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Littlewood-Paley-Stein theory
for semigroups in UMD spaces

Tuomas P. Hytönen

Abstract
The Littlewood–Paley theory for a symmetric diffusion semigroup

T t, as developed by Stein, is here generalized to deal with the ten-
sor extensions of these operators on the Bochner spaces Lp(µ,X),
where X is a Banach space. The g-functions in this situation are for-
mulated as expectations of vector-valued stochastic integrals with re-
spect to a Brownian motion. A two-sided g-function estimate is then
shown to be equivalent to the UMD property of X. As in the classical
context, such estimates are used to prove the boundedness of various
operators derived from the semigroup T t, such as the imaginary pow-
ers of the generator.

1. Introduction

The aim of this paper is to obtain a vector-valued extension of the general
Littlewood–Paley theory as developed by E. M. Stein in his 1970 mono-
graph [21]. We consider a one-parameter family (T t)t>0, which we call a
symmetric diffusion semigroup on a σ-finite measure space (M,µ) provided
that each T t is a linear mapping on

⋃
p∈[1,∞]L

p(µ), which satisfies

• T t+s = T tT s for all 0 < s, t <∞ (semigroup property),
• T tf → f in L2(µ) as t ↓ 0 for f ∈ L2(µ) (continuity),

and in addition each T t is a bi-stochastic operator. This last condition entails
the following:

• ‖T tf‖Lp(µ) ≤ ‖f‖Lp(µ) for 1 ≤ p ≤ ∞ (contractiveness),

• T t is self-adjoint on L2(µ) (symmetry),
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• T tf ≥ 0 if f ≥ 0 (positivity),
• ∫

M
T tf dµ =

∫
M
f dµ for all f ∈ L1(µ) (conservativeness).

Typical examples are the Gauss and Poisson semigroups et� and e−t(−�)1/2

on the unit-circle or on Rn, where � is the corresponding Laplace operator.
The semigroup e−t(−�)1/2 is the one originally considered by J. Littlewood
and R.E.A.C. Paley, and it has the important additional property of being
“subordinated” by another symmetric diffusion semigroup, namely et�, in
the sense that

e−t(−�)1/2

f =
1√
π

∫ ∞

0

e−u

√
u
et2�/4uf du.

More generally, if T t =e−tA is a symmetric diffusion semigroup with genera-
tor −A, and P t = e−tA1/2 (in which case the above integral representation
holds with −A in place of �), we say that P t is the subordinated semigroup
of T t.

Thanks to positivity, these semigroups have tensor extensions to the
Bochner spaces Lp(µ,X), where X is an arbitrary Banach space. They
satisfy the same properties listed above when these are meaningful, and
hence we do not make a notational distinction between T t on Lp(µ) and its
tensor extension on Lp(µ,X), which is the key object of our study.

A central rôle in the classical Littlewood–Paley theory is played by var-
ious g-functions, or square-functions, of which typical examples are

gk(f)(x) =
(∫ ∞

0

∣∣∣tk ∂k

∂tk
T tf(x)

∣∣∣2 dt

t

)1/2

,

where f ∈ Lp(µ), x ∈M , and k = 1, 2, . . .
The principal motivation for introducing these objects is to provide new

equivalent norms for the spaces Lp(µ), which make the boundedness prop-
erties of various operators derived from the semigroup T t more transparent.
In fact, it is shown in [21] that under the above assumptions we have

(1.1) c ‖f − E0f‖Lp(µ) ≤ ‖gk(f)‖Lp(µ) ≤ C ‖f‖Lp(µ) ,

for all f ∈ Lp(µ), 1 < p < ∞, and k = 1, 2, . . ., where E0f = limt→∞ T tf
is the projection onto the fixed point space of (T t)t>0 and 0 < c < C < ∞
only depend on p and k. The existence of the mentioned limit for f ∈ L2(µ)
follows from Hilbert space spectral theory, whereas for f ∈ Lp(µ), p ∈ ]1,∞[,
it is a consequence of the density of L2(µ)∩Lp(µ) and the maximal estimate
(see [21, §III.3]) ‖sup0<t<∞ |T tf |‖Lp(µ) ≤ C ‖f‖Lp(µ) . Since E0 is a positive
operator, it has a bounded tensor extension to Lp(µ,X) for p ∈ ]1,∞[, too,
and this extension is again seen to be the strong limit as t→∞ of the tensor
extensions T t.
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As an application of the two-sided inequality (1.1), it is relatively easy
to obtain the Lp(µ) boundedness of the “multiplier” operators

(1.2) Taf = −
∫ ∞

0

a(t)
∂

∂t
T tf dt,

where a ∈ L∞(0,∞). This follows from the point-wise estimate

g1(Taf)(x) ≤ ‖a‖∞ g2(f)(x)

and the observation that E0Ta = 0. When T t is the Poisson semigroup, the
operators Ta include e.g. the imaginary powers (−�)is of the Laplacian with
a(t) = Γ(1− is)−1t−is.

One can obviously think of several different ways of making a “vector-
valued generalization” of a given classical result. The most immediate is to
replace all absolute values by norms of a Banach space X and try to prove the
resulting vector-valued statement, possibly under some geometric conditions
on the space X. Such an extension has been obtained for the Littlewood–
Paley theory of e−t(−�)1/2 by Q. Xu [23] (where another kind of extension
is also given for Banach lattices, commented on below), and very recently
for the general Littlewood–Paley–Stein theory by T. Martínez, J. L. Torrea
and Xu [14]. They show that the left (respectively, right) side of (1.1) with
k = 1 continues to hold in Lp(µ,X) for every subordinated semigroup T t if
and only if X has martingale type 2 (resp., martingale cotype 2). (We refer
to the mentioned papers for the definition of these notions, which we shall
not use outside this introductory discussion.) More generally, with

Gq(f)(x) :=
(∫ ∞

0

∣∣∣t ∂
∂t
P tf(x)

∣∣∣q
X

dt

t

)1/q

they prove the following:

1.3 Theorem ([14, 23]). Let X be a Banach space, and 1 < q, p < ∞.
Then X has martingale type q (resp. martingale cotype q), if and only if
the following estimate is true for every subordinated semigroup P t on some
(M,µ), if and only if it is true for the Poisson semigroup on the unit-circle:

c ‖f − E0f‖Lp(µ,X) ≤ ‖Gqf‖Lp(µ)

(
resp. ‖Gqf‖Lp(µ) ≤ C ‖f‖Lp(µ,X)

)
for all f ∈ Lp(µ,X).

Note that the martingale type (resp. cotype) q of any Banach space
necessarily satisfies q ≤ 2 (resp. q ≥ 2). Thus the only way that a two-
sided estimate can hold in Theorem 1.3 is to have q = 2 and X having
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both martingale type and cotype 2, which in turn is equivalent to X being
(isomorphic to) a Hilbert space. This is not at all untypical of vector-valued
extensions of classical orthogonality estimates.

In this paper, we generalize the results in [21] along a different line, which
yields a g-function characterization of another class of Banach spaces. To
this end, we employ the familiar method of “randomization”, a continuous
version of which is here required. This is provided by the Itô isometry for
stochastic integrals with respect to a Brownian motion (Bt)t≥0:

(1.4)
(∫ ∞

0

|f(t)|2H dt
)1/2

=
(
E

∣∣∣ ∫ ∞

0

f(t) dBt

∣∣∣2
H

)1/2

,

where H is a Hilbert space and E is the expectation on the probability space
(Ω, P ) supporting the Brownian motion. While the two sides of (1.4) are
incomparable if H is replaced by a general Banach space X, the success
of the discrete randomization procedure in vector-valued harmonic analysis
(see e.g. [4, 5, 13, 22]) suggests that the right side of (1.4) might be better
suited for generalization of the two-sided estimates of Littlewood–Paley–
Stein theory beyond Hilbert spaces. The required theory of stochastic inte-
gration of functions with values in an arbitrary Banach space was initiated
by J. Rosiński and Z. Suchanecki [17], and it has been extended and devel-
oped in the recent work of J.M.A.M. van Neerven and L. Weis [16]. The
idea of using the stochastic square-functions, in turn, is due to N. Kalton and
Weis [12], who formulate them in different but equivalent terms, however.

The geometric condition for a vector-valued extension of the “stochastic”
Littlewood–Paley–Stein theory turns out to be the property of uncondition-
ality of martingale differences (UMD), which is not surprising in view of the
rôle of the UMD class of Banach spaces as the ultimate setting to which
several results in Calderón–Zygmund, Fourier multiplier, and stochastic in-
tegration theory can be extended; cf. [4, 5, 13, 15, 22] and further refer-
ences there.

Recall that X is a UMD space if for some (equivalently, all) p ∈ ]1,∞[
there is a constant C <∞ such that

(1.5)
∥∥∥ n∑

k=1

εkdk

∥∥∥
Lp(µ,X)

≤ C
∥∥∥ n∑

k=1

dk

∥∥∥
Lp(µ,X)

,

whenever (dk)
n
k=1∈Lp(µ,X)n is a martingale difference sequence and (εk)

n
k=1∈

{−1,+1}n. We refer to [19] for a survey of UMD spaces.

The main result of this paper is the following:
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1.6 Theorem. Let X be Banach space. If X is UMD and P t is a subor-
dinated semigroup on some (M,µ), then the stochastic integrals below exist
and satisfy

(1.7) c ‖f −E0f‖Lp(µ,X) ≤ E

∥∥∥∥
∫ ∞

0

tk
∂k

∂tk
P tf

dBt

t1/2

∥∥∥∥
Lp(µ,X)

≤ C ‖f‖Lp(µ,X)

for all f ∈ Lp(µ,X), p ∈ ]1,∞[, and k = 1, 2, . . ., where 0 < c < C < ∞
only depend on X, p and k. Conversely, if (1.7) holds for k = 1 and some
p ∈ ]1,∞[ when P t is the subordinated Poisson semigroup on the unit-circle,
then X is a UMD space.

While the expression in the middle of (1.7) does not exactly coincide
with ‖gk(f)‖Lp(µ,H) for X = H , one can easily see their equivalence by two
applications of the equivalence of different Lp norms of a Gaussian random
variable, Fubini’s theorem and the Itô isometry; but we find it more conve-
nient to work with the formulation above.

We also note that if X is a Banach lattice of functions on a σ-finite
measure space (N, ν), and X has finite cotype (which every UMD space
does), then the expectation of an X-valued stochastic integral admits an
equivalent formulation more close in appearance to classical square functions
(see [16], Cor. 2.10), so that (1.7) reads

c ‖f −E0f‖Lp(µ,X) ≤
[ ∫

M

∥∥∥( ∫ ∞

0

∣∣∣tk ∂k

∂tk
P tf(x, ·)

∣∣∣2 dt

t

) 1
2 ∥∥∥p

X
dµ(x)

] 1
p

≤ C ‖f‖Lp(µ,X) ,

where f ∈ Lp(µ,X) is viewed as a two-variable function f(x, y) on M ×N .
The equivalence of the UMD property of a Banach lattice X to a two-

sided estimate like this was already established by Xu [23]. Related results
in general Banach spaces have also been obtained by Kalton and Weis [12] in
the framework of holomorphic functional calculus of Banach space operators.
In contrast to this complex variable approach of [12], our methods (with the
exception of the last two sections) are based on real variable techniques.

The proof of the square-function estimate from the UMD condition fol-
lows the method of Stein from [21] and its extension in [14]: The UMD
property is used to prove a new inequality, Prop. 4.1, for X-valued mar-
tingales, which is then transferred by Rota’s representation theorem into a
weak Littlewood–Paley inequality, Theorem 5.1, for an arbitrary symmetric
diffusion semigroup T t. The fact that P t is subordinated by such a T t then
allows to obtain the right estimate in (1.7) from the intermediate estimate
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for T t. The left inequality, in turn, will follow from a duality argument and
the fact that the right side is also satisfied in Lp′(µ,X ′) by self-duality of
the UMD property. Unfortunately, the method will not yield (1.7) for gen-
eral symmetric diffusion semigroups T t, but this can be achieved in a more
restricted class of Banach spaces, as explained below.

The converse implication is based on a modification of S. Guerre-Dela-
brière’s [11] proof of the fact that the Lp(0, 1;X) boundedness of the imag-
inary powers (−�)is of the Laplacian on the unit-circle implies the UMD
property for X; it has similarities with the proof of the converse part of
Theorem 1.3 in [23]. Note that if we assumed (1.7) for both k = 1 and
k = 2, then we could prove the boundedness of (−�)is almost like in [21],
and obtain the necessity of UMD directly from Guerre-Delabrière’s theorem.
Under the stated weaker hypothesis, a little more work is needed.

The two-sidedness of the square-function inequalities allows to use the
equivalent randomized norms to the estimation of the “multiplier” transfor-
mations (1.2), and even their operator-valued versions, where a : [0,∞[ →
L (X) is a strongly measurable function with R-bounded range. Recall that
R-boundedness of a family T ⊂ L (X) means the uniform estimate

(1.8) E
∣∣∣ n∑

k=1

εkTkxk

∣∣∣
X
≤ C E

∣∣∣ n∑
k=1

εkxk

∣∣∣
X
,

which should hold for all n ∈ Z+, xk ∈ X and Tk ∈ T , and for inde-
pendent random variables εk on some probability space Ω with distribution
P (εk = +1) = P (εk = −1) = 1/2. This notion, which was introduced by
E. Berkson and T. A. Gillespie [1], has recently proved crucial in connection
with Fourier multipliers and Calderón-Zygmund operators with operator-
valued symbols and kernels, cf. e.g. [5, 6, 13, 22]. We denote by R(T ) the
R-bound of the set T , i.e., the smallest admissible constant in (1.8), and for
an operator-valued function we abbreviate R(a) := R(range a). We shall
prove the following operator-valued Marcinkiewicz–Stein multiplier theorem:

1.9 Theorem. Let X be a UMD space, p ∈ ]1,∞[, and P t a subordinated
semigroup on a measure space (M,µ). Let a : [0,∞[ → L (Lp(µ,X)) be a
strongly measurable function such that

• the range of a is R-bounded, and

• a(t) commutes with P s for all 0 ≤ s, t <∞.

Then Ta as in (1.2), with P t in place of T t, defines a bounded operator on
Lp(µ,X), with norm estimated by CR(a), where C depends only on X and p.
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This recovers and extends Stein’s [21, Cor. 3, p. 121] for the case of sub-
ordinated semigroups, but does not contain the case of general symmetric
diffusion semigroups, due to the same limitation as in Theorem 1.6. It also
gives a partial extension of a result of P. Clément and J. Prüss [6, Cor. 3],
who proved an operator-valued Marcinkiewicz–Stein multiplier theorem un-
der the same assumptions on a, for more general (positive, analytic, and con-
tractive) semigroups P t, but requiring X to be an Lq(ν) space, q ∈ ]1,∞[;
the question which motivated the present investigation, whether Lq(ν) could
be replaced by an arbitrary UMD space, was posed in [6].

That the UMD assumption cannot be weakened follows from Guerre-
Delabrière’s theorem [11], since (−�)is is covered by Theorem 1.9 when P t

is the Poisson semigroup on the unit-circle, so that also Theorem 1.9 is
actually a characterization of UMD spaces.

Let us mention that both Theorems 1.6 and 1.9 remain to hold (see
Theorem 9.7 and Corollary 9.10) for all symmetric diffusion semigroups if
we strengthen the geometric condition as follows: X should be (isomorphic
to) a closed subspace of a complex interpolation space [H, Y ]θ, 0 < θ < 1,
where H is a Hilbert space and Y is another UMD space. In this situation
one can obtain improved inequalities in Lp(µ,X) by interpolating between
the weaker estimates derived from the UMD condition in Lq(µ, Y ) and strong
results guaranteed by Hilbert space spectral theory in L2(µ,H), in much the
way as in Stein’s original treatise [21] when X = Y = H = C.

The same phenomenon is present in the vector-valued extension of Mar-
tínez, Torrea and Xu [14]: Also in their case, the square-function estimates
in Theorem 1.3 are shown to hold for all symmetric diffusion semigroups
if X is an appropriate interpolation space.

The rest of the paper is organized as follows: In §2 we present the required
preliminaries from vector-valued stochastic integration. §3 is concerned with
proving the converse part of Theorem 1.6, the necessity of UMD for g-
function estimates. The other direction of Theorem 1.6 is handled in the
next three sections: In §4 we prove a certain martingale inequality, which is
transferred by Rota’s theorem into a weak g-function estimate in §5. This,
in turn, is used to prove the full g-function estimate of Theorem 1.6 for
subordinated semigroups in §6. Theorem 1.9 is proved in §7, and in §8 we
relate this result to the holomorphic functional calculus for the generator
of the semigroup P t. Finally, the interpolation results outlined above are
detailed in §9.
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research training network HPRN-CT-2002-00281 “Evolution equations for
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2. Stochastic integration theory of van Neerven and Weis

In this section we collect the required definitions and results from the Banach
space-valued stochastic integration theory of van Neerven and Weis [16],
which we shall extensively exploit in the sequel. While the slightly less
general definition of such integrals by Rosiński and Suchanecki [17] would
be sufficient for our purposes, an important rôle in our work is played by
various estimates and convergence results for the stochastic integrals, which
are due to van Neerven and Weis.

These authors work explicitly with functions on an interval [0, T ] and a
Brownian motion (Bt)t∈[0,T ], but it is pointed out in [16, Remark 2.2] that all
their results hold just as well for an arbitrary finite measure space with a Gau-
ssian random measure (see below), which is the framework of [17]. We would
like to mention that even the σ-finite case, in which we shall be working, can
be treated in essentially the same way. Below, we formulate the required
results from [16] in a setting suitable for our needs, which differs slightly
from the original statements; there is, however, very little effect on proofs.

2.1 Definition. Let (M,M , µ) be a σ-finite measure space, and let M0

denote the subalgebra of M consisting of the sets of finite µ-measure. A
Gaussian random measure on (M,M , µ) is a set function

W = Wµ : M0 → L2(Ω),

where (Ω,Σ, P ) is some probability space, having the following properties:

• For all E ∈M0, the random variable W (E) is centred Gaussian with
variance µ(E).
• For all disjoint E1, . . . , En ∈ M0, the random variables W (Ek) are

independent and

W (
n⋃

k=1

Ek) =
n∑

k=1

W (Ek).
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We shall mostly be concerned with M = [0,∞[, but also with M =
[0,∞[2. These spaces are always understood to be equipped with the Borel
σ-algebra and the Lebesgue measure. In the former case the associated
Gaussian random measure is called a Brownian motion, for which we employ
the conventional notation Bt, while in the latter it is a Brownian sheet.

Note that in the setting of Defintion 2.1, a Gaussian random measure
always exists (provided that (Ω,Σ, P ) is sufficiently rich): Let (φk)

∞
k=1 be

an orthonormal basis of L2(µ), and let (γk)
∞
k=1 be an independent sequence

of standard Gaussian variables on Ω. Then W (E) :=
∑∞

k=1 γk

∫
E
φk dµ is

easily seen to satisfy the above properties.
For a simple function f =

∑n
k=1 ak1Ek

, where the Ek are disjoint sets
of finite measure, the stochastic integral is defined in the only reasonable
way as ∫

M

f dW :=

n∑
k=1

akW (Ek).

If f takes its values in a Hilbert space H , one easily verifies the Itô isometry∥∥∫
M
f dW

∥∥
L2(Ω,H)

= ‖f‖L2(µ,H), which immediately yields an extension of
the stochastic integral to all L2(µ,H) by density.

We now proceed to extend the notion of stochastic integration to gen-
eral Banach spaces, following van Neerven and Weis. The theory of [16] is
built for real spaces, which makes us adopt the following convention: By the
dualX ′ of a Banach space X, we always understandX ′ := L (X,R). Clearly
we can view any complex Banach space also as a real Banach space, where
all the original operations are still defined; however, we must think of multi-
plication by a z ∈ C\R not as scalar multiplication but as a bounded linear
operator on X.

2.2 Definition ([16]). Let (M,M , µ) be a σ-finite measure space. If X is
a Banach space and φ : M → X a function, we say that φ is weakly L2 if
〈φ(·), x′〉 ∈ L2(µ) for every x′ ∈ X ′.

Let W be a Gaussian random measure on (M,M , µ), its values being
random variables on a probability space (Ω,Σ, P ). We say that φ is sto-
chastically integrable if it is weakly L2 and there exists a random variable
Φ ∈ L1(Ω, X) such that for all x′ ∈ X ′ we have P -almost surely

(2.3) 〈Φ, x′〉 =

∫
M

〈φ(t), x′〉 dW (t),

where the right side is a scalar stochastic integral. In this situation we write

Φ =

∫
M

φ(t) dW (t).
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2.4 Remark. This definition differs slightly from [16, Def. 2.1], but is equiv-
alent by [16, Theorem 2.3]. The stochastic integral of a function, when it
exists, is a Gaussian random variable, and hence belongs to all Lp(Ω, X),
1 ≤ p <∞; moreover, the different Lp norms are comparable with constants
depending only on the p’s in question; not on the probability space Ω nor
on the Banach space X.

The set of stochastically integrable functions φ : M → X is a linear
space, which is also preserved by point-wise application of T ∈ L (X), and
the stochastic integrability of a function does not depend on the particular
choice of the Gaussian random measure W .

A countably-valued function φ =
∑∞

k=1 xk1Ek
, where the Ek are disjoint

and of finite measure, is stochastically integrable if and only if the series∑∞
k=1 xkW (Ek) converges (say, in L2(Ω, X), but this is equivalent to various

other forms of convergence by results on Gaussian series), in which case its
value is the integral

∫
M
φ dW .

We record a collection of useful results for checking stochastic integra-
bility and estimating the result. The first two deal with situations were a
function is appropriately dominated by a stochastically integrable one:

2.5 Theorem. ([16, 2.7]) Let each of (M,µ) and (N, ν) be σ-finite measure
spaces. Let φ : M → X and ψ : N → X be weakly L2, let φ be stochastically
integrable, and let∫

N

〈ψ(t), x′〉2 dν(t) ≤
∫

M

〈φ(t), x′〉2 dµ(t)

for all x′ ∈ X ′. Then also ψ is stochastically integrable and for all 1 ≤ p <∞
(
E

∣∣∣ ∫ ∞

0

ψ(t) dWν(t)
∣∣∣p
X

)1/p

≤
(
E

∣∣∣ ∫ ∞

0

φ(t) dWµ(t)
∣∣∣p
X

)1/p

.

2.6 Proposition. ([12, 4.11]; [15, 4.5]) Let (M,µ) be a σ-finite measure
space and X a Banach space. Let φ : M → X be stochastically integrable,
and let a : M → L (X) be strongly measurable with an R-bounded range.
Then also t �→ a(t)φ(t) is stochastically integrable, and moreover

E
∣∣∣ ∫

M

a(t)φ(t) dW (t)
∣∣∣
X
≤ R(a)E

∣∣∣ ∫
M

φ(t) dW (t)
∣∣∣
X
.

The final result is concerned with the preservation of stochastic integra-
bility in limit processes.
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2.7 Theorem. ([16, 6.6]) Let X be a Banach space, which does not contain
an isomorphic copy of c0 as a closed subspace. Let φn : [0,∞[ → X be
strongly measurable stochastically integrable functions, and φ : [0,∞[ → X
a strongly measurable, weakly L2 function. If∫ ∞

0

〈φn(t)− φ(t), x′〉2 dt→ 0,∫ ∞

0

〈φn(t), x′〉2 dt ↑
∫ ∞

0

〈φ(t), x′〉2 dt

for all x′ ∈ X ′ as n→∞, and moreover

sup
n≥1

E
∣∣∣ ∫ ∞

0

φn(t) dBt

∣∣∣
X
<∞,

then φ is stochastically integrable, and
∫ ∞
0
φ(t) dBt is the limit in Lp(Ω, X)

of
∫ ∞
0
φn(t) dBt as n→∞.

This is formulated in [16] for separable Banach spaces, but the strong
measurability of φn and φ ensures that they take their values (a.e.) in a
separable subspace E of X, so we are back to this setting.

3. Necessity of the UMD condition

We start the proof of Theorem 1.6 from its converse assertion, which states
that the UMD framework is the most general in which results of the kind
outlined in the Introduction can be hoped for. It is well-known that in order
to prove the UMD condition (1.5), it is sufficient to show this estimate for
some sufficiently rich class of martingales. Here it is convenient to assume
that the underlying measure space is [0, 1]n+1, and for k = 1, . . . , n

dk(θ1, . . . , θn+1) = φk(θ1, . . . , θk)ψk(θk+1),

φk ∈ Lp([0, 1]k, X), ψk ∈ Lp(0, 1),

∫ 1

0

ψk dt = 0.

Note that one can easily represent all finite Paley–Walsh martingales in this
form, so it sufficient to prove (1.5) for this class.

By a simple approximation argument, we may further assume that all φk

and ψk are trigonometric polynomials, say

φk(θ̄k) =
∑

|j̄|≤Lk

a
(k)

j̄
ei2πj̄·θ̄k , ψk(θ) =

∑
0<|j|≤Kk

b
(k)
j ei2πjθ,

where we have employed the notations

θ̄k := (θ1, . . . , θk) and |j̄| := |j1|+ · · ·+ |jk| .
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Let N1 < N2 < · · · be some natural numbers (to be chosen below), and
denote also N̄k := (N1, . . . , Nk). Then, for a fixed θ̄n+1 ∈ [0, 1]n+1, we define

fk(θ) := φk(θ̄k + N̄kθ)ϕk(θk+1 +Nk+1θ)

=
∑

|j̄|≤Lk

∑
0<|j|≤Kk

a
(k)

j̄
b
(k)
j ei2π(j̄·θ̄k+jθk+1)ei2π(j̄·N̄k+jNk+1)θ

=:
∑

Ak≤j≤Bk

(c
(k)
j ei2πjθ + c

(k)
−je

−i2πjθ) =:
∑

Ak≤j≤Bk

χ
(k)
j (θ).

where Ak := Nk+1 −LkNk > 0 and Bk := KkNk+1 + LkNk. This is J. Bour-
gain’s transformation from [3], which he originally used to prove the necessity
of UMD for the Lp(0, 1;X) boundedness of the Hilbert transform. It is also
central in S. Guerre-Delebrière’s proof [11], which we modify here for the
present purpose, elaborating on the remark in [11] that its main theorem “is
also true for some other operators [. . . ] with ‘nice’ associated multiplier”.

We denote by ‖f‖A the sum of the norms of all Fourier coefficient of f ,
and note for later use that ‖fk‖A ≤ ‖φk‖A ‖ψk‖A, no matter how θ̄n+1 and
N1 < N2 < · · · are chosen.

By assumption, we know that

c‖f − f̂(0)‖Lp(0,1;X) ≤ E
∥∥∥ ∫ ∞

0

t
∂

∂t
e−t(−�)1/2

f
dBt

t1/2

∥∥∥
Lp(0,1;X)

≤ C ‖f‖Lp(0,1;X)

(3.1)

for all f ∈ Lp(0, 1;X). The idea of the proof is to apply this to f =
∑n

k=1 fk

and to show that the stochastic integrals∫ ∞

0

t
∂

∂t
e−t(−�)1/2

fk
dBt

t1/2
, k = 1, . . . , n,

behave almost like independent random variables, provided we choose the
sequence N1 < N2 < · · · to be sufficiently rapidly increasing.

We compute∫ ∞

0

t
∂

∂t
P tfk

dBt

t1/2
=

∑
Ak≤j≤Bk

∫ ∞

0

−tje−tj dBt

t1/2
χ

(k)
j =:

∑
Ak≤j≤Bk

γj χ
(k)
j .

The γj, as Brownian integrals, have jointly Gaussian distribution, and

E(γiγj) =

∫ ∞

0

t2 |i| |j| e−t(|i|+|j|) dt

t
=

|i| |j|
(|i|+ |j|)2

≤ min
( |i|
|j| ,
|j|
|i|

)
.
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Let j ≥ Ak, and let us compute the distance of γj from

Γk−1 := span(γm : m ≤ Bk−1)

in L2(Ω). We first observe that the sequence (γm)∞m=1 is linearly independent.
In fact, if

∑M
m=1 amγm = 0, then by the Itô isometry

∑M
m=1 amtme

−tm ≡ 0
for t ∈ ]0,∞[, which after dividing by t and denoting r := e−t says that∑M

m=1 mamr
m ≡ 0 for r ∈ ]0, 1[. The distance of interest is found by mini-

mizing∥∥∥γj −
∑

m≤Bk−1

amγm

∥∥∥2

L2(Ω)
=

1

4
− 2

∑
m≤Bk−1

am
jm

(j +m)2
+

∑
m,n≤Bk−1

aman
mn

(m+ n)2
.

Requiring the gradient to vanish we obtain the condition∑
n≤Bk−1

am
mn

(m+ n)2
=

jm

(j +m)2
for m ≤ Bk−1.

The mentioned linear independence implies that this Bk−1×Bk−1 system
is invertible. Observe that the matrix here only depends on

Bk−1 = Kk−1Nk + Lk−1Nk−1,

whereas the right side of the equation is
jm

(j +m)2
≤ m

j
≤ Bk−1

Ak
,

and Ak = Nk+1 − LkNk. Assuming that we have chosen N1 < . . . < Nk,
we can now take the next Nk+1 so large that the function γ ∈ Γk−1, which
minimizes the distance ‖γj − γ‖L2(Ω), is smaller in size than any preassigned
number δ > 0. Denoting by Πk−1 the orthogonal projection onto Γk−1, we
have shown that ‖Πk−1γj‖L2(Ω) < δ for all k = 2, . . . , n and all j ≥ Ak,
provided the sequence N1 < N2 < · · · increases sufficiently rapidly. It
follows that∣∣∣∣E∥∥∥ n∑

k=1

∑
Ak≤j≤Bk

(γj − Πk−1γj)χ
(k)
j

∥∥∥
Lp(0,1;X)

− E
∥∥∥ n∑

k=1

∑
Ak≤j≤Bk

γjχ
(k)
j

∥∥∥
Lp(0,1;X)

∣∣∣∣
≤

n∑
k=1

∑
Ak≤j≤Bk

E |Πk−1γj | ‖χ(k)
j ‖Lp(0,1;X)(3.2)

≤ δ

n∑
k=1

∑
Ak≤|j|≤Bk

|c(k)
j |X ≤ δ

n∑
k=1

‖φk‖A ‖ψk‖A .

If i ∈ [Ak, Bk] and j ∈ [A�, B�] for k < �, then γi − Πk−1γi ∈ Γk ⊂ Γ�−1

and γj −Π�−1γj ⊥ Γ�−1, so that γi−Πk−1γi and γj −Π�−1γj are orthogonal
and therefore, being jointly Gaussian, also independent.
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Let (B
(k)
t )t≥0 for k = 1, . . . , n be independent Brownian motions, and

γ
(k)
j and Π

(k)
� be defined like γj and Π� but using B(k)

t in place of Bt. Since
the terms with different k are independent in any case, it is clear that

E
∥∥∥ n∑

k=1

∑
Ak≤j≤Bk

(γj − Πk−1γj)χ
(k)
j

∥∥∥
Lp(0,1;X)

= E
∥∥∥ n∑

k=1

∑
Ak≤j≤Bk

(γ
(k)
j −Π

(k)
k−1γ

(k)
j )χ

(k)
j

∥∥∥
Lp(0,1;X)

.

On the other hand, one can repeat the estimate (3.2) also with the random
variables γ(k)

j and projections Π
(k)
� . Combining these two estimates, and

recalling notation, we obtain∣∣∣∣∣E
∥∥∥ n∑

k=1

∫ ∞

0

t
∂

∂t
e−t(−�)1/2

fk
dBt

t1/2

∥∥∥
Lp(0,1;X)

−E
∥∥∥ n∑

k=1

∫ ∞

0

t
∂

∂t
e−t(−�)1/2

fk
dB

(k)
t

t1/2

∥∥∥
Lp(0,1;X)

∣∣∣∣∣
≤ 2δ

n∑
k=1

‖φk‖A ‖ψk‖A ,

and consequently

c
∥∥∥ n∑

k=1

fk

∥∥∥
Lp(0,1;X)

− 2δ
n∑

k=1

‖φk‖A ‖ψk‖A

≤ E
∥∥∥ n∑

k=1

∫ ∞

0

t
∂

∂t
e−t(−�)1/2

fk
dB

(k)
t

t1/2

∥∥∥
Lp(0,1;X)

≤ C
∥∥∥ n∑

k=1

fk

∥∥∥
Lp(0,1;X)

+ 2δ

n∑
k=1

‖φk‖A ‖ψk‖A .

The expression in the middle is invariant under changing fk to εkfk,
where (εk)

n
k=1 ∈ {−1,+1}n, and thus we obtain

c
∥∥∥ n∑

k=1

εkfk

∥∥∥
Lp(0,1;X)

− 2δ

n∑
k=1

‖φk‖A ‖ψk‖A

≤ C
∥∥∥ n∑

k=1

fk

∥∥∥
Lp(0,1;X)

+ 2δ
n∑

k=1

‖φk‖A ‖ψk‖A .
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Reorganizing, raising to the power of p and using

(a+ b)p ≤ (1− η)1−pap + η1−pbp for η ∈ ]0, 1[ ,

and finally integrating with respect to θ̄n+1 over [0, 1]n+1, we get

cp
∫ 1

0

∫
[0,1]n+1

∣∣∣ n∑
k=1

εkφk(θ̄k + N̄kθ)ψk(θk+1 +Nk+1θ)
∣∣∣p
X

dθ̄n+1 dθ

≤ (1− η)1−pCp

∫∫ ∣∣∣ n∑
k=1

φk(θ̄k + N̄kθ)ψk(θk+1 +Nk+1θ)
∣∣∣p
X

dθ̄n+1 dθ

+ η1−p(4δ)p
( n∑

k=1

‖φk‖A ‖ψk‖A
)p

.

Making a change of variable in the θ̄n+1 integrations, the dependence of the
integrals on θ disappears, and we are left with

∥∥∥ n∑
k=1

εkdk

∥∥∥p

Lp([0,1]n+1,X)
≤ (1− η)1−pC

p

cp

∥∥∥ n∑
k=1

dk

∥∥∥p

Lp([0,1]n+1,X)

+ η1−p (4δ)p

cp

( n∑
k=1

‖φk‖A ‖ψk‖A
)p

.

It remains to take the limits δ ↓ 0 and η ↓ 0, in this order. Denoting by
Up(X) the smallest constant in the UMD condition (1.5), we have shown that
Up(X) ≤ C/c, where c and C are the constants from the square-function
estimate (3.1).

4. Martingale inequalities

Having settled the necessity of the UMD condition for the theory we want
to develop, we now investigate inequalities which we can derive from this
condition. Our first result is purely martingale-theoretic; it is the vector-
valued extension of Stein’s [21, Eq. (∗∗), p. 115].

4.1 Proposition. Let X be a UMD space, 1 < p < ∞, and (Fj)
∞
j=0 an

increasing or decreasing filtration of a measure space (M,M , µ). Let Ek

be the conditional expectation with respect to Fk, Dk := Ek − Ek−1, with
E−1 := 0, and

σn :=
1

n+ 1

n∑
k=0

Ek =
n∑

k=0

(
1− k

n+ 1

)
Dk
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be the related Césaro sums. Then there exists a constant C = Cp(X) < ∞
such that

E
∥∥∥ ∞∑

n=1

γnn
1/2(σn − σn−1)f

∥∥∥
p
≤ C ‖f‖p ,

where the γj are independent standard Gaussian variables.

In proving this result, we make use of another inequality of Stein, [21,
Theorem 8, p. 103], which was already extended to UMD spaces by J. Bour-
gain [4]. A proof, omitted in [4], is found e.g. in [5].

4.2 Proposition ([4, 21]). Let E = (Ej)
∞
j=0 be a monotone sequence of

conditional expectations on (M,µ). Then E is R-bounded on Lp(µ,X) for
p ∈ ]1,∞[, and in fact

E
∥∥∥ n∑

j=1

εjEjfj

∥∥∥
Lp(µ,X)

≤ U E
∥∥∥ n∑

j=1

εjfj

∥∥∥
Lp(µ,X)

,

where U is the unconditionality constant of martingale differences in Lp(µ,X).

We actually use this inequality with standard Gaussian variables γj in-
stead of the εj. Such an estimate follows from the stated one by a simple
randomization argument.
Proof of Proposition 4.1. We express the differences of interest as

σn − σn−1 =
1

n(n + 1)

n∑
k=1

kDk

=
1

n(n + 1)

[ �log2 n	∑
j=0

∆j

∑
2j−1<k≤2j

kDk + ∆�log2 n	+1

∑
2�log2 n�<k≤n

kDk

]
,

where ∆j := E2j −E2j−1 (and E1/2 := E0). By using the partial summation
formula∑

a<k≤b

kDk =
∑

a<k≤b

[(kEk − (k − 1)Ek−1)− Ek−1] = bEb − aEa −
∑

a≤k<b

Ek

and the fact that ∆jE2j−1 = 0, we obtain∑
n≥1

γnn
1/2(σn − σn−1)f

=
∑
j≥0

∑
n≥2j

n1/2γn

n(n+ 1)

(
2jE2j −

∑
2j−1<k<2j

Ek

)
∆jf

+
∑
j≥0

∑
2j≤n<2j+1

n1/2γn

n(n + 1)

(
nEn −

∑
2j<k<n

Ek

)
∆j+1f =: I + II
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So as to avoid problems of convergence, we can think that γn denotes a
Gaussian variable only for 1 ≤ n < 2N , say, whereas γn := 0 for n ≥ 2N . In
the end we take the limit N →∞.

In the summation defining I we further reorganize∑
n≥2j

=
∑
i≥0

∑
2j+i≤n<2j+i+1

,

so as to arrive at

I =
∑
i≥0

2−i
∑
j≥0

2j+i
∑

2j+i≤n<2j+i+1

n1/2γn

n(n+ 1)

(
E2j − 2−j

∑
2j−1<k<2j

Ek

)
∆jf

=:
∑
i≥0

2−iIi.

By Prop. 4.2, the set (Ek)
∞
k=0, and then also its convex hull, is R-bounded

on Lp(µ,X). In particular the operators

E2j − 2−j
∑

2j−1<k<2j

Ek resp. 2−jnEn − 2−j
∑

2j<k<n

Ek,

where j ≥ 0, 2j ≤ n < 2j+1, belong to sets Ti ⊂ L (Lp(µ,X)), i = 1, 2,
respectively, with R(Ti) ≤ (i+ 1)U . Thus

E ‖Ii‖p ≤ 2U · E
∥∥∥ ∑

j≥0

2j+i
∑

2j+i≤n<2j+i+1

n1/2γn

n(n+ 1)
∆jf

∥∥∥
p
,

E ‖II‖p ≤ 3U · E
∥∥∥ ∑

j≥0

2j
∑

2j≤n<2j+1

n1/2γn

n(n+ 1)
∆j+1f

∥∥∥
p

Let us introduce the new random variables

gj := 2j
∑

2j≤n<2j+1

n1/2γn

n(n+ 1)
, j ≥ 0, g−1 := 0.

These form a sequence of independent centred Gaussians, with variances

σ2
j := Eg2

j = 4j
∑

2j≤n<2j+1

1

n(n + 1)2
≤ 2j

∫ ∞

2j

dt

t2
= 1.

With the help of these we can write∑
j≥0

2j+i
∑

2j+i≤n<2j+i+1

n1/2γn

n(n+ 1)
∆jf =

∑
j≥0

gj+i∆jf,

∑
j≥0

2j
∑

2j≤n<2j+1

n1/2γn

n(n + 1)
=

∑
j≥0

gj−1∆jf,
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so our task is reduced to proving that

E
∥∥∥ ∑

j≥0

gj+i∆jf
∥∥∥

p
≤ C ‖f‖p for i = −1, 0, 1, 2, . . .

But this follows from

E
∥∥∥ ∑

j≥0

gj+i∆jf
∥∥∥

p
≤ E

∥∥∥ ∑
j≥0

σ−1
j+igj+i∆jf

∥∥∥
p
≤ C ′E

∥∥∥ ∑
j≥0

εj∆jf
∥∥∥

p
≤ C ‖f‖p ,

where the first estimate is the contraction principle for Gaussian variables;
the second is the equivalence in norm of normalized Gaussian and Radema-
cher random sequences –a result valid when the underlying Banach space
has finite cotype (see [8, Theorem 12.27]), which every UMD space does; and
the third is a randomized version of the UMD inequality. �

5. Weak Littlewood–Paley estimate for symmetric diffu-
sion semigroups

The goal of this section is to prove the following theorem, which is our
vector-valued extension of Stein’s [21, Eq. (1), p. 115] and the analogue of
Martínez, Torrea and Xu’s [14, Theorem 2.3]:

5.1 Theorem. Let X be a UMD space, 1 < p <∞ and T t be a symmetric
diffusion semigroup on (M,M , µ). Then there is a constant C=Cp(X)<∞
such that

E
∥∥∥ ∫ ∞

0

t1/2 ∂

∂t

(1

t

∫ t

0

T sf ds
)

dBt

∥∥∥
Lp(µ,X)

≤ C ‖f‖Lp(µ,X)

for all f ∈ Lp(µ,X). The existence of the stochastic integral is part of the
conclusion.

Here, just like in [21] and [14], this result is derived as a corollary of the
martingale inequality of Prop. 4.1 and the following celebrated representa-
tion theorem of G.-C. Rota [18] (cf. also [10, 21]):

5.2 Theorem ([18]). Let Q ∈ ⋃
p∈[1,∞]L

p(µ) be a bi-stochastic operator on
(M,M , µ). Then there exist the following objects: another measure space
(S,S , ν), a decreasing filtration

S = F0 ⊃ F1 ⊃ F2 ⊃ . . . ,
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yet another σ-algebra F̂ ⊂ S , and a linear isomorphism

J :
⋃

1≤p≤∞
Lp(M,M , µ)→

⋃
1≤p≤∞

Lp(S, F̂ , ν)

which preserves joint distributions, so in particular Lp norms. Moreover,
denoting by Ê and En the conditional expectations with respect to F̂ and Fn,
we have

Q2n = J−1ÊEnJ, n = 0, 1, 2, . . .

Since all the operators appearing in Rota’s theorem are linear and pos-
itive, they have canonical tensor extensions of same norm to the Bochner
spaces Lp(µ,X) for an arbitrary Banach space X. Thus we may apply The-
orem 5.2 to the bi-stochastic operator T δ/2, δ > 0, in our vector-valued
setting.

Comparing the statements of Theorem 5.1 and Prop. 4.1, and making
the heuristic approximations∫ ∞

0

F (t) dBt ∼
∞∑

n=1

F (δn)(Bnδ − B(n−1)δ) =

∞∑
n=1

F (δn)δ1/2γn,

∂F (t)

∂t
∼ F (nδ)− F ((n− 1)δ)

δ
,

1

t

∫ t

0

T s ds ∼ 1

n + 1

n∑
k=0

T δk = JÊ
( 1

n+ 1

n∑
k=0

Ek

)
J,

it seems quite plausible that Theorem 5.1 should follow from Prop. 4.1 as a
limiting case when δ ↓ 0. Due to the rather subtle nature of the vector-valued
stochastic integral, we provide this limiting argument in full detail.

Proof of Theorem 5.1. First of all, let us derive an immediate corollary
of Prop. 4.1 and Rota’s theorem applied to Q := T δ/2 for any δ > 0:

E
∥∥∥ ∞∑

n=1

γnn
1/2

( 1

n+ 1

n∑
k=0

T δkf − 1

n

n−1∑
k=0

T δkf
)∥∥∥

Lp(µ,X)

= E
∥∥∥ ∞∑

n=1

γnn
1/2J−1Ê

( 1

n+ 1

n∑
k=0

EkJf − 1

n

n−1∑
k=0

ÊEk−1Jf
)∥∥∥

Lp(µ,X)

= E
∥∥∥Ê ∞∑

n=1

γnn
1/2(σn − σn−1)Jf

∥∥∥
Lp(ν,X)

≤ E
∥∥∥ ∞∑

n=1

γnn
1/2(σn − σn−1)Jf

∥∥∥
Lp(ν,X)

≤ C ‖Jf‖Lp(ν,X) = C ‖f‖Lp(µ,X) ,

where C is the constant appearing in Prop. 4.1.
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Note that

1

n + 1

n∑
k=0

T δk − 1

n

n−1∑
k=0

T δk =
1

n+ 1

(
T δn − 1

n

n−1∑
k=0

T δk
)
,

so applying the previous estimate to T δuf in place of f , we have

E
∥∥∥ ∞∑

n=1

γn
n1/2

n + 1

(
T δ(n+u)f − 1

n

n−1∑
k=0

T δ(k+u)f
)∥∥∥

Lp(µ,X)

≤ C
∥∥T δuf

∥∥
Lp(µ,X)

≤ C ‖f‖Lp(µ,X) .

Integration over u ∈ [0, 1] gives

E
∥∥∥ ∞∑

n=1

γn
n1/2

n+ 1

(∫ n+1

n

T δtf dt− 1

n

∫ n

0

T δtf dt
)∥∥∥

Lp(µ,X)

= E
∥∥∥ ∞∑

n=1

γn
n1/2

n + 1

∫ 1

0

(
T δ(n+u)f − 1

n

n−1∑
k=0

T δ(k+u)f
)

du
∥∥∥

Lp(µ,X)

≤ C ‖f‖Lp(µ,X) .

Now denote by F (t) the Lp(µ,X)-valued function whose stochastic inte-
gral we would like to estimate:

(5.3) F (t) := t1/2 ∂

∂t

(1

t

∫ t

0

T sf ds
)

= t−1/2T tf − t−3/2

∫ t

0

T sf ds.

It is seen at once, that the quantities estimated above are somewhat like the
averages of F (t) over intervals [δn, δ(n+ 1)]. To make this more precise, for
n ≥ 1 we have∫ n+1

n

F (δt) dt

= δ−1/2

∫ n+1

n

t−1/2T δtf dt− δ−3/2

∫ n+1

n

t−3/2
(
δ

∫ n

0

T δsf ds+ δ

∫ t

n

T δs ds
)

dt

= δ−1/2
[ ∫ n+1

n

T δtf
(
t−1/2 −

∫ n+1

t

ds

s3/2

)
dt−

∫ n+1

n

ds

s3/2
·
∫ n

0

T δtf dt
]

= δ−1/2
{∫ n+1

n

T δtf · φn(t) dt

+ n

∫ n+1

n

ds

s3/2

[ ∫ n+1

n

T δtf dt− 1

n

∫ n

0

T δtf dt
]}
,
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where, for n ≤ t ≤ n+ 1,

φn(t) := t−1/2 −
∫ n+1

t

ds

s3/2
− n

∫ n+1

n

ds

s3/2

= −t−1/2 +
2

n1/2 + (n + 1)1/2
= −t−1/2 + u−1/2

= (t− u) 2

ξ3/2
∈ O(n−3/2),

where n ≤ u ≤ n + 1 and t ∧ u ≤ ξ ≤ t ∨ u, and the last two equalities, of
course, we applications of mean-value theorems.

For n = 0, one readily computes that∫ 1

0

F (δt) dt = δ−1/2

∫ 1

0

T δtfφ0(t) dt, φ0(t) = 2− t−1/2,

and we have∫ n+1

n

|φn(t)| dt ≤ c(1 + n)−3/2 for all n = 0, 1, 2, . . .

With Fδ :=
∑∞

n=0 1]δn,δ(n+1)] ·
∫ n+1

n
F (δs) ds, it follows that

E
∥∥∥ ∫ ∞

0

Fδ(t) dBt

∥∥∥
Lp(µ,X)

= E
∥∥∥ ∑

n≥0

γnδ
1/2

∫ n+1

n

F (δt) dt
∥∥∥

Lp(µ,X)

≤ E
∥∥∥ ∑

n≥0

γn

∫ n+1

n

T δtf · φn(t) dt
∥∥∥

Lp(µ,X)

+ 2E
∥∥∥∑

n≥1

γn
n1/2

n + 1

[ ∫ n+1

n

T δtf dt− 1

n

∫ n

0

T δtf dt
]∥∥∥

Lp(µ,X)
,

where in the second term we applied the contraction principle and the fact
that n

∫ n+1

n
s−3/2 ds ≤ 2n1/2/(n+ 1). For the second term we already know

the upper estimate by C ‖f‖Lp(µ,X), whereas for the first one we have

E
∥∥∥ ∑

n≥0

γn

∫ n+1

n

T δtfφn(t) dt
∥∥∥

Lp(µ,X)

≤
∑
n≥0

E |γn|
∫ n+1

n

∥∥T δtf
∥∥

Lp(µ,X)
|φn(t)| dt ≤ C ‖f‖Lp(µ,X) ,

since
∥∥T δtf

∥∥
p
≤ ‖f‖p and

∑∞
n=0

∫ n+1

n
|φn(t)| dt ≤ c

∑∞
n=0(1+n)−3/2 is sum-

mable.
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We have proved the stochastic integrability of Fδ with an estimate uni-
form in δ > 0. This implies in particular that the Fδ are weakly L2, and
that supδ>0 ‖〈Fδ(·), λ〉‖L2(0,∞) < ∞ for every λ ∈ Lp(µ,X)′. The functions
F2−k , k = 1, 2, . . ., form a martingale, and hence the membership of F in
weak L2 follows by the maximal theorem:

‖〈F (·), λ〉‖L2(0,∞) ≤ ‖ sup
k∈Z+

|〈F2−k(·), λ〉| ‖L2(0,∞)

≤ 2 sup
k∈Z+

‖〈F2−k(·), λ〉‖L2(0,∞) <∞.

The stochastic integrability of F with the asserted estimate now follows
from Theorem 2.7: The stochastic integrals of F2−k are uniformly bounded,
and by the martingale convergence theorem we have∫ ∞

0

〈F2−k(t)− F (t), λ〉2 dt→ 0,∫ ∞

0

〈F2−k(t), λ〉2 dt ↑
∫ ∞

0

〈F (t), λ〉2 dt

as k →∞ for all λ ∈ Lp(µ,X)′; moreover, the UMD space Lp(µ,X) cannot
have c0 as a subspace, so all the conditions of Theorem 2.7 are verified. �

6. Full Littlewood–Paley estimate for subordinated semi-
groups

Introducing the notation

Ntf := t
∂

∂t

(1

t

∫ t

0

T sf ds
)
,

the main result of the previous section, Theorem 5.1, says that

(6.1) E
∥∥∥ ∫ ∞

0

Ntf
dBt

t1/2

∥∥∥
Lp(µ,X)

≤ C ‖f‖Lp(µ,X)

where C = Cp(X) <∞ when X is a UMD space and p ∈ ]1,∞[.
When P t is the subordinated semigroup associated with T t, the subor-

dination formula
P tf =

1√
π

∫ ∞

0

e−u

√
u
T t2/4uf du

easily yields after a change of variable

t
∂

∂t
P tf =

∫ ∞

0

ϕ1(u)Nut2f du,

ϕ1(u) := − 1√
π
u
∂

∂u

e−1/4u

u3/2
∈ L1(0,∞).



Littlewood–Paley–Stein theory in UMD spaces 995

More generally, one can establish by repeated integration by parts that

tk
∂k

∂tk
P tf =

∫ ∞

0

ϕk(u)Nut2f du, ϕk ∈ L1(0,∞), k = 1, 2, . . .

We omit the details of the standard computations leading to these formulae.
A part of Theorem 1.6 is now an immediate corollary of Theorem 5.1:

Proof of the right side estimate in (1.7): By (6.1), it is enough to show
that

E
∥∥∥ ∫ ∞

0

tk
∂k

∂tk
P tf

dBt

t1/2

∥∥∥
Lp(µ,X)

≤ CE
∥∥∥ ∫ ∞

0

Ntf
dBt

t1/2

∥∥∥
Lp(µ,X)

.

This follows from the following computation with an arbitrary λ ∈ Lp(µ,X)′

and Theorem 2.5:

∫ ∞

0

〈
tk
∂k

∂tk
P tf, λ

〉2
dt

t
=

∫ ∞

0

〈∫ ∞

0

ϕk(u)Nut2f du, λ

〉2
dt

t

=

∫ ∞

0

(∫ ∞

0

ϕk(u) 〈Nut2f, λ〉 du
)2 dt

t

≤
∫ ∞

0

‖ϕk‖L1(0,∞)

∫ ∞

0

|ϕk(u)| 〈Nut2f, λ〉2 du
dt

t

=
1

2
‖ϕk‖L1(0,∞)

∫ ∞

0

|ϕk(u)|
∫ ∞

0

〈Nsf, λ〉2 ds

s
du

=
1

2
‖ϕk‖2L1(0,∞)

∫ ∞

0

〈Nsf, λ〉2 ds

s
.

�

6.2 Remark. The above proved inequality becomes stronger with increas-
ing k. In fact, independently of the underlying Banach space X, we have
the estimate

E
∥∥∥ ∫ ∞

0

tk
∂k

∂tk
P tf

dWt

t1/2

∥∥∥
Lp(µ,X)

≤ 1

k
E

∥∥∥ ∫ ∞

0

tk+1 ∂
k+1

∂tk+1
P tf

dWt

t1/2

∥∥∥
Lp(µ,X)

,

which contains the implicit statement that the existence of the stochastic
integral on the right implies the existence of that on the left.
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This is again a consequence of Theorem 2.5:∫ ∞

0

〈
tk
∂k

∂tk
P tf, λ

〉2
dt

t
=

∫ ∞

0

(
tk

∫ ∞

t

〈
∂k+1

∂sk+1
P sf, λ

〉
s(k+1)/2 ds

s(k+1)/2

)2 dt

t

≤
∫ ∞

0

t2k

∫ ∞

t

sk+1

〈
∂k+1

∂sk+1
P sf, λ

〉2

ds×
∫ ∞

t

ds

sk+1

dt

t

=
1

k

∫ ∞

0

sk+1

〈
∂k+1

∂sk+1
P sf, λ

〉2 ∫ s

0

tk−1 dt ds

=
1

k2

∫ ∞

0

s2(k+1)

〈
∂k+1

∂sk+1
P sf, λ

〉2
ds

s
.

We are left with proving the left inequality in (1.7), where the k = 1 case
suffices by Remark 6.2. This is achieved by a duality argument, based on
the identity

(6.3) 〈f − E0f, g〉 = 4E

〈∫ ∞

0

t1/2 ∂

∂t
P tf dBt,

∫ ∞

0

t1/2 ∂

∂t
P tg dBt

〉
,

which we first establish for real-valued f, g ∈ L2(µ).
In this situation, we have the representation P tf =

∫
[0,∞[

e−λt dEλf pro-
vided by Hilbert space spectral theory, and then

t1/2 ∂

∂t
P tf = −t1/2

∫
]0,∞[

λe−λt dEλf,

∥∥∥t1/2 ∂

∂t
P tf

∥∥∥2

L2(µ)
= t

∫
]0,∞[

λ2e−2λt 〈 dEλf, f〉 .

An easy computation with Fubini’s theorem now shows that∫ ∞

0

∥∥∥t1/2 ∂

∂t
P tf

∥∥∥2

L2(µ)
dt =

1

4
‖f −E0f‖2L2(µ) ,

where we note that E0 = E{0} is the spectral projection on L2(µ). By polar-
izing the previous identity, we obtain∫ ∞

0

〈
t1/2 ∂

∂t
P tf, t1/2 ∂

∂t
P tg

〉
dt =

1

4
〈f −E0f, g − E0g〉 = 1

4
〈f −E0f, g〉 ,

and (6.3) follows from the Itô isometry on L2(µ).
Obviously this identity also holds if f ∈ L2(µ) is replaced by f = φ(·)x

with φ ∈ L2(µ) and x ∈ X, and similarly g ∈ L2(µ) by g = ψ(·)x′ with
ψ ∈ L2(µ) and x′ ∈ X ′. By bi-linearity, it holds for f ∈ X ⊗ L2(µ) and
g ∈ X ′ ⊗ L2(µ).
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Applying the inequalities of Hölder and Khinchin–Kahane, (6.3) gives

|〈f − E0f, g〉|
≤ CE

∥∥∥ ∫ ∞

0

t1/2 ∂

∂t
P tf dWt

∥∥∥
Lp(µ,X)

·E
∥∥∥ ∫ ∞

0

t1/2 ∂

∂t
P tg dWt

∥∥∥
Lp′(µ,X′)

.

If X is assumed to be UMD and 1 < p < ∞, then also X ′ is UMD and
1 < p′ <∞; thus

E
∥∥∥ ∫ ∞

0

t1/2 ∂

∂t
P tg dWt

∥∥∥
Lp′ (µ,X′)

≤ C ‖g‖Lp′(µ,X′) .

It follows that

‖f −E0f‖Lp(µ,X) = sup |〈f − E0f, g〉| ≤ CE
∥∥∥ ∫ ∞

0

t1/2 ∂

∂t
P tf dWt

∥∥∥
Lp(µ,X)

,

where the supremum is taken over all g ∈ X ′ ⊗ [L2(µ) ∩ Lp′(µ)] with
‖g‖Lp′ (µ,X′) ≤ 1.

Thus we have shown the left estimate in (1.7) for all f ∈X⊗[L2(µ)∩Lp(µ)].
To get it for all f ∈ Lp(µ,X), we use the density of the above mentioned
subspace and the fact that both sides of the desired inequality are continuous
in f ∈ Lp(µ,X) by the boundedness of E0 and right-hand inequality in (1.7),
which was already proved.

This completes the proof of Theorem 1.6.

7. The operator-valued Marcinkiewicz–Stein multiplier
theorem

We now consider the application of the Littlewood–Paley inequalities to the
question of boundedness of the “multiplier operators”

(7.1) Taf := −
∫ ∞

0

a(t)
∂

∂t
P tf dt,

where a(t) is an L (Lp(µ,X))-valued strongly measurable function which
satisfies the commutation condition a(t)P s = P sa(t) for all 0 ≤ s, t <∞.

The R-boundedness condition of Theorem 1.9 can be slightly relaxed as
follows: Let T ⊂ L (Lp(µ,X)) be an absolutely convex R-bounded set,
closed in the strong operator topology. Let ‖·‖T denote the Minkowski
functional of T . We assume that a takes its values in span T , and satisfies

sup
0<T<∞

1

T

∫ T

0

‖a(t)‖2T dt <∞.

Note that under the assumption of Theorem 1.9, T can be taken to be the
strong operator closure of the absolute convex hull of range(a), and the above
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supremum is 1. In general we claim (and prove below) that Theorem 1.9
remains valid under the above stated assumptions on the multiplier a.

The following lemma shows that the defining formula (7.1) is meaningful:

7.2 Lemma. There is a dense subspace F of Lp(µ,X) such that the inte-
gral defining Taf converges absolutely for every f ∈ F and every strongly
measurable a : [0,∞[→ L (Lp(µ,X)) such that

sup
0<T<∞

T−1/2 ‖a‖L2(0,T ;L (Lp(µ,X))) <∞.

Proof. Let −A = −Ap denote the generator of P t on Lp(µ). We claim that

(7.3) Lp(µ) = E0L
p(µ)⊕D(Ap) ∩ range(Ap),

and that we may take F := X ⊗ [E0L
p(µ) + (D(Ap) ∩ range(Ap))] as the

desired dense subspace. To prove (7.3), note first that P tφ ∈ D(A2
p) for t > 0

and φ ∈ Lp(µ), and ApP
tφ = −∂P tφ/∂t. Thus every φ ∈ Lp(µ) satisfies

φ = E0φ+ (φ−E0φ) = E0φ+ lim
n→∞

(P 1/nφ− P nφ)

= E0φ+ lim
n→∞

∫ n

1/n

ApP
tφ dt ∈ E0L

p(µ) +D(Ap) ∩ range(Ap).

If φ = A� ∈ range(A), then P tφ = AP t� = −∂P t�/∂t. Thus

P n�− P n+1� =

∫ n+1

n

P tφ dt→ E0φ as n→∞,

but also P n�→ E0�, so that E0φ = E0�−E0� = 0, and the sum is direct.
Since ∂P tψ/∂t ≡ 0 for ψ ∈ E0L

p(µ), it suffices to check the absolute
convergence for f = x⊗ φ with φ = A� ∈ D(A) ∩ range(A). Then∥∥∥a(t) ∂

∂t
P tf

∥∥∥
Lp(µ,X)

=
∥∥∥a(t)(x⊗ AP tφ)

∥∥∥
Lp(µ,X)

≤ ‖a(t)‖L (Lp(µ,X)) |x|X
∥∥AP tφ

∥∥
Lp(µ)

,

For the last Lp(µ) norm we have the upper bounds ‖P tAφ‖p ≤ ‖Aφ‖p and
‖A2P t�‖p ≤ Ct−2 ‖�‖p.

Thus we have∫ ∞

0

∥∥∥a(t) ∂
∂t
P tf

∥∥∥
Lp(µ,X)

dt

≤ C

∫ ∞

0

‖a(t)‖ (1 + t)−2 dt = 2C

∫ ∞

0

‖a(t)‖
∫ ∞

t

(1 + s)−3 ds dt

= 2C

∫ ∞

0

(1 + s)−3

∫ s

0

‖a(t)‖ dt ds ≤ C̃

∫ ∞

0

(1 + s)−3s ds <∞.
�
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Theorem 1.9 will be a consequence of Theorem 1.6 and the following:

7.4 Proposition. Let a : [0,∞[ → L (Lp(µ,X)) have the properties listed
in the beginning of the section. Let f ∈ F and let

t �→ t3/2∂2P tf/∂t

be stochastically integrable on [0,∞[. Then also s �→ s1/2∂P sTaf/∂s is sto-
chastically integrable, and

E
∥∥∥ ∫ ∞

0

s1/2 ∂

∂s
P sTaf dBs

∥∥∥
Lp(µ,X)

≤ R(T ) sup
0<T<∞

( 1

T

∫ T

0

‖a(t)‖2T dt
) 1

2
E

∥∥∥ ∫ ∞

0

t3/2 ∂
2

∂t2
P tf dBt

∥∥∥
Lp(µ,X)

.

Proof. First note that

∂

∂s
P sTaf = −

∫ ∞

0

a(t)
∂2

∂t2
P t+sf dt = −

∫ ∞

s

1

t
· a(t− s)t ∂

2

∂t2
P tf dt.

For every λ ∈ Lp(µ,X)′ we have
∫ ∞

0

〈
s1/2 ∂

∂s
P sF, λ

〉2

ds =

∫ ∞

0

(∫ ∞

s

s1/2

t

〈
a(t− s)t ∂

2

∂t2
P tf, λ

〉
dt

)2

ds

≤
∫ ∞

0

∫ ∞

s

s

t2
dt ·

∫ ∞

s

〈
a(t− s)t ∂

2

∂t2
P tf, λ

〉2

dt ds

=

∫ ∞

0

∫ ∞

s

〈
a(t− s)t ∂

2

∂t2
P tf, λ

〉2

dt ds.

It follows from Theorem 2.5 that if

(s, t) �→ 1{t>s}a(t− s)t∂2P tf/∂t2

is integrable with respect to the Brownian sheet on [0,∞[2, then

s �→ s1/2∂P sF/∂s

is integrable with respect to the Brownian motion on [0,∞[, and

E
∥∥∥ ∫ ∞

0

s1/2 ∂

∂s
P sF dBs

∥∥∥
Lp(µ,X)

≤ E
∥∥∥ ∫∫

[0,∞[2
1{t>s}a(t− s)t ∂

2

∂t2
P tf dW (s, t)

∥∥∥
Lp(µ,X)

.
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But (s, t) �→ 1{t>s}a(t−s)/ ‖a(t− s)‖T (understood as zero if a(t−s)=0)
is a strongly measurable function with values in the R-bounded set T ,
and so, by Prop. 2.6, the function 1{t>s}a(t− s)t∂2P tf/∂t2 is stochastically
integrable if 1{t>s} ‖a(t− s)‖T t∂2P tf/∂t2 is, and in this case the inequality
above can be continued with

≤ R(T )E
∥∥∥ ∫∫

[0,∞[2
1{t>s} ‖a(t− s)‖T t

∂2

∂t2
P tf dW (s, t)

∥∥∥
Lp(µ,X)

.

The existence of this last stochastic integral in turn follows by Theo-
rem 2.5 from the estimate∫∫

[0,∞[2

〈
1{t>s} ‖a(t− s)‖T t

∂2

∂t2
P tf, λ

〉2

ds dt

=

∫ ∞

0

1

t

∫ t

0

‖a(t− s)‖2T ds

〈
t3/2 ∂

2

∂t2
P tf, λ

〉2

dt

≤ sup
0<t<∞

1

t

∫ t

0

‖a(s)‖2T ds×
∫ ∞

0

〈
t3/2 ∂

2

∂t2
P tf, λ

〉2

dt,

and the assumed stochastic integrability of t3/2∂2P tf/∂t2. �

Proof of Theorem 1.9. Let F be the dense subspace of Lp(µ,X) from
Lemma 7.2, and let f ∈ F . Then

E0Taf = −
∫ ∞

0

E0a(t)
∂

∂t
P tf dt = −

∫ ∞

0

a(t)E0
∂

∂t
P tf dt = 0,

since E0, as the strong limit lims→∞ P s, commutes with a(t), and

E0
∂

∂t
P t = −E0ApP

t = 0 on Lp(µ) by (7.3).

Thus by Lemma 7.2, Prop. 7.4, and Theorem 1.6,

‖Taf‖Lp(µ,X) = lim
n→∞

∥∥∥Ta1[1/n,n]
f
∥∥∥

Lp(µ,X)

= lim
n→∞

∥∥∥(id−E0)Ta1[1/n,n]
f
∥∥∥

Lp(µ,X)

≤ lim inf
n→∞

1

c
E

∥∥∥ ∫ ∞

0

s1/2 ∂

∂s
P sTa1[1/n,n]

f dBs

∥∥∥
Lp(µ,X)

≤ 1

c
R(a)E

∥∥∥ ∫ ∞

0

t3/2 ∂
2

∂t2
P tf dBt

∥∥∥
Lp(µ,X)

≤ C

c
R(a) ‖f‖Lp(µ,X) ,

where c and C are constants from (1.7) for k = 1 and k = 2, respectively.
This estimate allows the extension of Ta to a bounded linear operator on all
of Lp(µ,X). �
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7.5 Remark. A simplification of the proof of Prop. 7.4 can be made for
a scalar-valued multiplier a ∈ L∞(0,∞; R). In this case, we may compute
directly∫ ∞

0

〈
s1/2 ∂

∂s
P sF, λ

〉2

ds≤
∫ ∞

0

∫ ∞

s

〈
a(t− s)t ∂

2

∂t2
P tf, λ

〉2

dt ds

=

∫ ∞

0

1

t

∫ t

0

a2(t− s) ds

〈
t3/2 ∂

2

∂t2
P tf, λ

〉2

dt

≤ sup
0<t<∞

1

t

∫ t

0

|a(s)|2 ds×
∫ ∞

0

〈
t3/2 ∂

2

∂t2
P tf, λ

〉2

dt,

and apply Theorem 2.5. Of course a ∈ L∞(0,∞; C) can be handled similarly
after first splitting into real and imaginary parts.

8. Connection to holomorphic functional calculus

It seems appropriate to comment on the relation of our Theorem 1.9 to
the existence of an H∞ functional calculus for the negative generator A of
P t = e−tA; this is the framework in which results similar to ours have recently
been proved by Kalton and Weis [12]. An excellent general reference to this
notion is the already classic paper [7] of M. Cowling, I. Doust, A. McIntosh
and A. Yagi. In a context similar to the present one, this problem was
considered by Clément and Prüss [6], and following them we define

ã(A)f :=

∫ ∞

0

a(t)Ae−tAf dt = Taf for

ã(λ) := λ

∫ ∞

0

a(t)e−tλ dt.

(8.1)

By the results of the previous section, this gives rise to a bounded oper-
ator on Lp(µ,X) for every a ∈ A , where

A :=
{
a ∈ L2

loc(0,∞; C) : sup
0<T<∞

T−1/2 ‖a‖L2(0,T ) <∞
}
.

Let us denote by Ã the set of functions ã obtained from a ∈ A by the
modified Laplace transformation in (8.1).

It is easy to see that every ã ∈ Ã is a holomorphic function in the right
half-plane C+ ≡ Σπ/2, and moreover a bounded holomorphic function in
every sector Σθ := {λ ∈ C\{0} : |arg(λ)| < θ} with θ < π/2; we denote this
last mentioned class by H∞(Σθ). On the other hand, we have

8.2 Lemma. H∞(C+) ⊂ Ã , and this containment is strict.
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Proof. Let h ∈ H∞(C+). Then in particular ξ �→ h(σ + iξ) ∈ L∞(R), and
hence ξ �→ (σ + iξ)−1h(σ + iξ) ∈ L2(R) for σ > 0. By the Fourier inversion
theorem, there exists bσ ∈ L2(R) such that, in the sense of L2 convergence,
we have

(8.3) bσ(t) = lim
R→∞

1

2π

∫ R

−R

h(σ + iξ)

σ + iξ
eiξt dξ = lim

R→∞
e−σt

2πi

∫ σ+iR

σ−iR

h(λ)

λ
eλt dλ.

For a subsequence Rn →∞, this limit exists for a.e. t, and by Cauchy’s
theorem the value of

∫ σ+i∞
σ−i∞ h(λ)eλt dλ/λ is independent of σ > 0. Thus

there exists a measurable function a on R such that for all σ > 0 we have
bσ(t) = e−σta(t) for a.e. t ∈ R. If t < 0, we can close the integration path
in (8.3) with a semicircle of radius R in the right half-plane, and we find
that bσ(t) = 0 = a(t) for all negative t. Thus

h(σ + iξ)

σ + iξ
= lim

R→∞

∫ R

−R

bσ(t)e−iξt dt = lim
R→∞

∫ R

0

a(t)e−(σ+iξ)t dt

in the sense of L2 convergence, and we need to check that a has the desired
estimate.

Since multiplication by the bounded function 1[0,T ](t)e
σt is a bounded

operator on L2(R), the L2 convergence (8.3) implies that

1

T

∫ T

0

|a(t)|2 dt =
1

(2π)2
lim

R→∞
1

T

∫ T

0

∣∣∣ ∫ σ+iR

σ−iR

h(λ)

λ
eλt dλ

∣∣∣2 dt

=
1

(2π)2
lim

R→∞

∫ R

−R

∫ R

−R

h(σ + iξ)h̄(σ + iη)

(σ + iξ)(σ + iη)

eT (2σ+i(ξ−η)) − 1

T (2σ + i(ξ − η) dξ dη

≤ ‖h‖
2
∞

(2π)2

e2σT + 1

Tσ

∫∫
R2

1

|1 + iξ/σ| · |1 + iη/σ| · |2 + i(ξ − η)/σ|
dξ

σ

dη

σ
.

The double integral is convergent, and after a change of variable, it is seen
to be independent of σ > 0. With σ = T−1, we see that T−1/2 ‖a‖L2(0,T ) ≤
C ‖h‖∞, which shows the asserted inclusion.

That Ã �⊂ H∞(C+) follows e.g. by considering the function

a =

∞∑
n=0

1[2n,2n+1] ∈ L∞(0,∞).

Its modified Laplace transform is ã(λ) = (1 + e−λ)−1, which has poles at
λ = iπ(2n+ 1), n ∈ Z, and so is unbounded in C+. �

Recalling that the generator of a subordinated semigroup P t is, by de-
finition, −A1/2, where −A is the generator of a symmetric diffusion semi-
group T t, we can state the following result.
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8.4 Corollary. Let T t = e−tA be a symmetric diffusion semigroup on some
(M,µ). Let X be a UMD space and p ∈ ]1,∞[. Then A has a bounded
H∞(Σπ) functional calculus on Lp(µ,X).

Proof. It follows from Lemma 8.2 and the Marcinkiewicz–Stein multiplier
theorem that h(A1/2) = h ◦ √·(A) defines a bounded operator on Lp(µ,X)
for every h ∈ H∞(Σπ/2) = H∞(C+). This is equivalent to saying that g(A)
defines a bounded operator on the same space for every g ∈ H∞(Σπ) =
H∞(C \ ]−∞, 0]). �

9. Improved inequalities in certain interpolation spaces

We have seen how the UMD property and the relation of semigroups and con-
ditional expectations provided by Rota’s theorem yield the weak Littlewood–
Paley inequality of Theorem 5.1 for a general symmetric diffusion semi-
group T t.

It is discussed by Stein [21, §IV.5] why this is “the strongest relevant con-
clusion [for general diffusion semigroups] we can possibly hope to squeeze out
of martingale theory”, already in the scalar-valued case. Above we strength-
ened this conclusion by restricting to the subordinated semigroups.

We now present a different approach which applies to all symmetric dif-
fusion semigroups, at the cost of reducing the admissible class of Banach
spaces.

Here we consider the class of the (necessarily UMD) Banach spaces X,
which are isomorphic to a closed subspace of a complex interpolation space
[H, Y ]θ, where H is a Hilbert space, Y is a UMD space, and 0 < θ < 1.

This class of spaces has appeared recently in the investigation of func-
tional calculi for power-bounded operators by E. Berkson and T.A. Gille-
spie [2], and it contains all the standard examples of UMD spaces: every
UMD-lattice of functions on a σ-finite measure space by a result of J. L.
Rubio de Francia [19], the reflexive Sobolev spaces (which are subspaces
of products of Lp spaces), and the reflexive Schatten–von Neumann ideals
C p = [C 2,C q]θ, 1/p = (1− θ)/2 + θ/q.

Actually, by results due to P. G. Dodds, T. K. Dodds and B. de Pagter [9],
the interpolation properties of non-commutative spaces coincide with those
of their commutative counterparts under fairly general conditions (see [9] for
details), and so the theorem of Rubio de Francia implies the interpolation
property for many more operator ideals. The interesting question posed
in [19], whether the described interpolation class actually exhaust all UMD
spaces, appears to remain open.

To see what can be done in these spaces in the present context, let us first
note that the right-hand estimate in (1.7) holds true for every symmetric
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diffusion semigroup T t in place of P t if X = H is a Hilbert space and p = 2.
We write this in the equivalent form

(9.1) E
∥∥∥ ∫ ∞

0

t
∂

∂t

(
tk−1 ∂

k−1

∂tk−1
T t

)
f

dBt

t1/2

∥∥∥
L2(µ,H)

≤ ck ‖f‖L2(µ,H) , k = 1, 2, . . . ,

to make the connection with Theorem 5.1 more transparent. The proof
of (9.1) is a routine computation with spectral integrals, observing that the
stochastic g-function here reduces to the classical one by the Itô isometry.

In order to apply holomorphic interpolation, we employ the fractional
integral defined for Reα > 0 by

Iαφ(t) :=
1

Γ(α)

∫ t

0

(t− s)α−1φ(s) ds =
tα

Γ(α)

∫ 1

0

(1− u)α−1φ(tu) du,

or more precisely its modification Mαφ(t) := t−αIαφ(t). We consider the
action of these operators on functions φ, which are C∞ on ]0,∞[ and lo-
cally integrable on [0,∞[. Recall the standard property Iα+β = IαIβ for
Reα,Reβ > 0. Clearly I1 is just the usual integral

∫ t

0
.

By splitting the defining integral and integrating by parts, one finds that

Mαφ(t) =
1

Γ(α)

∫ 1/2

0

(1− u)α−1φ(tu) du

+

n−1∑
k=0

1

2αΓ(α + k + 1)
(
t

2
)kDkφ(

t

2
)

+
1

Γ(α + n)

∫ 1

1/2

(1− u)α+n−1tnDnφ(tu) du,

(9.2)

which provides a holomorphic extension of α �→ Mαφ(t) to Reα > −n.
One also verifies from (9.2) that M−(n−1)φ(t) = tn−1(∂/∂t)n−1φ(t); thus
I−(n−1) = (∂/∂t)n−1 and in particular I0 = M0 = id, the identity operator.

With this notion at hand, both estimates (9.1) and Theorem 5.1 have
(after application of Kahane’s inequality and Fubini’s theorem) the generic
form

(9.3)
∥∥∥ ∫ ∞

0

t
∂

∂t
[Mα

t Tf ]
∂Bt

t1/2

∥∥∥
Lp(P⊗µ,X)

≤ C ‖f‖Lp(µ,X) ,

the former with p = 2, X = H and α = 0,−1,−2, . . .; the latter with
p ∈ ]1,∞[, X UMD, and α = 1. Somewhat more knowledge is needed for
holomorphic interpolation, and this is provided by the following sequence of
lemmata:
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9.4 Lemma. For any Banach space X, and 1 ≤ p < ∞, Re β > 0 and
γ > 0, we have(

E
∥∥∥ ∫ ∞

0

Mβφ(t)
dBt

tγ/2

∥∥∥p

X

)1/p

≤
√

Γ(Reβ)Γ(γ)

|Γ(β)|√Re β · Γ(Reβ + γ)

(
E

∥∥∥ ∫ ∞

0

φ(t)
dBt

tγ/2

∥∥∥p

X

)1/p

;

more precisely, the existence of the right-hand integral implies the existence
of the left-hand one and the stated estimate.
Proof. Once again, we resort to Theorem 2.5:∫ ∞

0

∣∣〈Mβφ(t), x′
〉∣∣2 dt

tγ

≤ 1

|Γ(β)|2
∫ ∞

0

(∫ 1

0

(1− u)Reβ−1 |〈φ(tu), x′〉| du
)2 dt

tγ

≤ 1

|Γ(β)|2
∫ 1

0

(1− u)Re β−1 du×
∫ 1

0

(1− u)Reβ−1

∫ ∞

0

|〈φ(tu), x′〉|2 dt

tγ
du

=
1

|Γ(β)|2 · Reβ

∫ 1

0

(1− u)Re β−1uγ−1 du ·
∫ ∞

0

|〈φ(t), x′〉|2 dt

tγ
.

�

9.5 Lemma. If the estimate (9.3) holds in a certain Banach space X with
α = 1, then it holds for all Reα > 1.
Proof. The crucial observation is the fact that tD commutes with Mβ for
Re β > 0. In fact,

tDMβφ(t) =
1

Γ(β)

∫ 1

0

(1− u)β−1t
∂

∂t
[φ(tu)] du

=
1

Γ(β)

∫ 1

0

(1− u)β−1tuφ′(tu) du = Mβ(tDφ)(t).

Thus

tDM1+β = tDt−(1+β)IβI1 = tDt−1MβtM1 = −t−1MβtM1 + t−1MβtDtM1

= −t−1MβtM1 + t−1MβtM1 + t−1Mβt2DM1 = t−1Mβt2DM1.

Using the previous identity, Lemma 9.4 and the assumed estimate, in this
order, we get∥∥∥ ∫ ∞

0

t
∂

∂t
(M1+β

t Tf)
dBt

t1/2

∥∥∥
Lp(P⊗µ,X)

=
∥∥∥ ∫ ∞

0

Mβ(t2
∂

∂t
M1

t Tf)
dBt

t3/2

∥∥∥
Lp(P×µ,X)

≤ C
∥∥∥ ∫ ∞

0

t2
∂

∂t
(M1

t Tf)
dBt

t3/2

∥∥∥
Lp(P×µ,X)

≤ C ‖f‖Lp(µ,X) .

�
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9.6 Lemma. If the estimate (9.3) holds for α = 0,−1, . . . ,−n, then it holds
for all Reα > −n.
Proof. For Reα > −n, we apply the formula (9.2) to φ(t) = T tf to get

t
∂

∂t
Mα

t Tf =
1

Γ(α)

∫ 1/2

0

(1− u)α−1
(
s
∂

∂s
T sf

)
s=tu

du

+

n−1∑
k=0

1

2αΓ(α + k + 1)

(
ksk ∂

k

∂sk
T sf + 2sk+1 ∂

k+1

∂sk+1
T sf

)
s=t/2

+
1

Γ(α+n)

∫ 1

1/2

(1−u)α+n−1
(
nu−nsn ∂

n

∂sn
T sf + u−(n+1)sn+1 ∂

n+1

∂sn+1
T sf

)
s=tu

du.

By assumption, the stochastic integrals of tn+1 ∂n+1

∂tn+1T
tf with respect to

dBt/t
1/2 exist on ]0,∞[. It is easy to see (e.g., by Theorem 2.5) that

the norms of these stochastic integrals are invariant under the dilations
t← ut. Finally, the functions (1− u)α−1 on [0, 1/2] and (1− u)α+n−1u−n+j

(j ∈ {0, 1}) on [1/2, 1] are integrable. From these observations the exis-
tence of the stochastic integral

∫ ∞
0
t ∂

∂t
Mα

t Tf dBt/t
1/2, together with a norm

estimate, follows. �

9.7 Theorem. Let T t be a symmetric diffusion semigroup on (M,µ). Let X
be a closed subspace of a complex interpolation space [H, Y ]θ, where Y is a
UMD-space, H is a Hilbert space and 0 < θ < 1. Then the square function
estimate (9.3) holds for all α ∈ C, all 1 < p <∞ and for all f ∈ Lp(M,µ),
with constant independent of f . In particular, we have

(9.8) c ‖f − E0f‖Lp(µ,X) ≤ E
∥∥∥ ∫ ∞

0

tk
∂k

∂tk
T tf

dBt

t1/2

∥∥∥
Lp(µ,X)

≤ C ‖f‖Lp(µ,X)

for all f ∈ Lp(µ,X), p ∈ ]1,∞[, and k = 1, 2, . . ., where 0 < c < C < ∞
depend on X, p and k.

Proof. It is easily seen that

U(α) : f �→
∫ ∞

0

t
∂

∂t
Mα

t Tf
dBt

t1/2

is a holomorphic family of operators in the sense of Stein, and for any strip
of a0 ≤ Reα ≤ a1 of the complex plane, where max(1, a0) < a1 we know
already the estimates

‖U(a0 + it)f‖Lr(P⊗µ,H) ≤ C(a0, t) ‖f‖Lr(µ,H) , r = 2,

‖U(a1 + it)f‖Lq(P⊗µ,Y ) ≤ C(a1, t) ‖f‖Lq(µ,Y ) , q ∈ ]1,∞[ .
(9.9)
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An investigation of the above lemmata shows that the growth of C(aj , t) as
|t| → ∞ is admissible for the use of (a vector-valued extension of) the Stein
interpolation theorem [20].

We apply this theorem twice. The second line in (9.9) holds in particular
with Y = H , and hence

‖U(a + it)f‖Lr(P⊗µ,H) ≤ C(a, t) ‖f‖Lr(µ,H)

provided that a = (1− σ)a0 + σa1 and 1/r = (1− σ)/2 + σ/q for some σ ∈
]0, 1[. With appropriate choice of the parameters, we see that the first line
in (9.9) continues to hold with any r ∈ ]1,∞[. Taking r = q = p for a desired
p ∈ ]1,∞[, and interpolating between the estimates in (9.9), we finally get

‖U(a + it)f‖Lp(P⊗µ,[H,Y ]θ) ≤ C(a, t) ‖f‖Lp(µ,[H,Y ]θ)

for a = (1− θ)a0 + θa1, and obviously any a+ it ∈ C is obtained in this way
with a suitable choice of a0 < a < a1.

As already pointed out, the right side of (9.8) for X = [H, Y ]θ is a spe-
cialization of the established estimate to negative integer points. The left
side follows by repeating the duality argument given for subordinated semi-
groups, since [H, Y ]′θ = [H ′, Y ′]θ for reflexive spaces H and Y , and H ′ and
Y ′ are again a Hilbert space and a UMD space.

Finally, if X is only a closed subspace of [H, Y ]θ, these estimates still hold
in X (with the inherited norm), since the tensor-product type operator U(α)
maps X-valued functions into X-valued ones, so this is just a specialization
to of the proved estimate to those f ∈ Lp(µ, [H, Y ]θ) which take their values
in X. �

9.10 Corollary. Let X be isomorphic to a closed subspace of a complex
interpolation space [H, Y ]θ as in Theorem 9.7, let p ∈ ]1,∞[, and T t be
a symmetric diffusion semigroup on some (M,µ). Then for all functions
a : [0,∞[ → L (X) as in Theorem 1.9, or more generally Prop. 7.4, the
operator Ta from (1.2) defines a bounded mapping on Lp(µ,X), with norm
estimated by

‖Ta‖L (Lp(µ,X)) ≤ CR(T ) sup
0<T<∞

T−1/2 ‖‖a(t)‖T ‖L2(0,T ) ≤ CR(a),

where C depends only on X and p. In fact, the negative generator A of
T t = e−tA has a bounded H∞(Σ(1−θ)|1/p−1/2|π+θπ/2+ε) functional calculus for
every ε > 0.

Proof. This multiplier estimate follows from Theorem 9.7 in the same way
as Theorem 1.6 implied Theorem 1.9, and its generalization in §7.
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As in §8 for subordinated semigroups, the estimate for Ta implies that
the negative generator A of T t = e−tA has a bounded H∞(Σπ/2) functional
calculus on Lp(µ,X). The angle may be improved by a further interpolation
argument:

First, if H is a Hilbert space, then A has the Borel functional calculus
(i.e., angle 0) on L2(µ,H) by spectral theory and an H∞(Σπ/2) calculus on
Lq(µ,H) for q ∈ ]1,∞[. If 1/p = (1−α)/2+α/q, we obtain by interpolation
a bounded H∞(Σ(1−α)·0+απ/2) calculus on Lp(µ,H). Taking q → 1 or q →∞
according to p < 2 or p > 2, we find that A has a bounded H∞(Σ|1/p−1/2|π+ε)
calculus on Lp(µ,H) for every ε > 0.

Next, we observe that [H,Y ]θ =[H,[H,Y ]β]θ/β by the re-iteration theorem
for 0<θ<β<1. An interpolation argument between the H∞(Σ|1/p−1/2|π+ε)
calculus on Lp(µ,H) and the H∞(Σπ/2) calculus on Lp(µ, [H, Y ]β) gives an
H∞(Σ(1−θ/β)(|1/p−1/2|π+ε)+θπ/2β) calculus on Lp(µ, [H, Y ]θ). Taking β → 1,
we obtain the desired conclusion. �
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