

Applying Lemmas 14.3 and 14.5, we see that, whenever ξ ∈ Ξ with
|ξ| ≤ 1, we have

(4) |∂β(Pµ,ξ − Pν,ξ)(yµ)| ≤ C′ · (a1)
−(m+1) · a−1

2 ω(δν) · δ
m−|β|
ν

for |β| ≤ m, if Qµ, Qν abut;

and

(5) |∂β(Pµ,ξ−Pν,ξ)(yµ)| ≤ C′ ·(a1)
−(m+1) ·a−1

2 ·ω(|yµ−yν|) · |yµ−yν|m−|β|

for |β| ≤ m, µ = ν.

In Lemma 16.1 in [14], we replace “Fix ν” by “Fix ν, ξ, with ξ ∈ Ξ and

|ξ| ≤ 1”; and replace F̂S
ν, f(x), Pν by FS

ν,ξ, fξ(x), Pν,ξ, respectively. The proof
of Lemma 16.1 goes through without further changes.
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In the statement of Lemma 16.2 in [14], after the phrase “for the following
data:”, we insert the bullet

• The vector space Ξ with seminorm | · |.

Also in the statement of that lemma, we replace

• The map x �→ f(x) − Pν ∈ Rx for x ∈ E ∩ Q∗
ν

by

• The map ξ �→ fξ(x) − Pν,ξ ∈ Rx (ξ ∈ Ξ) for x ∈ E ∩ Q∗
ν.

In the proof of that lemma, we replace (31) by the following.

(31) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊂ E ∩ Q∗
ν with #(S) ≤ k

#
old,

there exists FS
ξ ∈ Cm,ω(Rn), with

(a) ‖ ∂βFS
ξ ‖C0(Rn)≤ (a1)

−(m+2) · ω(δν) · δ
m−|β|
ν for |β| ≤ m;

(b) |∂βFS
ξ(x

′) − ∂βFS
ξ(x

′′)| ≤ (a1)
−(m+2) · ω(|x′ − x′′|)

for |β| = m, x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν; and

(c) Jx(F
S
ξ) ∈ (fξ(x) − Pν,ξ) + (a1)

−(m+2) σ(x) for all x ∈ S.

The statement and proof of Lemma 16.3 in [14] should be replaced by
the following.

Lemma 16.3. For each ν (1 ≤ ν ≤ µmax), there exists a linear map
ξ �→ Fν,ξ from Ξ into Cm,ω(Rn), such that for any ξ ∈ Ξ with |ξ| ≤ 1, we
have

(32) ‖ ∂βFν,ξ ‖C0(Rn)≤ A′ω(δν) · δm−|β|
ν for |β| ≤ m ;

(33) |∂βFν,ξ(x
′) − ∂βFν,ξ(x

′′)| ≤ A′ω(|x′ − x′′|)

for |β| = m , x′, x′′ ∈ R
n, |x′ − x′′| ≤ δν ; and

(34) Jx(Fν,ξ) ∈ (fξ(x) − Pν,ξ) + A′σ(x) for all x ∈ E ∩ Q∗
ν .

Here A′ depends only on a1, m, n and the constant C0 in (SU0,...,8).

Proof. Fix ν. Either Qν is OK, or E ∩ Q∗
ν contains at most one point.

If Qν is OK, then the conclusion of Lemma 16.3 is immediate from
Lemmas 16.2 and 8.1.

If instead there is exactly one point in E ∩ Q∗
ν, then the conclusion of

Lemma 16.3 is immediate from Lemma 16.1 with S = E∩Q∗
ν, together with

Lemma 3.1 (from this paper, not [14]), where we take:

• x0 to be the single element of E ∩ Q∗
ν;

• σ = σ(x0);
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• f0,ξ = fξ(x0);

• δ = δν;

• A = the controlled constant C′ from the conclusions of Lemma 16.1.

Finally, if E ∩ Q∗
ν is empty, then we may simply set Fν,ξ ≡ 0, and (32),

(33), (34) hold trivially.
The proof of Lemma 16.3 is complete �
Immediately after the proof of Lemma 16.3 in [14], we replace “For

each ν, we fix Fν as in Lemma 16.3” by “For each ν, we fix a linear map
ξ �→ Fν,ξ as in Lemma 16.3”.

Also, we replace (35) there by

|∂βFν,ξ(x
′) − ∂βFν,ξ(x

′′)| ≤ A′ω(|x′ − x′′|)(35)

for |ξ| ≤ 1 , |β| = m , x′, x′′ ∈ Q∗
ν .

The proof of (35) in [14], with a trivial change in notation, establishes
our present (35).

We replace (43) in Section 16 of [14] by

(43)
∣∣∂βPν,ξ(yν)

∣∣ ≤ C for |ξ| ≤ 1 , |β| ≤ m , all ν .

Immediately following (43), when we verify conditions (PLS1,...,8), we re-
place Pν by Pν,ξ, where ξ ∈ Ξ is assumed to satisfy |ξ| ≤ 1.

In place of (44) in Section 16 of [14], we write the following:
For ξ ∈ Ξ, we define

(44) F̃ξ =
∑

1≤ν≤µmax

θν · [Pν,ξ + Fν,ξ] on Q0 .

Note that ξ �→ F̃ξ is a linear map from Ξ to Cm functions on Q0.
Fix ξ ∈ Ξ with |ξ| ≤ 1. We will write F̃ for F̃ξ, and Pν for Pν,ξ.
In Section 16 of [14], we replace the discussion after (61) by the following:
In view of (45), (46), (61), we have proven the following.

(62) ξ �→ F̃ξ is a linear map from Ξ to Cm functions on Q0, such that, for
any ξ ∈ Ξ with |ξ| ≤ 1, we have

(a) |∂βF̃ξ(x)| ≤ A′ for |β| ≤ m, x ∈ Q0;

(b) |∂βF̃ξ(x
′) − ∂βF̃ξ(x

′′)| ≤ A′ω(|x′ − x′′|) for |β| = m, x′, x′′ ∈ Q0; and

(c) Jx(F̃ξ) ∈ fξ(x) + A′σ(x) for all x ∈ E ∩ Q0.

Unfortunately, F̃ξ(x) is defined only for x ∈ Q0. To remedy this, we
multiply F̃ξ by a cutoff function. We recall (see (11.1), (11.3)) that Q0 is
centered at y0 and has diameter ca1 ≤ δQ0 ≤ a1.
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We introduce a cutoff function θ on R
n, with

(63) ‖ θ ‖Cm+1(Rn)≤ A′ , θ = 1 on B(y0, c′a1) , supp θ ⊂ Q0 .

We then define a linear map ξ �→ Fξ, from Ξ into Cm(Rn), by setting Fξ =
θ · F̃ξ on R

n.
From (62) and (63), we conclude that ξ �→ Fξ is a linear map from Ξ into

Cm,ω(Rn), and that for |ξ| ≤ 1, we have

‖ Fξ ‖Cm,ω(Rn)≤ A′ , and(64)

Jx(Fξ) ∈ fξ(x) + A′σ(x) for all x ∈ E ∩ B(y0, c′a1) .(65)

Since the constants A′ and c′a1 in (64), (65) are determined by m, n, C0,
a1, a2 in (SU0,...,8), our results (64), (65) immediately imply the conclusions
of Lemma 9.1 for the linear map ξ �→ Fξ.

The proof of Lemma 9.1 is complete.
In view of Lemma 9.2, the proof of Lemma 5.2 is also complete. �
This completes our discussion of Section 16 in [14].

Section 17 in [14] requires no change here.

In section 18 in [14], we make the following changes.
At the start of the section, the paragraph beginning “Also, suppose...”
should be changed to the following.
Also, suppose we are given a vector space Ξ with a seminorm | · |, and
suppose that, for each x ∈ E, we are given a linear map ξ �→ fξ(x) from Ξ

into Rx, and a subset σ(x) ⊆ Rx. Assume that these data satisfy conditions
(SL0,...,5). We must show that there exists a linear map ξ �→ Fξ from Ξ into
Cm,ω(Rn), satisfying (SL6,7) with a constant C′ determined by C, m, n.
We replace (7) in Section 18 of [14] by

(7) f̄ξ(x̄) = (fξ(τ(x̄))) ◦ τ ∈ Rx̄ for x̄ ∈ Ē ,

and we note that ξ �→ f̄ξ(x̄) is a linear map from Ξ into Rx̄.

The discussion of (24) in Section 18 of [14], starting with “Similarly, let
S̄ ⊂ Ē be given”, should be replaced by the following.

Similarly, let ξ ∈ Ξ with |ξ| ≤ 1, and let S̄ ⊆ Ē with #(S̄) ≤ k#. Again,
we set S = τ(S̄), and we apply (SL4). Let FS

ξ be as in (SL4), and define

(24) F̄S̄
ξ = FS

ξ ◦ τ .

Thus, F̄S̄
ξ ∈ Cm,ω(Rn), since FS

ξ ∈ Cm,ω(Rn).

Fix ξ ∈ Ξ with |ξ| ≤ 1, and set F̄S̄ = F̄S̄
ξ.

We replace (29) in Section 18 of [14] by the following.
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(29) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S̄ ⊆ Ē with #(S̄) ≤ k#, there
exists F̄S̄

ξ ∈ Cm,ω(Rn), with ‖ F̄S̄
ξ ‖Cm,ω(Rn)≤ C, and Jx̄(F̄

S̄
ξ) ∈ f̄ξ(x̄) +

CA−1σ̄(x̄) for all x̄ ∈ S̄.

Similarly, we replace (51) in that section by the following.

(51) Given ξ ∈ Ξ with |ξ| ≤ 1, and given S̄ ⊆ Ē with #(S̄) ≤ k#, there
exists F̄S̄

ξ ∈ Cm,ω(Rn), with

(a) ‖ F̄S̄
ξ ‖Cm,ω(Rn)≤ C1; and

(b) Jx̄(F̄
S̄
ξ) ∈ f̄ξ(x̄) + CA−1σ̄(x̄) for all x̄ ∈ S̄.

A couple of paragraphs later, when we specify the data that are to satisfy
the hypotheses of the Weak Main Lemma for Ā, we add the bullet

• The vector space Ξ with seminorm | · |,

and we change the bullet

• The m-jet f̄(x̄) associated to each x̄ ∈ Ē

to

• The linear map ξ �→ f̄ξ(x̄) from Ξ into Rx̄, associated to each x̄ ∈ Ē.

Next, the discussion of (56), (57), (58) should be changed to the following.
There exists a linear map ξ �→ F̄ξ from Ξ into Cm,ω(Rn), such that, for

any ξ ∈ Ξ with |ξ| ≤ 1, we have

(56) ‖ F̄ξ ‖Cm,ω(Rn)≤ C′ and

(57) Jx̄(F̄ξ) ∈ f̄ξ(x̄) + C′σ̄(x̄) for all x̄ ∈ Ē ∩ B(ȳ0, c′) .

We fix ξ �→ F̄ξ as above, and define

(58) Fξ = F̄ξ ◦ τ−1 for ξ ∈ Ξ .

Thus, ξ �→ Fξ is a linear map from Ξ into Cm,ω(Rn).
Fix ξ ∈ Ξ, with |ξ| ≤ 1, and write F, F̄, f for Fξ, F̄ξ, fξ respectively.

Thus, F ∈ Cm,ω(Rn). We estimate its norm.
Finally, the sentence containing (71) in Section 18 of [14] should be

changed to the following.
Therefore, (63) and (70) show that the linear map ξ �→ Fξ from Ξ into

Cm,ω(Rn) satisfies the following property.

(71) For ξ ∈ Ξ with |ξ| ≤ 1, we have

‖ Fξ ‖Cm,ω(Rn)≤ C′ , and Jx(Fξ) ∈ fξ(x)+C′σ(x) for all x ∈ E∩B(y0, c′) ,

with C′ and c′ determined by C, m, n in (SL0,...,5).
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With the changes indicated above, the arguments in [14] prove Lem-
mas 5.1, 5.2, 5.3, and therefore establish the Weak Main Lemma and the
Strong Main Lemma (in the form given here) for every A. Consequently, we
have proven the Local Theorem stated earlier in this section.

5. Passage to the Banach Limit

The Local Theorem proven in the preceding section gives a local version
of Theorem 7 for the case of finite sets E ⊂ R

n. In this section, we remove
the restriction to finite E, by passing to a Banach limit as in [10]. We then
pass from a local to a global result by a partition of unity, completing the
proof of Theorem 7.

We start by recalling the standard notion of a Banach limit, in the par-
ticular form used in [10].

Let E ⊂ R
n be given, and let D denote the collection of all finite subsets

of E. We introduce the Banach space C0(D), which consists of all bounded

families of real numbers �ζ = (ζE1
)E1∈D indexed by elements of D.

The norm in C0(D) is given by ‖ �ζ ‖C0(D)= supE1∈D |ζE1
|.

A standard application of the Hahn-Banach theorem yields a linear func-
tional

�D : C0(D) → R,

with the following properties.

(1) |�D(�ζ)| ≤‖ �ζ ‖C0(D) for all �ζ ∈ C0(D).

(2) Suppose E0 ∈ D, λ ∈ R, and �ζ = (ζE1
)E1∈D ∈ C0(D), with ζE1

≥ λ

whenever E1 ⊇ E0. Then �D(�ζ) ≥ λ.

We fix �D as above, and call it the “Banach limit.”
Next, we start removing the finiteness assumption from the Local Theo-

rem of the previous section. We fix m, n ≥ 1, and take k# as in the Local
Theorem. Let Ξ, | · |, ω, E, A, ξ �→ fξ(x) (x ∈ E) and σ(x)(x ∈ E) be as
in the hypotheses of Theorem 7, for the k# just given. We do not assume
that E is finite.

We will call a constant “controlled” if it depends only on A, m, n in the
hypotheses of Theorem 7; and we write c, C, C′, etc. to denote controlled
constants.

Let y0 ∈ R
n be given. Then, for each E1 ∈ D, the hypotheses of the

Local Theorem hold, with E1 in place of E, and with a controlled constant C

independent of E1. Hence, applying the Local Theorem, we obtain for each
E1 ∈ D a linear map ξ �→ F

E1
ξ from Ξ into Cm,ω(Rn), with the following

properties.
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(3) For |ξ| ≤ 1 and E1 ∈ D, we have ‖ F
E1
ξ ‖Cm,ω(Rn)≤ C1.

(4) For |ξ| ≤ 1, E1 ∈ D, x ∈ E1 ∩ B(y0, c1), we have Jx(F
E1
ξ ) ∈ fξ(x) +

C1σ(x).

We fix constants c1 and C1 as in (3) and (4). For |β| ≤ m, ξ ∈ Ξ, x ∈ R
n,

E1 ∈ D, define

(5) ζ
β,ξ
E1

(x) = ∂βF
E1
ξ (x);

and for |β| ≤ m, ξ ∈ Ξ, x ∈ R
n, define

(6) �ζβ,ξ(x) = (ζβ,ξ
E1

(x))E1∈D .

In view of (3), we have

(7) �ζβ,ξ(x) ∈ C0(D) for |β| ≤ m, ξ ∈ Ξ, x ∈ R
n; and

(8) ‖ �ζβ,ξ(x) ‖C0(D)≤ C1 for |β| ≤ m, |ξ| ≤ 1, x ∈ R
n.

Note also that

(9) ξ �→ �ζβ,ξ(x) is a linear map from Ξ into C0(D), for each fixed β, x

(|β| ≤ m, x ∈ R
n),

as we see at once from (5), (6), (7).
For |β| ≤ m, x ∈ R

n, ξ ∈ Ξ, we now define

(10) Fβ,ξ(x) = �D(�ζβ,ξ(x)) ∈ R,

where �D is the Banach limit. This makes sense, thanks to (7).

From (8), (9), (10), we see that

(11) ξ �→ Fβ,ξ(x) is a linear map from Ξ to R, for each fixed x ∈ R
n,

|β| ≤ m; and

(12) |Fβ,ξ(x)| ≤ C1 for |ξ| ≤ 1, |β| ≤ m, x ∈ R
n.

We define

(13) Fξ(x) = F0,ξ(x) for ξ ∈ Ξ, x ∈ R
n,

where 0 denotes the zero multi-index. We will show that

(14) Fξ ∈ Cm,ω(Rn)

and that

(15) ∂βFξ = Fβ,ξ for ξ ∈ Ξ, |β| ≤ m.

Moreover, we will show that

(16) ‖ Fξ ‖Cm,ω(Rn)≤ C for |ξ| ≤ 1.
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To prove (14), (15), (16), we fix a multi-index β, with |β| ≤ m − 1. For
1 ≤ j ≤ n, we write β[j] for the sum of β and the jth unit multi-index.
From (3) and Taylor’s theorem, we have∣∣∣∂βF

E1
ξ (x + y) −

[
∂βF

E1
ξ (x) +

n∑
j=1

yj∂
β[j]F

E1
ξ (x)

] ∣∣∣ ≤ Cω(|y|) · |y|

for E1 ∈ D, |ξ| ≤ 1, x, y ∈ R
n, |y| ≤ 1, y = (y1, . . . , yn).

Comparing this with (4) and (5), we find that

(17)
∥∥∥�ζβ,ξ(x + y) −

[
�ζβ,ξ(x) +

n∑
j=1

yj
�ζβ[j],ξ(x)

]∥∥∥
C0(D)

≤ Cω(|y|) · |y|

for |ξ| ≤ 1, x, y ∈ R
n, |y| ≤ 1, y = (y1, . . . , yn).

Applying �D, and recalling (1) and (10), we conclude that

(18)
∣∣∣Fβ,ξ(x + y) −

[
Fβ,ξ(x) +

n∑
j=1

yjFβ[j],ξ(x)
]∣∣∣ ≤ Cω(|y|) · |y|

for ξ, x, y as in (17). Since ω(t) → 0 as t → 0, (18) implies

(19)

⎡
⎣ Fβ,ξ is differentiable for |β| ≤ m − 1, |ξ| ≤ 1 ; and moreover

∂
∂xj

Fβ,ξ (x) = Fβ[j],ξ (x) for such β, ξ, and for j = 1, . . . , n .

⎤
⎦

Since ξ �→ Fβ,ξ is linear for |β| ≤ m, we may drop the assumption |ξ| ≤ 1

from (19).
Next, we return to (3), and conclude that, for |β| ≤ m and |ξ| ≤ 1, we

have

|∂βF
E1
ξ (x) − ∂βF

E1
ξ (y)| ≤ C1 ω(|x − y|) for |x − y| ≤ 1 , E1 ∈ D .

In view of (5), (6), this means that

‖ �ζβ,ξ(x) − �ζβ,ξ(y) ‖C0(D)≤ C1 ω(|x − y|) for |x − y| ≤ 1 .

Applying �D, and recalling (1) and (10), we find that

(20) |Fβ,ξ(x) − Fβ,ξ(y)| ≤ C1 ω(|x−y|) for |x−y| ≤ 1 , |ξ| ≤ 1 , |β| ≤ m .

This shows in particular that Fβ,ξ is a continuous function on R
n for

|β| ≤ m, |ξ| ≤ 1. Again, we may drop the assumption |ξ| ≤ 1, since
ξ �→ Fβ,ξ is linear. Thus, for any ξ ∈ Ξ, |β| ≤ m, we see from (20) that

(21) Fβ,ξ is a continuous function with modulus of continuity O(ω(t)).

From (19) and (21), we see that (14) and (15) hold.
Moreover, (16) follows from (12), (15), (20).
This completes the proof of (14), (15), (16).
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Next, we prove that

(22) Jx(Fξ) ∈ fξ(x) + C1σ(x) for |ξ| ≤ 1 , x ∈ E ∩ B(y0, c1) ,

with C1, c1 as in (4). To see this, fix x0 ∈ E∩B(y0, c1) and ξ ∈ Ξ with |ξ| ≤ 1.
Then fξ(x0) + C1σ(x0) is a closed, convex subset of Rx0

. Hence, it is an
intersection of closed half-spaces. A closed half-space in Rx0

has the form{
Jx0

(F) :
∑

|β|≤m

aβ∂βF(x0) ≥ λ
}

for coefficients aβ ∈ R and λ ∈ R. Consequently, there exists a collection Ω,
consisting of pairs ((aβ)|β|≤m, λ), with each aβ ∈ R and λ ∈ R, with the
following property:

(23) Let F ∈ Cm(Rn). Then Jx0
(F) belongs to fξ(x0) + C1σ(x0)

if and only if we have

∑
|β|≤m

aβ ∂βF(x0) ≥ λ for all ((aβ)|β|≤m, λ) ∈ Ω.

Now suppose we are given E1 ∈ D, with E1 containing x0. Then (4) gives

Jx0
(FE1

ξ ) ∈ fξ(x0) + C1 σ(x0),

hence ∑
|β|≤m

aβ ∂βF
E1
ξ (x0) ≥ λ for ((aβ)|β|≤m, λ) ∈ Ω, by (23).

In view of (5), this means that

(24)
∑

|β|≤m

aβζ
β,ξ
E1

(x0) ≥ λ for ((aβ)|β|≤m, λ) ∈ Ω , E1 ∈ D containing x0 .

Fix ((aβ)|β|≤m, λ) ∈ Ω, and set

�ζ =
∑

|β|≤m

aβ
�ζβ,ξ(x0) ∈ C0(D)

(see (7)). From (24) and (5), (6), we see that

�ζ = (ζE1
)E1∈D, with ζE1

≥ λ whenever E1 contains x0.

Taking E0 = {x0} ∈ D, and applying (2), we learn that �D(�ζ) ≥ λ.
That is, ∑

|β|≤m

aβ �D(�ζβ,ξ(x0)) ≥ λ.
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Recalling (10) and (15), we obtain∑
|β|≤m

aβ ∂βFξ(x0) ≥ λ.

This holds for any ((aβ)|β|≤m, λ) ∈ Ω. Therefore, (23) gives Jx0
(Fξ) ∈

fξ(x0) + C1σ(x0), completing the proof of (22).

In view of (11), (13), (14), (16), (22), we have proven the following result.

Local Theorem 7. Assume the hypotheses of Theorem 7. Then, given

y0 ∈ R
n, there exists a linear map ξ �→ F

y0

ξ from Ξ into Cm,ω(Rn) such
that, whenever ξ ∈ Ξ with |ξ| ≤ 1, we have

‖ F
y0

ξ ‖Cm,ω(Rn)≤ C

and
Jx(F

y0

ξ ) ∈ fξ(x) + Cσ(x) for all x ∈ E ∩ B(y0, c1).

Here, C and c1 depend only on A, m, n in the hypotheses of Theorem 7.

Finally, we pass from a local to a global result, to complete the proof of
Theorem 7. To do so, we assume the hypotheses of Theorem 7, and fix a
partition of unity

(25) 1 =
∑

ν

θν on R
n ,

with

(26) ‖ θν ‖Cm+1(Rn)≤ C ,

and

(27) supp θν ⊂ B(yν , 1
2
c1) (with c1 as in the Local Theorem 7).

Here, yν ∈ R
n are points with the following property.

(28) Any given ball of radius 1 in R
n meets at most C of the balls B(yν, c1).

Applying the Local Theorem 7, we obtain for each ν, a linear map ξ �→
Fν,ξ from Ξ into Cm,ω(Rn), such that, for any ξ ∈ Ξ with |ξ| ≤ 1, we have

(29) ‖ Fν,ξ ‖Cm,ω(Rn)≤ C

and

(30) Jx(Fν,ξ) ∈ fξ(x) + Cσ(x) for all x ∈ E ∩ B(yν, c1) .

We define a linear map ξ �→ Fξ from Ξ into Cm,ω(Rn), by setting

(31) Fξ =
∑

ν

θν · Fν,ξ .
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For |ξ| ≤ 1, we have

(32) ‖ Fξ ‖Cm,ω(Rn)≤ C ,

thanks to (26),..., (29).
Moreover, suppose x ∈ E, ξ ∈ Ξ are given, with |ξ| ≤ 1. By (25), we

can find some µ for which x ∈ supp θµ. In particular, we have

(33) x ∈ E ∩ B

(
yµ,

1

2
c1

)
.

In view of (31) and (25), we have

(34) Jx(Fξ) = Jx(Fµ,ξ) +
∑

ν

Jx(θν) � Jx(Fν,ξ − Fµ,ξ) ,

where � denotes multiplication in Rx.
In (34), we may assume that the sum is taken only over those ν for which

x ∈ B(yν, c1). (In fact, Jx(θν) = 0 for all other ν, by (27).)
Let ν be given, with x ∈ B(yν, c1). Then (29) and (30), applied to µ

and ν show that

(35) Jx(Fµ,ξ) ∈ fξ(x) + Cσ(x) ;

(36) Jx(Fν,ξ) ∈ fξ(x) + Cσ(x);

and

(37) |∂βFµ,ξ(x)| , |∂βFν,ξ(x)| ≤ C for |β| ≤ m .

These remarks imply

(38) Jx(Fν,ξ − Fµ,ξ) ∈ Cσ(x)

and

(39) |∂β(Fν,ξ − Fµ,ξ)(x) | ≤ C for |β| ≤ m .

From (38), (39), (26), and the Whitney ω-convexity hypothesis of The-
orem 7, we conclude that

(40) Jx(θν) � Jx(Fν,ξ − Fµ,ξ) ∈ Cσ(x) .

This holds whenever B(yν, c1) contains x. There are at most C such ν,
thanks to (28). Consequently, (40) yields∑

B(yν,c1)�x

Jx(θν) � Jx(Fν,ξ − Fµ,ξ) ∈ Cσ(x) .

Together with (34), (35), this in turn yields

(41) Jx(Fξ) ∈ fξ(x) + Cσ(x) .

We have proven (41) for any x ∈ E and any ξ ∈ Ξ with |ξ| ≤ 1.
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Since C depends only on A, m, n in the hypotheses of Theorem 7, our
results (32) and (41) are precisely the conclusions of Theorem 7, for the linear
map ξ �→ Fξ from Ξ into Cm,ω(Rn). The proof of Theorem 7 is complete. �

6. Further Results

What kind of linear maps are needed in Theorems 1,. . . , 5? To shed light
on this, we introduce the notion of an operator of bounded “depth”.

We start by recalling the basic vector spaces arising in Theorems 1,. . . , 5,
namely

Cm(E), Cm,ω(E), Cm(E, σ(·)), Cm,ω(E, σ(·)), Cm,ω(E, σ̂).

We denote any of these spaces by X(E). Note that, whenever S ⊂ E, there
is a natural restriction map f �→ f|E from X(E) into X(S).

Next, suppose E ⊂ R
n, and let B ⊂ R

n be a ball. We say that B

“avoids E” if the distance from B to E exceeds the radius of B.

Now, let T : X(E) → Cm(Rn) be a linear map, and let k be a positive
integer. Then we say that T has “depth k” if it satisfies the following two
conditions.

(1) Given x ∈ E, there exists Sx ⊂ E of cardinality at most k, such that,
when f varies in X(E), the jet Jx(Tf) is uniquely determined by f|Sx .

(2) Let B ⊂ R
n be any ball that avoids E. Then there exists SB ⊂ E of

cardinality at most k, such that, when f varies in X(E), the function
Tf|B is uniquely determined by f|SB

.

In terms of these definitions, we can state a refinement of Theorems 2,..., 5.

We have also proven an analogous refinement of Theorem 1, which we
discuss in a later paper. Our refinement of Theorems 2,..., 5 is as follows.

Theorem 8. Suppose E ⊂ R
n is finite. Then, in Theorems 2,..., 5, we can

take the linear map T to have depth k, where k depends only on m and n.

To prove Theorem 8, we give a refinement of Theorem 7. We need a few
more definitions. In the setting of Theorem 7, we fix an arbitrary set Ξ̂ of
(not necessarily bounded) linear functionals on Ξ.

Suppose T : Ξ → V is a linear map from Ξ to a finite dimensional
vector space V. Then we call T “k-admissible” if there exist k functionals
�1, . . . , �k ∈ Ξ̂ and a linear map T̃ : R

k → V such that

Tξ = T̃(�1(ξ), . . . , �k(ξ)) for all ξ ∈ Ξ.

Also, suppose T : Ξ → Cm(Rn) is a linear map. Then we call T “k-
admissible” if, for each x ∈ R

n, the linear map ξ �→ Jx(Tξ), from Ξ into Rx,
is k-admissible.



Extension of Cm,ω-Smooth Functions by Linear Operators 45

We can now state our refinement of Theorem 7.

Theorem 9. Given m, n ≥ 1, there exists k#, depending only on m and n,
for which the following holds.

Let Ξ be a vector space with a seminorm | · |, let Ξ̂ be a set of linear

functionals on Ξ, and let k̂ be a positive integer .
Let ω be a regular modulus of continuity, let E ⊂ R

n be a finite set, and
let A > 0.

For each x ∈ E, suppose we are given a k̂-admissible linear map ξ �→
fξ(x) from Ξ into Rx.

Also, for each x ∈ E, suppose we are given a Whitney ω-convex subset
σ(x) ⊂ Rx, with Whitney constant A.

Assume that, given ξ ∈ Ξ with |ξ| ≤ 1, and given S ⊂ E with cardinality
at most k#, there exists FS

ξ ∈ Cm,ω(Rn), satisfying

‖ FS
ξ ‖Cm,ω(Rn)≤ 1, and Jx(F

S
ξ) ∈ fξ(x) + σ(x) for all x ∈ S .

Then there exists a linear map ξ �→ Fξ from Ξ into Cm,ω(Rn), with the
following properties.

(I) For any ξ ∈ Ξ with |ξ| ≤ 1, we have

‖ Fξ ‖Cm,ω(Rn)≤ A′, and Jx(Fξ) ∈ fξ(x) + A′σ(x) for all x ∈ E.

Here, A′ depends only on m, n, and the Whitney constant A.

(II) The map ξ �→ Fξ is k∗-admissible, where k∗ depends only on k̂, m, n.

The proof of Theorem 9 is a straightforward adaptation of that of The-
orem 7, without the Banach limit.
(We needn’t introduce the Banach limit, since we assume E finite. If we
needed the Banach limit here, then we would lose k∗-admissibility.)

We use Theorem 9 to prove Theorem 8, just as we use Theorem 7 to
prove Theorem 3. We sketch the argument here. The heart of the matter
is to prove the refinement of Theorem 3 indicated in Theorem 8. As in the
proof of Theorem 3 in Section 1, we take

Ξ = Cm,ω(E, σ(·)) and |ξ| = 2 ‖ f ‖Cm,ω(E,σ(·)) for ξ = f ∈ Cm,ω(E, σ(·));

and we use the tautological map ξ �→ fξ(x) from Ξ into Rx, given by ξ =

(f(x))x∈E �→ fξ(x0) = f(x0) for x0 ∈ E.

We define Ξ̂ to consist of all the functionals on Ξ of the form

ξ �→ �(fξ(x)) for x ∈ E and � a linear functional on Rx.
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As in Section 1, we find that the hypotheses of Theorem 9 hold for our
Ξ, | · |, fξ(x), Ξ̂. The only new point to be checked is that ξ �→ fξ(x) is

k̂-admissible for each x ∈ E. This holds, with k̂ = dim P, thanks to our
choice of Ξ̂. Consequently, Theorem 9 produces a linear map f �→ F̃f from
Cm,ω(E, σ(·)) → Cm,ω(Rn), with the following properties.

(3) Given f = (f(x))x∈E ∈ Cm,ω(E, σ(·)) with ‖ f ‖Cm,ω(E,σ(·))≤ 1, we have

‖ F̃f ‖Cm,ω(Rn)≤ A′, and Jx(F̃f) ∈ f(x) + A′σ(x) for all x ∈ E,

with A′ depending only on A, m, n.

(4) For each x ∈ R
n there exist x1, . . . , xk∗ ∈ E such that, as f = (f(x))x∈E

varies in Cm,ω(E, σ(·)), the m-jet Jx(F̃f) depends only on f(x1), . . . , f(xk∗).

Here, k∗ depends only on m and n.

Our result (4) is not as strong as the desired conditions (1), (2) that
define an operator of depth k∗. However, the proof of the classical Whitney
extension theorem, applied to the family of m-jets (Jx(F̃f))x∈E, produces a
function Ff ∈ Cm,ω(Rn), depending linearly on f, with the following prop-
erties.

(5) Jx(Ff) = Jx(F̃f) for all x ∈ E.

(6) ‖ Ff ‖Cm,ω(Rn)≤ C ‖ F̃f ‖Cm,ω(Rn) with C depending only on m, n.

(7) Let B ⊂ R
n be any ball that avoids E. Then Ff|B is determined by the

m-jets of F̃f at points x1, . . . , xk
¯
∈ E, with k

¯
depending only on m, n.

From (3), (5), (6) we see that the linear map f �→ Ff satisfies

(8) Suppose f = (f(x))x∈E ∈ Cm,ω(E, σ(·)), with ‖ f ‖Cm,ω(E,σ(·))≤ 1. Then

‖ Ff ‖Cm,ω(Rn)≤ A′′, and Jx(Ff) ∈ f(x) + A′′σ(x) for all x ∈ E,

where A′′ depends only on A, m, n.

From (4), (5), (7), we see that

(9) f �→ Ff has depth k∗∗,

where k∗∗ depends only on m and n.

Our results (8), (9) for the linear map f �→ Ff are precisely the conclusions
of the refinement of Theorem 3 asserted in Theorem 8.

Thus, we have proven that refinement of Theorem 3. The corresponding
refinements of Theorems 2,..., 5 then follow from that of Theorem 3, just as
in the Introduction.
The proof of Theorem 8 is complete. �

See [9] for a similar discussion in an easier case. It would be interesting
to prove an analogue of Theorem 8 for infinite E.
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