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The real genus of the alternating groups

José Javier Etayo Gordejuela and Ernesto Mart́ınez

Abstract

A Klein surface with boundary of algebraic genus p ≥ 2, has
at most 12(p − 1) automorphisms. The groups attaining this upper
bound are called M∗-groups, and the corresponding surfaces are said
to have maximal symmetry. The M∗-groups are characterized by a
partial presentation by generators and relators.

The alternating groups An were proved to be M∗-groups when
n ≥ 168 by M. Conder. In this work we prove that An is an M∗-
group if and only if n ≥ 13 or n = 5, 10. In addition, we describe
topologically the surfaces with maximal symmetry having An as au-
tomorphism group, in terms of the partial presentation of the group.
As an application we determine explicitly all such surfaces for n ≤ 14.

Each finite group G acts as an automorphism group of several
Klein surfaces. The minimal genus of these surfaces is called the real
genus of the group, ρ(G). If G is an M∗-group then ρ(G) = o(G)

12 + 1.
We end our work by calculating the real genus of the alternating
groups which are not M∗-groups.

1. Introduction and Preliminaries

A Klein surface is a compact surface S endowed with a dianalytic structure.
The surface S can be orientable or not, with or without boundary. Klein
surfaces with algebraic genus p ≥ 2 have a finite group of automorphisms
whose order has an upper bound in terms of p. More precisely, the orientable
surfaces without boundary are called Riemann surfaces, and such a surface
of genus p has at most 84(p−1) automorphisms. If this bound is attained the
group of automorphisms is said to be a Hurwitz group. In case the surface is
non-orientable without boundary the corresponding bound is 84(p− 2) and
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the group is an H∗-group. Finally for surfaces with boundary of algebraic
genus p the automorphism group has order at most 12(p− 1) and then it is
called an M∗-group.

In this work we determine which alternating groups An are M∗-groups.
Marston Conder proved in the early 80’s that all alternating groups An are
M∗-groups for n ≥ 168, as well as for 87 values of n < 168, starting by
n = 15, 28, 35, 42, and so on, [3]. For small values of n it is known that there
are groups which are M∗-groups and others are not. The first author proved
in [8] that An is an M∗-group for n = 5 (see also [13]), 10, 13, and it is not
for n = 6 (see also [14]), 7, 8.

We now fill the gaps, proving that An is an M∗-group for all n ≥ 13, and
A5 and A10 are the unique M∗-groups for n < 13.

The M∗-groups are characterized by a partial presentation by generators
and relators: a group G is an M∗-group if and only if there exists a set of
generators a, b, c, such that a, b, c and ab have order 2, and ac has order 3.
This presentation is closely related to the groups G3,p,q introduced by Coxeter
in 1939, [6]. If we call p the order of bc and q the order of abc, the M∗-group G
is a quotient of G3,p,q.

For later convenience we relabel the generators as follows:

X = ac,

A = ab,

B = a,

XB = aca,

AB = b.

Then the group G is generated by X, A, B. The order of X is 3, the order
of A, B, XB and AB is 2, the order of AX is p and the order of ABX is q.
Obviously the order of XA is then p and the order of XAB is q. Besides
by interchanging A and AB, we permute the roles of p and q, and hence
G3,p,q ≈ G3,q,p.

So the problem of deciding if a given group is an M∗-group is reduced to
finding generators X, A, B, satisfying the above conditions, or alternatively
to prove that they do not exist.

In order to prove that the elements X, A, B generate the group An the
main tool is the following Theorem of Jordan (1873) (see [22, Th. 13.9]).

Theorem A. Let p be a prime and G a primitive group of degree n = p+k,
k ≥ 3. If G contains an element of degree and order p, then G is alternating
or symmetric.
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Since our elements A and B are always even permutations we need only
to fulfill the condition of Theorem A to generate An. As a consequence of
this Theorem A we have the following result from [2, Corollary 1.12]:

Corollary B. Let g and h be even permutations which generate a transitive
group G. If g contains a cycle of prime length p, where p < n− 2, p divides
the length of no other cycle of g, and the p-cycle contains either a fixed point
of h or the points from a cycle of h, then G is An.

In order to prove these conditions we take into account that the group
is generated by the pair XA, B. For, [XA, B]2 = X, X2(XA) = A, and so
< XA, B >= < X, A, B >. We shall apply the Corollary B taking g as XA
and h = B.

Alternatively, to prove that a given group is not an M∗-group, we need to
check that there exists no triple of generators X, A, B, in above conditions.
We obtained in [9] the conditions that B must fulfill, and summarize them
here:

Proposition C. Let X and A be two elements of An of orders three and two,
respectively. An element B ∈ An of order two satisfies that AB and XB
have order two if and only if:

1) B maps fixed points of X onto fixed points of X, and fixed points of A
onto fixed points of A.

2) If (x, y) and (z, t) are 2-cycles of A, and B maps x onto z, then (y, t)
is a 2-cycle of B. In particular, if x is a fixed point of B, so is y.

3) If (x, y, z) and (t, v, w) are 3-cycles of X, and B maps x onto t, then
(y, w) and (z, v) are 2-cycles of B. As a particular case, if x is a fixed
point of B then (y, z) is a 2-cycle of B.

Now we describe the different Sections on the paper. Section 2 is devoted
to introducing a diagrammatic argument inspired in the construction by
Conder in [2], although we use different diagrams chosen ad hoc.

In Section 3 with the groups An with 13 ≤ n < 168, to prove that they
all are M∗-groups. The two first cases n = 13, 14, will be managed directly.
For the remaining cases we use the diagrams explained in Section 2. We
shall need to split the proof into twelve cases according to the residue r of
n mod 12. In every case the procedure is similar: we obtain the suitable
generators for the first value of n in that set, which we denote by n0 =
12t0 + r, and indicate how to add 12t new vertices to the diagram in such a
way to assure that for each t, the corresponding An has an adequate set of
generators.
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For each n we shall look for permutations X, A, and B such that XA
be a product of three or four cycles, verifying that one of them, say P , has
prime length, another one, Q, has even length, and the length of P does
not divide another length. Moreover, the cycle P will contain either a fixed
point of B or two points paired by B. Hence P will satisfy the conditions
of the Corollary B and the corresponding An will be an M∗-group.

In fact we shall prove a stronger result. For each n = 12t + r, we shall
find several different sets of generators satisfying Corollary B. For each set
the length of the cycle P will be a prime number depending on t0 and r.

Once this is done, in Section 4 we deal with the lower values of n to prove
that just A5 and A10 are M∗-groups for n < 13.

Section 5 is devoted to the study of the surfaces which have these groups
as automorphism group. We prove that they are topologically determined
by the information we have on the group, and obtain explicitly all of them
for the groups A5, A10, A13 and A14.

Finally Section 6 is written in terms of real genus. Given a group G, its
real genus ρ(G) is the minimum algebraic genus of the surfaces on which
G acts as automorphism group. Obviously if G is an M∗-group, ρ(G) =
o(G)/12 + 1. The real genus of just six alternating group remains to be
determined and it is calculated in this Section.

Remark 1. Related results on the action of alternating groups on Riemann
surfaces were obtained by Conder. For these surfaces the relevant point is
that the group be generated by two elements of orders 2 and 3. In [5] it is
seen that all but 14 alternating groups are generated by two such elements
whose product has order 7 or 8. However this fact does not imply by itself
that An be an M∗-group: see just the paper [5], or else [9] where A21, A22

and A29 are discussed in detail.

2. The diagrammatic procedure

For each of the twelve classes according to the residue of n modulo 12, we
give a starting diagram as simple as possible corresponding to the first value
of n. In this diagram of n vertices the triangles correspond to the 3-cycles
of X read anticlockwise. The edges are of three types: i) their ends belong
to two different triangles; ii) only one end is in a triangle; iii) both ends
belong to the same triangle. In the latter type we shall indicate it in the
diagrams by a curved segment (see Figure 5 below). The edges correspond
to the 2-cycles of A. The points paired by the vertical axis of symmetry
correspond to the 2-cycles of B. The fixed points of X are the ends of
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edges (of type ii) not lying in a triangle. It is easy to see that X, A and
B fulfill the conditions in Proposition C and so these permutations satisfy
(XB)2 = (AB)2 = 1.

Figure 1.

Let us observe the diagram in Figure 1, where the dotted lines stand for
several triangles and edges which will be seen in each case. The four corners
in the picture are not vertices neither of this diagram nor of the following
ones. Let us assume that the black points belong to a cycle of XA and the
white points belong to another different cycle.

In the upper half of the diagram we add four new triangles on the ver-
tical lines symmetrically with respect to the vertical axis. We have three
possibilities as it is seen in Figure 2.

(a) (b) (c)

Figure 2.

We see that in case (a) the length of the “black” cycle B has increased
in 8, in case (b) in 6 and in the case (c) in 4. The length of the “white” cy-
cle W has increased in 4, 6 or 8, respectively. Let us call insider block, mixed
block and outsider block, respectively, the added blocks in cases (a), (b)
and (c).

Let us suppose that we have a “black” cycle with length mb and a “white”
cycle with length mw. If we add x insider blocks, y mixed blocks and z
outsider blocks the lengths of the new cycles B and W will become |B| =
mb + 8x + 6y + 4z and |W| = mw + 4x + 6y + 8z.
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Proposition 2.1. a) Let us suppose that m = mb is a prime number and
mw an even number. For each prime number s, such that

4(t − t0) + m ≤ s ≤ 8(t − t0) + m,

the system

s = m + 8x + 6y + 4z,(2.1)

t − t0 = x + y + z,

has solution.

b) Now let mb be even and m = mw prime. For each prime number s,
such that

4(t − t0) + m ≤ s ≤ 8(t − t0) + m,

the system

s = m + 4x + 6y + 8z,(2.2)

t − t0 = x + y + z,

has solution.

Proof. a) The number s − m is an even number such that

4(t − t0) ≤ s − m ≤ 8(t − t0).

We may see that if s − m ≤ 6(t − t0) then

x = 0, y =
s − m − 4(t − t0)

2
, z =

6(t − t0) − (s − m)

2
,

is a solution of the system (2.1). If s − m > 6(t − t0) then

x =
s − m − 6(t − t0)

2
, y =

8(t − t0) − (s − m)

2
, z = 0,

is a solution of the system.

b) For system (2.2) the solutions are the same ones interchanging the roles
of x and z. �

In the next Section we apply this procedure to n = 12t + r, r =
0, 1, . . . , 11, taking t0 = 1 or 2 as it is indicated in each class.
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3. The groups An with 13 ≤ n ≤ 167

This Section is devoted to prove the main result.

Theorem 3.1. The group An is an M∗-group for all n ≥ 13.

Proof. We begin with n = 13 and n = 14. It is known that A13 is an
M∗-group [8], but we give a direct proof by means of the singular diagram
shown in Figure 3.

1

13

32

4

5 6

12 11

10

7

98

Figure 3.

According to the description in the previous Section, we have the follow-
ing permutations:

X = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13),

A = (1, 13)(2, 8)(3, 9)(4)(5, 12)(6, 11)(7, 10),

B = (1)(2, 3)(4)(5, 6)(7)(8, 9)(10)(11, 12)(13).

We are going to obtain the permutation XA with the diagram. Recalling
that X runs in an anticlockwise order the triangles and A runs the edges,
we have that XA is the composition of three cycles

XA = (1, 8, 3, 13)(2, 9, 10, 6, 4, 12, 7)(5, 11).

We may see that there is a cycle of prime length 7, this number does not
divide the lengths of the other cycles and finally this cycle includes, for in-
stance, 10 which is a fixed point of B. From Corollary B these permutations
X, A, B, generate A13 and it is an M∗-group.

We now prove that A14 is also an M∗-group. Let us consider the Figure 4
and we proceed as in former group.
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2 123

1

10

11
8

13 14

4

5 6

Figure 4.

The permutation XA is (1, 8, 5, 11, 3)(2, 12, 14, 10, 6, 4, 9, 13, 7). The 5-
cycle contains the point 1 which is a fixed point of B. From Corollary B,
A14 is an M∗-group.

We shall come back to these two groups in Section 5 where we obtain all
their possible sets of generators as M∗-groups.

From now on consider n ≥ 15, n = 12t + r, r = 0, 1, . . . , 11, t0 ≤ t ≤ 13.
We run r from 0 to 11. In the first three cases t0 = 2, and for the remaining
cases t0 = 1. We study the case n = 12t in full detail to show the procedure.
The remaining cases are similar and we give also the diagram and the cycle
structure of XA for t0.

Case 12t. Let us observe Figure 5

F

Figure 5.

We may see that the white cycle has length mw = 7, the black cycle has
length mb = 8. The vertex F is a fixed point of XA. The remaining vertices
form a cycle of length 8. This cycle will not change when we add blocks.

We write the cycle structure of XA as [7, 8, 8, 1] and we denote as m the
prime length, in this case 7.
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Now we see the general case for an arbitrary t > t0. Remind that t0 = 2.
Let s be a prime number between 7 + 4(t − 2) and 7 + 8(t − 2). It exists a
cycle of XA with length s if and only if the following system has solution:

s = 7 + 4x + 6y + 8z

t − 2 = x + y + z.

This system has always solution by Proposition 2.1. We have that
the structure of XA for an arbitrary t and each prime s will be [s, 12t −
(s + 9), 8, 1]. In order to see that the conditions in Corollary B are satisfied
we must check that s does not divide the length of another cycle. The only
possibility would be s dividing |B|, but it is not possible because

|B| = 8 + 8x + 6y + 4z < 2s = 14 + 8x + 12y + 16z.

Furthermore the cycle W always contains the two lowest points in the
diagram which are paired by the generator B. Thus the conditions in the
Corollary B are satisfied for each t and each s as above. In particular A12t

is an M∗-group for each t ≥ 2.

For the remaining cases r = 1, 2, . . . , 11, we give the diagram for t0, the
corresponding prime m and the cycle structure of XA. We shall not mark
the points of the cycles B and W. Instead of we shall mark the points fixed
of B or the points in a cycle of B which appear in the cycle of length prime
in order to assure that the conditions in Corollary B are satisfied.

Case 12t + 1
We have t0 = 2, m = |B| = 11, |W| = 4, and there is another cycle of

length 10. The cycle structure is [11, 4, 10].

Figure 6.
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Case 12t + 2
Now t0 = 2, m = |B| = 13, |W| = 6, another cycle of length 6 and a fixed

point of XA. The cycle structure is [13, 6, 6, 1].

F

Figure 7.

From now on t0 = 1.

Case 12t + 3
We see that m = |B| = 7, |W| = 4, and there is another cycle of length 4.

The cycle structure of XA is [7, 4, 4].

Figure 8.
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Case 12t + 4
In this case m = |B| = 7, |W| = 2, and we have two more cycles of

length 3 and 4. The cycle structure of XA is [7, 2, 3, 4].

Figure 9.

Case 12t + 5
Here m = |B| = 5, |W| = 6 and there is another cycle of length 6. The

cycle structure of XA is [5, 6, 6].

Figure 10.
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Case 12t + 6

In this case m = |B| = 7, |W| = 2, and there is another cycle of length 8.
There is also a fixed point F of XA. The cycle structure of XA is [7, 2, 8, 1].

F

Figure 11.

Case 12t + 7

Now m = |B| = 7, |W| = 8, and we have another cycle of length 4. The
cycle structure of XA is [7, 8, 4].

Figure 12.
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Case 12t + 8

We have in this case |B| = 4, m = |W| = 5, and two cycles of lengths 8
and 3. The cycle structure of XA is [5, 4, 8, 3].

Figure 13.

Case 12t + 9

Now m = |B| = 11, |W| = 4, and there is another cycle of length 6. The
cycle structure of XA is [11, 4, 6].

Figure 14.
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Case 12t + 10
Here we have m = |B| = 7, |W| = 8, and two cycles of lengths 5 and 2.

The cycle structure of XA is [7, 8, 5, 2].

Figure 15.

Case 12t + 11
Finally, |B| = 8, m = |W| = 11, and there is another cycle of length 4.

The cycle structure of XA is [11, 8, 4].

Figure 16.

Observe that in all twelve cases 2m is greater than the length of the other
relevant cycle, and so the prime length does not divide the other lengths.
So the proof is finished and all An, n ≥ 13, are M∗-groups. �
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Remark 2. In [3, Section 5] Conder states that for n > 167, An is an
M∗-group with order of XA equal to 7 and that the same happens for some
values of n. In [4, Section 4] he proves that for any k > 6 there exists Nk > 0
such that for every n > Nk, An is an M∗-group with order of XA equal to k.
So the general question remained open for n < 168.

Example. As an example of the procedure take, for instance, n = 130. We
have r = 10, t = 10, t0 = 1, m = |B| = 7, |W| = 8, and cycle structure
[7, 8, 5, 2], see Figure 15.

The primes s between 4(t− t0)+m and 8(t− t0)+m are in our case: s =
43, 47, 53, 59, 61, 67, 71, 73, 79. We summarize in Table 1 the cycle structure
of XA for each s as well as the corresponding values of x, y, z, obtained from
Proposition 2.1.

s x y z
43 [43, 80, 5, 2] 9 0 0
47 [47, 76, 5, 2] 7 2 0
53 [53, 70, 5, 2] 4 5 0
59 [59, 64, 5, 2] 1 8 0
61 [61, 62, 5, 2] 0 9 0
67 [67, 56, 5, 2] 0 6 3
71 [71, 52, 5, 2] 0 4 5
73 [73, 50, 5, 2] 0 3 6
79 [79, 44, 5, 2] 0 0 9

Table 1

We shall return to this example in Section 5.

4. Groups An with n < 13

In this Section we deal with the groups An for n < 13. It is already known
that A5 and A10 are M∗-groups [8], and we shall come back to them in
Section 5. For the other values of n we prove that they are not M∗-groups.

As we saw in Section 1, to prove that a given group is not an M∗-group,
we need to check that there exists no triple of generators X, A, B, satisfying
that X has order 3, and A, B, XB and AB have order 2. Proposition C
gives us the conditions that B must fulfill.

Once obtained a suitable triple (X, A, B), we recall that if the order of
XA is p and the order of XAB is q, the group < X, A, B > is a quotient of
G3,p,q. For low values of p and q the groups G3,p,q are finite and of low order
smaller than the relevant An. The only groups G3,p,q which appear in this
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Section and must be checked in another way are G3,9,12, G3,10,10 and G3,10,12.
In these cases we obtain via MAPLE the order of the group generated by
the corresponding triple.

We are now ready to establish the following

Theorem 4.1. Let n < 13. Then An is an M∗-group if and only if n = 5
or 10.

Proof. The groups A5 and A10 were proved to be M∗-groups in [8]. We
must check the other values of n.

• A6 and A7.

Their elements have order at most 7, and the groups G3,p,q with both
p, q ≤ 7, have order at most 108 [6]. So A6 and A7 are not M∗-groups.

• A8.

Its elements have order at most 7 or else 15. In addition to the former
paragraph, G3,7,15 has order 12180. So the unique possibility is that A8 be a
quotient of G3,15,15. Then the order of XA must be 15. It is easy to check
that this only holds if

X = (1, 2, 3)(5, 7, 8)

A = (4, 5)(6, 7),

but then there exists no B such that B, XB and AB have order 2. So A8 is
not an M∗-group.

• A9.

We look for the possible sets of generators X, A, B. Let first

X = (1, 2, 3)(4, 5, 6)(7, 8, 9);

then by Proposition C

B = (1)(2, 3)(4, 7)(5, 9)(6, 8),

and there are four possible permutations A:

A1 = (1)(2, 4)(3, 7)(5, 9)(6, 8),

A2 = (1)(2, 4)(3, 7)(5, 6)(9, 8),

A3 = (1)(2, 4)(3, 7)(5, 8)(6, 9),

A4 = (1)(2, 4)(3, 7)(5)(9)(6)(8).



The real genus of the alternating groups 881

Since A3 is obtained from A2B, and A4 from A1B, in both cases inter-
changing the cycles (4, 5, 6) and (7, 8, 9), we need only to consider A1 and
A2. Firstly A2: the element XA2 has order 7 and XA2B has order 9, but
G3,7,9 has order 504 and A2 is discarded. Finally A1: the element XA1 has
order 12 and XA1B has order 9. Since G3,9,12 is not known to be finite, we
check via MAPLE the order of the group generated by X, A1 and B, which
is 648.

Now let
X = (1)(2)(3)(4, 5, 6)(7, 8, 9).

Then there are two possibilities for B, namely

(1)(2, 3)(4, 7)(5, 9)(6, 8),

(1)(2)(3)(4)(7)(5, 6)(8, 9),

but in both cases there exists no A such that the generated subgroup be
transitive. The same happens finally if

X = (1)(2)(3)(4)(5)(6)(7, 8, 9),

B = (1, 2)(3, 4)(5, 6)(7)(8, 9).

So we have obtained that A9 is not an M∗-group.

• A11.

Let
X = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10)(11).

Then B must be
(10, 11)(1)(4)(7)(2, 3)(5, 6)(8, 9),

or
(10)(11)(1)(2, 3)(4, 7)(5, 9)(6, 8).

In both cases there exists no suitable A such that < X, A, B > be transitive.
The same happens for

X = (1, 2, 3)(4, 5, 6)(7)(8)(9)(10)(11),

and B one of

(7)(8)(9)(10, 11)(1, 4)(2, 6)(3, 5),

(7)(1)(4)(2, 3)(5, 6)(8, 9)(10, 11),

or finally
(1)(4)(7)(8)(9)(10)(11)(2, 3)(5, 6).

So A11 is not an M∗-group.
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• A12

This is the most involved case. Since the procedure to follow has already
been explained we sketch here the results.

a) Consider first

X = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12).

Then B can be
(1, 4)(2, 6)(3, 5)(7, 10)(8, 12)(9, 11),

or

(1)(4)(7)(10)(2, 3)(5, 6)(8, 9)(11, 12).

The first possible B provides 24 possible permutations A. Once considered
the orders of XA and XAB only a single triple must be checked, namely
the given by

A = (1)(4)(2)(6)(3, 7)(5, 10)(8, 12)(9, 11),

but the group < X, A, B > has order 120.

In the second value for B we obtain 17 possible permutations A and only
four cases need to be checked:

A1 = (1, 4)(7, 10)(2, 8)(3, 9)(5, 12)(6, 11),

A2 = (1, 4)(7, 10)(2, 9)(3, 8)(5, 11)(6, 12),

A3 = (1)(4)(7)(10)(2, 8)(3, 9)(5, 12)(6, 11),

A4 = (1)(4)(7)(10)(2, 9)(3, 8)(5, 11)(6, 12).

The orders of the generated groups are respectively 120, 120, 576 and 576.

b) The second possible X is

(1)(2)(3)(4, 5, 6)(7, 8, 9)(10, 11, 12).

Then

B = (1)(4)(7)(10)(2, 3)(5, 6)(8, 9)(11, 12),

and A must be

(1, 4)(7, 10)(2, 8)(3, 9)(5, 11)(6, 12),

or

(1, 4)(7, 10)(2, 8)(3, 9)(5, 12)(6, 11).

In both cases the group < X, A, B > is a quotient of G3,8,10, which has
order 4320.
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c) Finally if

X = (1)(2)(3)(4)(5)(6)(7, 8, 9)(10, 11, 12),

then

B = (1, 2)(3, 4)(5, 6)(7, 10)(8, 12)(9, 11)

and

A = (1, 7)(2, 10)(3, 8)(4, 12)(5, 9)(6, 11).

But XA has order 6, and the group G3,6,q has order at most 3q2, [6]. Hence
A12 is not an M∗-group.

We have then finished the proof and A5 and A10 are the only M∗-groups
for n < 13. �

5. The surfaces with maximal symmetry

A surface which has an M∗-group G as automorphism group is said to have
maximal symmetry [11]. Of course the algebraic genus p of the surface is
determined by the order of the group, because this order is 12(p−1). We are
going to see that the surface is topologically determined by the information
we get from the M∗-group An with partial presentation:

< X, A, B | X3 =A2 =B2 =(XB)2 =(AB)2 =(XA)p =(XAB)q =1, . . . >

The algebraic genus p of the surface is related with its topological type,
by means of the formula

p = ηg + k − 1,

where g is the topological genus, k is the number of boundary components,
and η = 2 if the surface is orientable or η = 1 if non-orientable.

First of all consider the orientability. If G acts on an orientable sur-
face G has a subgroup of index 2. Hence the simple groups act only on
non-orientable surfaces. In our case the surface is always non-orientable,
and so p = g + k − 1.

It suffices now to obtain k for having also g. By [11] and [7], k = o(G)/2p
and, by interchanging A and AB, there is another surface with k = o(G)/2q.

Thus to know the topological types of surfaces with maximal symmetry
having An as automorphism group is equivalent to have all partial presen-
tations of An as a quotient of G3,p,q. Explicitly

n!

2
= 12(p − 1)
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and so
n!

24
+ 1 = p = g + k − 1,

where k = n!
2·2p

and k = n!
2·2q

.

This knowledge of each An as a quotient of G3,p,q requires an individual
study group by group, and it becomes much harder as n grows. We make it
here explicitly for the four first values of n, precisely 5, 10, 13 and 14.

• A5.

Necessarily

X = (1, 2, 3)(4)(5),

B = (1)(2, 3)(4, 5),

A = (1)(2, 4)(3, 5).

Then XA = (1, 4, 2, 5, 3) and XAB = (1, 5, 2, 4, 3). The group generated
by X, A, B is a quotient of G3,5,5. Besides it includes elements of orders 2, 3
and 5 and so its order is a multiple of 30. So < X, A, B >= A5. In
fact, Coxeter pointed out in [6] that A5 ≈ G3,5,5. This is the unique way
to obtain A5 as an M∗-group, and the surface is non-orientable and has
algebraic genus 6, topological genus 1, and 6 boundary components.

• A10.

Let first
X = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10).

Then
B = (10)(1)(2, 3)(4, 7)(5, 9)(6, 8),

and there are two possible A. If

A = (10, 1)(4)(7)(2, 5)(3, 9)(6, 8),

XA has order 5: we discard it since G3,5,q has order at most 120. If

A = (10, 1)(4)(7)(2, 9)(3, 5)(6, 8),

then

XA = (1, 9, 7, 6, 4, 3, 10)(2, 5, 8),

XAB = (1, 5, 6, 7, 8, 3, 10)(2, 9, 4),

both of order 21. Besides one applies Corollary B to the 7-cycle of XA, and
hence < X, A, B >= A10 is a quotient of G3,21,21. The surface has algebraic
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genus 10!
24

+ 1 with 10!
84

boundary components. This is the unique action of
A10 as an M∗-group because

X = (1, 2, 3)(4, 5, 6)(7)(8)(9)(10)

gives
B = (1)(4)(2, 3)(5, 6)(7, 8)(9, 10),

or
(7)(8)(1, 4)(2, 6)(3, 5)(9, 10),

but in none case there exists A such that < X, A, B > be transitive.

• A13.

This is the first case in which several actions exist. Let first

X = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13).

Then B is necessarily

(13)(1)(4)(7)(10)(2, 3)(5, 6)(8, 9)(11, 12).

We now have four possibilities for A, namely

A1 = (13, 1)(4)(7, 10)(2, 8)(3, 9)(5, 11)(6, 12),

A2 = (13, 1)(4)(7, 10)(2, 8)(3, 9)(5, 12)(6, 11),

A3 = (13, 1)(4)(7, 10)(2, 9)(3, 8)(5, 11)(6, 12),

A4 = (13, 1)(4)(7, 10)(2, 9)(3, 8)(5, 12)(6, 11),

and since A3 and A4 are obtained from A1 and A2 by replacing A by AB
we consider only the two former.

First, take A2:

XA2 = (1, 8, 3, 13)(2, 9, 10, 6, 4, 12, 7)(5, 11),

XA2B = (1, 9, 10, 5, 12, 7, 3, 13)(2, 8)(4, 11, 6),

and applying Corollary B to the 7-cycle of XA2 we have that < X, A2, B >=
A13 is a quotient of G3,24,28. Note that these generators correspond to the
diagram in Figure 3, seen in Section 3.

Now take A1. The order of XA1 is 12 and the order of XA1B is 18
but these permutations have no cycle of prime length to apply Corollary B.
However the element B(A1XB)2 has order 13. The only maximal subgroups
of A13 having elements of order 13 are PSL(3, 3) and 13 : 6, but none of
them has elements of order 12. So also < X, A1, B >= A13 and it is a
quotient of G3,12,18. Let us observe that Corollary B gives sufficient but not
necessary conditions.



886 J. J. Etayo Gordejuela and E. Mart́ınez

Now consider

X = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10)(11)(12)(13).

Then
B = (10, 11)(12, 13)(1)(2, 3)(4, 7)(5, 9)(6, 8).

We have again four possibilities for A:

A1 = (1)(10, 4)(11, 7)(12, 5)(13, 9)(2, 6)(3, 8),

A2 = (1)(10, 4)(11, 7)(12, 5)(13, 9)(2, 8)(3, 6),

A3 = (1)(10, 4)(11, 7)(12, 6)(13, 8)(2, 5)(3, 9),

A4 = (1)(10, 4)(11, 7)(12, 6)(13, 8)(2, 9)(3, 5),

and A2 and A4 are obtained from A1 and A3 by substituting A by AB, and
(10, 11) by (12, 13). One obtains the orders of XA1, XA1B, XA3 and XA3B
all equal to 13. Now B(A1XB)2 and B(A3XB)2 have order 18. Neither
PSL(3, 3) nor 13 : 6 have elements of order 18. Hence both < X, A1, B >
and < X, A3, B > are A13, and it is a quotient of G3,13,13.

Finally if X were

(1, 2, 3)(4, 5, 6)(7)(8)(9)(10)(11)(12)(13),

B could be
(1, 4)(2, 6)(3, 5)(7, 8)(9, 10)(11, 12)(13),

or
(1)(2, 3)(4)(5, 6)(7)(8)(9)(10, 11)(12, 13),

but in no case there exists a suitable A with < X, A, B > transitive.

Hence A13 admits M∗-group presentations as a quotient of G3,24,28, G3,12,18

and G3,13,13 and it acts on surfaces of algebraic genus 13!
24

+1, with 13!
96

, 13!
112

,13!
48

,
13!
72

and 13!
52

boundary components, respectively.

• A14.

We may proceed as the previous group. Since much more cases appear
we only give the generating triples.

Let first

X = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13)(14),

then the permutation B is either

(13, 14)(1)(4)(2, 3)(5, 6)(7, 10)(8, 12)(9, 11),

or
(13)(14)(1)(4)(7)(10)(2, 3)(5, 6)(8, 9)(11, 12).
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In the first case one gets twelve possible values for A, of which five provide
generating triples as follows:

A1 = (13, 2)(14, 3)(1, 4)(5, 7)(6, 10)(8, 12)(9)(11),

A2 = (13, 2)(14, 3)(1, 4)(5, 7)(6, 10)(8)(12)(9, 11),

A3 = (13, 7)(14, 10)(1)(4)(2, 8)(3, 12)(5, 9)(6, 11),

A4 = (13, 7)(14, 10)(1)(4)(2, 12)(3, 8)(5, 11)(6, 9),

A5 = (13, 7)(14, 10)(1, 4)(2)(3)(5, 12)(6, 8)(9, 11),

Let us study them by order:

XA1 = (1, 8, 5, 11, 3)(2, 12, 14, 10, 6, 4, 9, 13, 7) ,

and the 5-cycle contains the point 1 fixed by B. So one applies Corollary B
and since XA1B has order 45, the group < X, A1, B >= A14 is a quotient
of G3,45,45.

Now XA2 = (1, 13, 2, 14, 3, 4, 7, 8, 11, 12, 6)(5, 10, 9) and the 11-cycle ob-
viously satisfies Corollary B. XA2B has order 33 and < X, A2, B >=A14 is
a quotient of G3,33,33.

The element XA3 = (1, 8, 5, 11, 3)(2, 12, 14, 10, 6, 4, 9, 13, 7). Again the
5-cycle contains the point 1, and XA3B has order 45: a new presentation as
a quotient of G3,45,45. These generators correspond to Figure 4 in Section 3.

We deal with A4. Then XA4 = (1, 12, 14, 10, 5, 9, 13, 7, 3)(2, 8, 6, 4, 11),
and the 5-cycle contains 4, a fixed point of B. Since XA4B has order 45,
we have a third presentation of A14 as a quotient of G3,45,45.

Let now take A5, then XA5 = (1, 2, 3, 4, 12, 14, 10, 9, 13, 7, 6)(5, 8, 11).
Obviously the 11-cycle satisfies Corollary B, and since XA5B has order 13,
the group < X, A5, B >= A14 is a quotient of G3,13,33.

The other possible values of X do not give generating triples and so we
have obtained that A14 is a quotient of G3,45,45, G3,33,33, G3,13,33 and G3,60,60

and it acts on surfaces of algebraic genus 14!
24

+ 1, with 14!
52

, 14!
132

, 14!
180

and 14!
240

boundary components.

For bigger n, the procedure given in Section 3 provides a large number of
values of p and q. See the example on A130 where the cycle structure of XA
is displayed in Table 1 and gives nine different values for p. However there
are much more possible values, since the obtained ones have been got with
just a single diagram as departure, and besides there are presentations not
satisfying the sufficient conditions of Corollary B (see A13 above). Hence
for a given n one must follow the procedure in this Section to obtain all
corresponding surfaces.



888 J. J. Etayo Gordejuela and E. Mart́ınez

6. The determination of the real genus

A finite group G may act as an automorphism group of different bordered
Klein surfaces. The minimum algebraic genus of these surfaces is called the
real genus of G and it is denoted by ρ(G). Obviously, ρ(G) ≥ o(G)

12
+ 1. The

systematical study of the real genus was begun by C. L. May in [16]. Two
kinds of problems appear. Firstly to obtain the groups with real genus n for
each natural number n. On the other hand, for each given family of finite
groups, to calculate the real genus of each member in that family.

Up to now, the groups such that 0 ≤ ρ(G) ≤ 8 have been calculated.
Groups with real genus 0 are Cn and Dn (cyclic groups and dihedral groups,
respectively). The groups with real genus 1 are C2 ×Cn for n ≥ 4 even, and
C2 × Dn for n even. If ρ(G) ≥ 2, the number of groups for each genus is
finite. There is no group with real genus 2. The groups with real genus 3 are
S4 and A4. For ρ(G) = 4, 5, see [15], [16] and [17] and a correction in [19].
For genus 6, 7 and 8, see [12] and a couple of amendments in [10]. The real
genus of several families of groups is also known. In particular, for simple
groups, D. Singerman in [21] determined the groups PSL(2, q) which are
M∗-groups, and C. L. May obtained in [18] the real genus of the remaining
groups PSL(2, q). In that paper he gives a list of open problems, the first
of which is to determine the real genus of the alternating groups An. He
recalls the results of Conder for n ≥ 168 and questions for the real genus of
An when n < 168. In Theorems 3.1 and 4.1, we have proved that all simple
groups An are M∗-groups with the only exceptions of n = 6, 7, 8, 9, 11, 12.
So excepting these values of n,

ρ(An) =
n!

24
+ 1.

Since May obtained in [18] that ρ(A6) = 61, in this Section we obtain
the real genus of the five missing groups.

The most useful tool for obtaining finite groups as automorphism groups
of Klein surfaces is the theory of NEC groups. For a general work of this
topic see [1, Chapter 4]. To be precise, if G is an automorphism group of a
Klein surface of algebraic genus

p ≤ o(G)

24/5
+ 1,

then G is an image of an NEC group Γ whose signature σ(Γ) is in the
following table, in such a way that the kernel of epimorphism is a surface
group [1, Lemma 4.1.1]:
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σ(Γ) p

(0, +, [−], {(2, 2, 2, n)}) o(G)
4n/(n−2)

+ 1

(0, +, [−], {(2, 2, 3, 3)}) o(G)
6

+ 1

(0, +, [3], {(2, 2)}) o(G)
6

+ 1

(0, +, [2, 3], {(−)}) o(G)
6

+ 1

(0, +, [−], {(2, 2, 3, 4)}) o(G)
24/5

+ 1

So for each of the five alternating groups we study whether they are an
image of these NEC groups following the same order. This question depends
on the existence of the certain partial presentation of An. For, G is such
an image of (0, +, [−], {(2, 2, m, n)}) if and only if it can be generated by
three elements a, b, c satisfying a2 = b2 = c2 = (ab)m = (ac)n = 1 (see [1,

Lemma 4.1.2]). Observe that m = 2, n = 3 gives p =o(G)
12

+ 1. This is the
reason why this presentation provides the M∗-groups.

In the same way G is an image of (0, +, [3], {(2, 2)}) or (0, +, [2, 3], {(−)})
if and only if it is generated by two elements of orders 2 and 3. We only
arrive to this level for the group A8, but this is not a (2, 3)-group, [20].

Hence we shall always be concerned by the existence of a triple a, b, c
satisfying a2 = b2 = c2 = (ab)m = (ac)n = 1. We call Gabc the group
generated by the triple, and check whether Gabc is the relevant group An. For
brevity, we call [2, 2, m, n] the group with signature (0, +, [−], {(2, 2, m, n)}).
• A7.

First of all we prove that A7 is not an image of [2, 2, 2, 4]. Let us suppose
the contrary. Then it should have generators a, b, c, such that a2 = b2 = c2 =
(ab)2 = (ac)4 = 1. Call p = o(bc) and q = o(abc). Then A7 is a quotient of
G4,p,q. Because the elements of A7 have order at most 7 we deduce from [6]
that p and q must be 6 or 7. Furthermore the group A7 does not contain
any dihedral subgroup D7. So p = q = 6.

Let bc = (1, 2, 3)(4, 5)(6, 7). Then b must be (1, 2)(4, 5) and c = (1, 3)(6, 7).
The element a is then (1, 2)(3, 6) or (4, 5)(3, 6). In both cases the group gen-
erated by a, b and c is not transitive.

Now we see that A7 is not an image of [2, 2, 2, 5]. Let us suppose the
contrary. Since the element ac has order 5 it must be (1, 2, 3, 4, 5). At least
one of these points must be fixed by a. Let us take 1 as fixed point. Then
a = (2, 5)(3, 4) and so c = (1, 2)(3, 5). Then b applies 6 to 7 or one of them
is a fixed point. In both cases the generated group is not transitive.
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We prove now that A7 is an image of [2, 2, 3, 3]. We define

a = (1, 2)(4, 5),

b = (1, 3)(4, 6),

c = (1, 6)(4, 7).

We have a, b and c of order 2, and ab and ac of order 3. Besides bc =
(1, 3, 6, 7, 4) and abc = (1, 2, 3, 6, 7, 4, 5). The generated group Gabc has ele-
ments with orders 2, 3, 5 and 7, and so its order is a multiple of 210, but A7

has no proper subgroup with such an order. We have proved that

ρ(A7) =
o(A7)

6
+ 1 = 421.

• A8.

We start proving that A8 is not an image of [2, 2, 2, 4]. If this were the
case it would be generated by elements a, b, c, satisfying a2 = b2 = c2 =
(ab)2 = (ac)4 = 1. First consider ac. We have two possibilities:

ac = (1, 2, 3, 4)(5, 6),

ac = (1, 2, 3, 4)(5, 6, 7, 8).

In the first case there are three possibilities for a and hence for c. For each
a we calculate b. The procedure provides the following candidate triples:

a c b
(2, 4)(5, 6) (1, 2)(3, 4) (1, 7)(2, 5)(3, 8)(4, 6)
(1, 3)(7, 8) (1, 4)(2, 3)(5, 6)(7, 8) (1, 7)(2, 5)(3, 8)(4, 6)
(1, 2)(3, 4)(5, 6)(7, 8) (1, 3)(7, 8) (1, 5)(2, 6)(3, 7)(4, 8)

In the first two sets the order of bc or of abc is 4, and so the group
generated by these elements is a quotient of G4,4,q which has order lower
than o(A8). We may discard these triples. In the last case this argument
fails because o(bc) = o(abc) = 6, and G4,6,6 is infinite. Instead of we obtain
via MAPLE the order of Gabc, and that order is 192.

In the second case there are three (non equivalent) possibilities for a.
Once determined c we calculate b and a lot of possible b are obtained. If
o(bc) or o(abc) are lower than 6 the triple is discarded. Finally we have the
remaining triples. Again we check via MAPLE the order of the generated
groups. The result is displayed in the following Table:

a c b o(Gabc)
(2, 4)(6, 8) (1, 2)(3, 4)(5, 6)(7, 8) (1, 5)(6, 8) 192
(2, 4)(6, 8) (1, 2)(3, 4)(5, 6)(7, 8) (1, 5)(2, 4) 192
(1, 2)(3, 4)(5, 6)(7, 8) (1, 3)(5, 7) (1, 5)(2, 6)(3, 8)(4, 7) 48
(1, 2)(3, 4)(5, 6)(7, 8) (1, 3)(5, 7) (1, 6)(2, 5)(3, 7)(4, 8) 48
(1, 5)(2, 8)(3, 7)(4, 6) (1, 6)(2, 5)(3, 8)(4, 7) (3, 7)(4, 6) 48
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We may conclude that A8 is not an image of [2, 2, 2, 4].
Consider now [2, 2, 2, 5]. In this case ac has order 5. Let ac = (1, 2, 3, 4, 5).

If a has not fixed points then it must have a cycle including just one fixed
point of ac, for instance, the cycle is (1, 6). In such a case there does not
exist c of order 2. So that a must have fixed points, exactly four points. At
least one of them must appear in the 5-cycle of ac. Let us take 1. Then
a = (2, 5)(3, 4), c = (1, 2)(3, 5). Now b applies the fixed points of a among
themselves. Since the points 6, 7, 8 are fixed by a and by c, and two of them
are either fixed points or form a 2-cycle of b, the group Gabc is not transitive.

We now study the case [2, 2, 2, 6]. Reasoning as above there appear
nine possibilities for the triple (a, b, c). The orders of the groups Gabc are
checked via MAPLE and they are at most 576. Hence A8 is not an image of
[2, 2, 2, 6].

The following case to be considered is [2, 2, 3, 3]. The two possibilities in
this case are discarded in the same way.

The next case is [2, 2, 3, 4]. Let

a = (2, 4)(7, 8),

b = (2, 5)(6, 7),

c = (1, 2)(3, 4)(5, 6)(7, 8).

We have a, b and c of order 2, ab = (2, 4, 5)(6, 7, 8) of order 3 and ac =
(1, 2, 4, 3)(5, 6) of order 4. Besides the elements

abc = (1, 2, 3, 4, 6, 8, 5),

c(abacb)2 = (1, 5, 6, 4, 7)(2, 3, 8),

have order 7 and 15, respectively. There exists no proper subgroup in A8

having elements of order 7 and 15. Hence a, b, c generate A8.
The real genus of A8 is then

ρ(A8) =
8!

2

5

24
+ 1 = 4201.

• A9.

This group is an image of [2, 2, 2, 4]. To prove it we define a, b, c as

a = (2, 4)(5, 6),

b = (1, 9)(2, 5)(3, 7)(4, 6),

c = (1, 2)(3, 4)(5, 6)(7, 8).

These elements satisfy ab of order 2 and ac of order 4. Besides the element
bc = (1, 9, 2, 6, 3, 8, 7, 4, 5) has order 9 and a(bc)2 = (1, 2)(3, 7, 5, 8, 4)(6, 9)
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has order 10. The only maximal subgroups of A9 with order a multiple of
10 are A8, S7, (A6 × 3) : 2 and (A5 × A4) : 2. No one of them has elements
of order 9 and so the generated group Gabc is A9.

The real genus of A9 is

ρ(A9) =
9!

2 · 8 + 1 = 22681.

• A11.

We must first check whether it is an image of [2, 2, 2, 4]. By straightfor-
ward calculation we obtain that all suitable triples generate non transitive
groups. So we now deal with [2, 2, 2, 5]. We take

a = (2, 5)(3, 4)(7, 10)(8, 9),

b = (1, 11)(3, 9)(4, 8)(7, 10),

c = (1, 2)(3, 5)(6, 7)(8, 10).

These elements satisfy ab of order 2 and ac of order 5. Furthermore a(bc)2 =
(1, 2, 9, 10, 4, 5, 11)(3, 6, 8) has order 21 and

abcacbc = (1, 2, 10, 5)(3, 7, 8, 11, 9)(4, 6)

has order 20. The group A11 has no subgroup containing simultaneously
elements of order 20 and 21. Then the generated group Gabc is A11.

The real genus of A11 is

ρ(A11) =
11!

2 · 20
3

+ 1 = 2993761.

• A12.

First we check whether it is an image of [2, 2, 2, 4]. There are 25 non-
equivalent triples which are candidates to generate our group. In all cases
MAPLE gives the order of the generated group to be very smaller than the
order of A12, so A12 is not an image of [2, 2, 2, 4].

We now see that it is an image of [2, 2, 2, 5]. Let

a = (2, 5)(3, 4)(7, 10)(8, 9),

b = (1, 11)(2, 8)(3, 4)(5, 9)(6, 12)(7, 10),

c = (1, 2)(3, 5)(6, 7)(8, 10).

These elements satisfy ab of order 2 and ac of order 5. Besides the ele-
ments bc and abcacbc are respectively (1, 11, 2, 10, 6, 12, 7, 8)(3, 4, 5, 9) and
(1, 2, 6, 7, 8, 5, 12)(3, 11, 4, 9, 10) of order 8 and 35 respectively. The unique
maximal subgroup of A12 having elements of order 35 is (A7 × A5) : 2, but
it has not elements of order 8. Hence the generated group Gabc is A12.
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The real genus of A12 is

ρ(A12) =
12!

2 · 20
3

+ 1 = 35925121.

We summarize these results in the following

Theorem 6.1. Let n ≥ 5. The alternating group An has real genus ρ(An)
= n!

24
+ 1, with the following exceptions:

A6 61
A7 421
A8 4201
A9 22681
A11 2993761
A12 35925121
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