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An extension of
the Krein-Šmulian Theorem

Antonio S. Granero

Abstract

Let X be a Banach space, u ∈ X∗∗ and K, Z two subsets of X∗∗.
Denote by d(u, Z) and d(K, Z) the distances to Z from the point u
and from the subset K respectively. The Krein-Šmulian Theorem
asserts that the closed convex hull of a weakly compact subset of a
Banach space is weakly compact; in other words, every w∗-compact
subset K ⊂ X∗∗ such that d(K, X) = 0 satisfies d(cow∗

(K), X) = 0.
We extend this result in the following way: if Z ⊂ X is a closed

subspace of X and K ⊂ X∗∗ is a w∗−compact subset of X∗∗, then

d(cow∗
(K), Z) ≤ 5d(K, Z).

Moreover, if Z∩K is w∗-dense in K, then d(cow∗
(K), Z) ≤ 2d(K, Z).

However, the equality d(K, X) = d(cow∗
(K), X) holds in many cases,

for instance, if �1 �⊆ X∗, if X has w∗-angelic dual unit ball (for exam-
ple, if X is WCG or WLD), if X = �1(I), if K is fragmented by the
norm of X∗∗, etc. We also construct under CH a w∗-compact subset
K ⊂ B(X∗∗) such that K ∩ X is w∗-dense in K, d(K, X) = 1

2 and
d(cow∗

(K), X) = 1.

1. Introduction

If X is a Banach space, let B(X) and S(X) be the closed unit ball and unit
sphere of X, respectively, and X∗ its topological dual. If u ∈ X∗∗ and K,Z
are two subsets of X∗∗, let d(u, Z) = inf{‖u − z‖ : z ∈ Z} be the distance
to Z from u, d(K,Z) = sup{d(k, Z) : k ∈ K} the distance to Z from K,
co(K) the convex hull of K, co(K) the norm-closure of co(K) and cow∗

(K)
the w∗-closure of co(K).
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This paper is devoted to investigate the connection between the distances
d(cow∗

(K), Z) and d(K,Z), when Z ⊂ X∗∗ is a subspace of X (in particular,
when Z = X) and K is a w∗-compact subset of X∗∗. There exist some facts
that suggest that the distance d(cow∗

(K), Z) is controlled by the distance
d(K,Z). Indeed, on the one hand, we have the classical Theorem of Krein-
Šmulian (see [5, p. 51]). Using the terminology of distances, this Theorem
asserts the following: if X is a Banach space, every w∗-compact subset
K ⊂ X∗∗ with d(K,X) = 0 (that is, K ⊂ X is a weakly compact subset of
X) satisfies d(cow∗

(K), X) = 0 (that is, the closed convex hull co(K) of K
in X is weakly compact).

On the other hand, if the dual X∗ of the Banach space X does not
contain a copy of �1, it is very easy to prove that d(K,Z) = d(cow∗

(K), Z)
for every w∗-compact subset K ⊂ X∗∗ of X∗∗ and every subspace Z ⊂ X∗∗.
Indeed, in this case co(K) = cow∗

(K) (see [9]). So, as d(co(K), Z) = d(K,Z)
(this follows from the fact that the function ϕ(u) := d(u, Z), ∀u ∈ X∗∗, is
convex when Z ⊂ X∗∗ is a convex subset of X∗∗), we easily obtain that
d(K,Z) = d(cow∗

(K), Z).
In view of these facts, one is inclined to conjecture that d(K,X) =

d(cow∗
(K), X) for every w∗-compact subset K ⊂ X∗∗ and every Banach

space X. Unfortunately, assuming the Continuum Hypothesis (for short,
CH), this is not true because of the following result we will prove here.

Theorem 1 Under CH, if X = �c∞(ω+) (= subspace of the elements f ∈
�∞(ω+) with countable support), there exists a w∗-compact subsetH⊂B(X∗∗)
such that d(H,X) = 1/2, H ∩X is w∗-dense in H and d(cow∗

(H), X) = 1.

However, there exist many Banach spaces X for which the equality
d(K,X) = d(cow∗

(K), X) holds, for every w∗-compact subset K ⊂ X∗∗,
for example, the class of Banach spaces with property J .

Definition 2 A Banach space X has property J (for short, X ∈ J) if for
every z ∈ B(X∗∗) \ X and for every number b ∈ R with 0 < b < d(z,X),
there exists a sequence {x∗n}n≥1 ⊂ S(B(X∗), z, b) := {u ∈ B(X∗) : z(u) ≥ b}
such that x∗n

w∗→ 0.

For this class of Banach spaces with property J we prove the following result.

Theorem 3 Let X be a Banach space such that X ∈ J . Then for every
w∗-compact subset K ⊂ X∗∗ we have d(K,X) = d(cow∗

(K), X).

In the following corollary we state that many Banach spaces have prop-
erty J and, so, satisfy Theorem 3. Recall that, for a BanachX, the dual unit
ball (B(X∗), w∗) is angelic in the w∗-topology if, for every subset A ⊂ B(X∗)

and every z ∈ A
w∗

, there exists a sequence {an}n≥1 ⊂ A such that an
w∗→ z.
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Corollary 4 If X is a Banach space such that (B(X∗), w∗) is angelic (for
example, if X is weakly compactly generated (for short, WCG) or weakly
Lindelöf determined (for short, WLD)), then X ∈ J and, so, for every
w∗-compact subset K ⊂ X∗∗ we have d(K,X) = d(cow∗

(K), X).

Although the equality d(K,X) = d(cow∗
(K), X) does not hold in gen-

eral, we can ask whether there exists a universal constant 1 ≤ M < ∞
such that d(cow∗

(K), X) ≤Md(K,X) for every Banach space X and every
w∗-compact subset K ⊂ X∗∗.

The answer to this question is affirmative. We prove the following result,
which extends the Krein-Šmulian Theorem.

Theorem 5 If X is a Banach space, Z ⊂ X a closed subspace of X and
K ⊂ X∗∗ a w∗-compact subset, then d(cow∗

(K), Z) ≤ 5d(K,Z).

When K ∩ Z is w∗-dense in K, the argument used in Theorem 5 gives
the following result.

Theorem 6 Let X be a Banach space, Z ⊂ X a closed subspace and K ⊂
X∗∗ a w∗-compact subset. If Z ∩K is w∗-dense in K, then d(cow∗

(K), Z) ≤
2d(K,Z).

Finally, we also obtain the following result.

Theorem 7 Let I be an infinite set and X = �1(I). Then for every w∗-
compact subset K ⊂ X∗∗ we have d(cow∗

(K), X) = d(K,X).

A version of the problem we study here was considered (independently) by
M. Fabian, P. Hájek, V. Montesinos and V. Zizler in [7]. They study the
class of w∗-compact subsets K ⊂ X∗∗ such that K ∩ X is w∗-dense in K.
Instead of distances, they deal with the notion of ε-weakly relatively compact
subsets of X (for short, ε-WRK) introduced in [8]. A bounded subset H of

X is said to be ε-WRK, for some ε > 0, if H
w∗ ⊂ X + εB(X∗∗), that is, if

d(H
w∗
, X) ≤ ε. Using arguments based on the techniques of double limit

due to Grothendieck and Pták, they prove that the constantM = 2 holds for
this category of w∗-compact subsets K ⊂ X∗∗ such that K ∩X is w∗-dense
in K. More precisely, they prove the following beautiful result.

Theorem ([7]) Let X be a Banach space and H ⊂ X a bounded subset of X.
Assume that H is ε-WRK for some ε > 0. Then the convex hull co(H) is
2ε-WRK. Moreover, if (B(X∗), w∗) is angelic, or X∗ does not contain a copy
of �1, then co(H) is ε-WRK.

Observe that the Theorem of Krein-Šmulian follows from this result
when ε = 0.
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2. Proofs of the results

Let us introduce some notation and terminology (see [1], [4], [6], [11]). |A| de-
notes the cardinality of a set A, ω+ the first uncountable ordinal, ℵ1 the first
uncountable cardinal and CH the continuum hypothesis. A Hausdorff com-
pact space K is said to have property (M) if every Radon Borel measure µ
on K has separable support supp(µ). If K is a convex compact subset of
some locally convex linear space X and µ is a Radon Borel probability mea-
sure on K, r(µ) denotes the barycentre of µ. Recall (see [3]) that r(µ) ∈ K
and that r(µ) satisfies x∗(r(µ)) =

∫
K
x∗(k)dµ for every x∗ ∈ X∗.

If X is a Banach space, let X⊥ = {z ∈ X∗∗∗ : 〈z, x〉 = 0, ∀x ∈ X}
denote the subspace of X∗∗∗ orthogonal to X. If Y ⊂ X is a subspace
of X, let Y ⊥(X∗) = {z ∈ X∗ : 〈z, y〉 = 0, ∀y ∈ Y } be the subspace
of X∗ orthogonal to Y , Y ⊥(X∗∗∗) = {z ∈ X∗∗∗ : 〈z, y〉 = 0, ∀y ∈ Y },
etc. So, X⊥ = X⊥(X∗∗∗). Recall that, if u ∈ X (resp., u ∈ X∗∗), then
d(u, Y ) = sup{〈z, u〉 : z ∈ B(Y ⊥(X∗))} (resp., d(u, Y ) = sup{〈z, u〉 : z ∈
B(Y ⊥(X∗∗∗))}). If A ⊂ X is a subset of X, [A] denotes the linear span of A.

Let I be an infinite set with the discrete topology. Then:

(0) We use the symbol �∞(I) to denote the Banach space of all f =
(f(i))i∈I ∈ R

I with supremum norm finite ‖f‖ := sup{|f(i)| : i ∈
I} < ∞. The symbol c0(I) means its subspace consisting from f =
(f(i))i∈I ∈ �∞(I) such that the set {i ∈ I : |f(i)| > ε} is finite for
all ε > 0.

(1) If f ∈ �∞(I), supp(f) = {i ∈ I : f(i) �= 0} will be the support of f and
f̌ the Stone-Čech extension of f to βI, where βI is the Stone-Čech
compactification of I.

(2) Let cI = ∪{AβI
: A ⊂ I, A countable} and �c∞(I) = {f ∈ �∞(I) :

supp(f) countable}. Observe that cI is an open subset of βI and
that, if f ∈ �∞(I), then f ∈ �c∞(I) if and only if f̌�βI\cI = 0.

(3) Let Σ({0, 1}I) = {x ∈ {0, 1}I : supp(x) countable} and Σ([−1, 1]I) =
{x ∈ [−1, 1]I : supp(x) countable}.

(4) Recall that a compact space is said to be a Corson space if it is home-
omorphic to some compact subset of Σ([−1, 1]I).

Proof of Theorem 1. We use a modification of the Argyros-Mercou-
rakis-Negrepontis Corson compact space without property (M) [1, p. 219].
In the following we adopt the notation and terminology of [1, p. 219].
Let Ω be the space of Erdös, that is, the Stone space of the quotient algebra
Mλ/Nλ, where λ is the Lebesgue measure on [0, 1], Mλ is the algebra of λ-
measurable subsets of [0, 1] and Nλ is the ideal of λ-null subsets of [0, 1]. Ω is
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a compact extremely disconnected space (because Mλ/Nλ is complete) and
there exists a strictly positive regular Borel normal probability measure λ̃
on Ω, determined by the condition λ̃(V ) = λ(U), V being any clopen subset
of Ω and U a λ-measurable subset of [0, 1] such that V = U +Nλ.

Now we proceed as in [1, 3.11 Lemma] with small changes. Write [0, 1] =
{xξ : ξ < ω+} and let {Kξ : ξ < ω+} be the well-ordered class of compact
subsets of [0, 1] with strictly positive Lebesgue measure. For each ξ < ω+

we choose a compact subset Uξ ⊂ [0, 1] such that:

(a) Uξ ⊂ {xρ : ξ < ρ < ω+} ∩Kξ.

(b) If λ(Kξ) = 1, then Uξ satisfies the condition λ(Uξ) > 0. If λ(Kξ) < 1,
Uξ satisfies the condition λ(Kξ) − (1 − λ(Kξ)) < λ(Uξ) ≤ λ(Kξ).

Let Vξ be the clopen subset of Ω corresponding to Uξ. Then {Vξ : ξ < ω+} is
a pseudobase of Ω that witnesses the failure of the property caliber ω+, that
is, if A ⊂ ω+ and |A| = ℵ1, then ∩ξ∈AVξ = ∅. Moreover, (b) automatically
implies that |{ξ < ω+ : λ(Uξ) > t}| = ℵ1 for every 0 < t < 1, whence
|{ξ < ω+ : λ̃(Vξ) > t}| = ℵ1 for every 0 < t < 1.

Consider A = {A ⊂ ω+ : ∩ξ∈AVξ �= ∅}. Clearly, A is an adequate
family (see [11, p. 1116]) such that every element of A is a countable subset
of ω+. Moreover, there are elements A ∈ A with |A| = ℵ0. Indeed, apply
a well-known result from measure theory (see Lemma 8) and the fact that
{ξ < ω+ : λ̃(Vξ) > δ} is infinite for some (in fact, every) 0 < δ < 1.

So, if K = {1A : A ∈ A} ⊂ Σ({0, 1}ω+
) ⊂ �c∞(ω+), then K is a Corson

compact space with respect to the w∗-topology σ(�∞(ω+), �1(ω
+)). Define

the continuous map T : Ω → K so that, for every x ∈ Ω, T (x) = 1Ax , where
Ax = {ξ ∈ ω+ : x ∈ Vξ}. Observe that Ax ∈ A and, so, T (x) ∈ K, ∀x ∈ Ω.

Let L = T (Ω) ⊂ K. Then L is a Corson compact space without prop-
erty (M), because L is nonseparable but L is the support of µ, where
µ = T (λ̃) is the probability on K image of λ̃ under T . So, as L ⊂ K,
K is also a Corson compact space without property (M).

Let I be the space ω+, with the discrete topology, and X = �c∞(I). Then,
the dual space X∗ is

X∗ = �1(I) ⊕1 MR(cI \ I),

where MR(cI \ I) is the space of Radon Borel measures ν on βI such that
supp(ν) ⊂ cI \ I and ⊕1 means �1-sum (that is, if a Banach space Y has the
decomposition Y = Y1⊕1Y2 and y ∈ Y , with y = y1+y2 and y1 ∈ Y1, y2 ∈ Y2,
then ‖y‖ = ‖y1‖+‖y2‖). Observe that �1(I)⊕1MR(cI \I) can be considered
as a 1-complemented closed subspace of (�∞(I))∗ = �1(I) ⊕1 MR(βI \ I).
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The bidual of X is

X∗∗ = �∞(I) ⊕∞ MR(cI \ I)∗,
where ⊕∞ means �∞-sum (that is, if a Banach space Y has the decomposition
Y = Y1 ⊕∞ Y2 and y ∈ Y , with y = y1 + y2 and y1 ∈ Y1, y2 ∈ Y2, then
‖y‖ = sup{‖y1‖, ‖y2‖}). Let π1, π2 : X∗∗ → X∗∗ be the canonical projections
onto �∞(I) and MR(cI \ I)∗, respectively. The subspaces π1(X

∗∗) = �∞(I)
and π2(X

∗∗) = MR(cI\I)∗ are w∗-closed subspaces ofX∗∗. Moreover, the w∗-
topology σ(X∗∗, X∗) coincides on π1(X

∗∗) = �∞(I) with the σ(�∞(I), �1(I))-
topology. For x ∈ X∗∗ we write x = (x1, x2), with π1(x) = x1 ∈ �∞(I) and
π2(x) = x2 ∈ MR(cI \ I)∗. So, if J : X → X∗∗ is the canonical embedding
and f ∈ X, then J(f) = (f1, f2), where f1 = π1(f) = f and π2(f) = f2 is
such that f2(ν) = ν(f̌) =

∫
cI\I f̌dν, for every ν ∈MR(cI \ I).

The map φ : �∞(I) → X∗∗ such that φ(f) = (f, 0), ∀f ∈ �∞(I), is an
isomorphism between �∞(I) and π1(X

∗∗), for the norm-topologies and also
for the σ(�∞(I), �1(I))-topology of �∞(I) and the w∗-topology of π1(X

∗∗).
So, H := φ(K) = {(k, 0) : k ∈ K} ⊂ B(X∗∗) is a Corson compact space
without property (M), which is homeomorphic to K. Since the family A is
adequate (in particular, B ∈ A if B ⊂ A and A ∈ A), the subset {1A : A ∈
A, A finite} of K is dense in K. So, as J(1A) = (1A, 0) when A ⊂ ω+ is
finite, we get that H ∩ J(X) is w∗-dense in H, because

φ({1A : A ∈ A, A finite}) = {(1A, 0) : A ∈ A, A finite} =

= J({1A : A ∈ A, A finite}) ⊂ H ∩ J(X).

Claim 1. d(H, J(X)) = 1
2
.

Indeed, pick f ∈ K and assume that f = 1A, for some A ∈ A. If
|A| < ℵ0, clearly φ(f) = (f, 0) = J(f), that is, φ(f) ∈ J(X) . Suppose that
|A| = ℵ0. Then d(φ(f), J(X)) = 1

2
because:

(a) Clearly, ‖φ(f) − 1
2
J(f)‖ = 1

2
, whence d(φ(f), J(X)) ≤ 1

2
.

(b) On the other hand, ‖φ(f) − J(g)‖ ≥ 1
2

for every g ∈ X. Indeed, let
g ∈ X and assume that ‖φ(f) − J(g)‖ ≤ 1

2
. Then ‖f − g‖ ≤ 1

2
in �∞(I),

which implies that 1
2
≤ g on A (because f = 1A) and so ǧ ≥ 1

2
on A

βI
.

Since |A| = ℵ0, we can pick p ∈ A
βI \ I ⊂ cI \ I. Let δp ∈ MR(cI \ I) be

such that δp(h) = ȟ(p) for every h ∈ �∞(I). Notice that ‖δp‖ = 1. Then, if
J(g) = (g, g2), we have

|(φ(f) − J(g))(δp)| = | − g2(δp)| = | −
∫

cI\I
ǧ · d(δp)| = | − ǧ(p)| ≥ 1

2
.

Finally, recall that there are elements A ∈ A with |A| = ℵ0.
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Claim 2. d(cow∗
(H), J(X)) = 1.

Indeed, first d(cow∗
(H), J(X)) ≤ 1 because cow∗

(H) ⊂ B(X∗∗). On the
other hand, let ν := φ(µ) be the probability on φ(L) image of µ under φ.
Since φ(L) ⊂ B(π1(X

∗∗)) and π1(X
∗∗) is a convex w∗-closed subset of X∗∗,

we conclude that cow∗
(φ(L)) ⊂ B(π1(X

∗∗)). So, as r(ν) ∈ cow∗
(φ(L)), we

get that r(ν) = (z0, 0) for some z0 ∈ B(�∞(I)). If ξ ∈ I, define πξ : X∗∗ → R

by πξ(f1, f2) = f1(ξ), for all (f1, f2) ∈ X∗∗ = �∞(I)⊕∞MR(cI \I)∗. Observe
that πξ is a w∗-continuous linear map on X∗∗. So

z0(ξ) = πξ(z0, 0) = πξ(r(ν)) =

∫
φ(L)

πξ(k)dν =

∫
L

k(ξ)dµ = λ̃(Vξ).

Thus, for every 0 < t < 1 we have, by construction, |{ξ ∈ I : z0(ξ) > t}| =
|{ξ ∈ I : λ̃(Vξ) > t}| = ℵ1, and this implies that ‖z0 − g‖ ≥ 1 in �∞(I), for
every g ∈ X = �c∞(I), whence ‖(z0, 0) − J(g)‖ ≥ 1 for every g ∈ X, that
is, d((z0, 0), J(X)) ≥ 1. Finally, we obtain d(cow∗

(H), J(X)) ≥ 1 because
(z0, 0) ∈ cow∗

(φ(L)) ⊂ cow∗
(H).

And this completes the proof. �

Remark. Theorem 1 gives, under CH, a negative answer to the follow-
ing question posed in Problem 3 of [7]: if X is a Banach space and H ⊂ X
a ε-WRK, is co(H) a ε-WRK?

We need the following well known result from measure theory.

Lemma 8 Let (Ω,Σ, µ) be a measure space with µ positive and finite and
{An}n<ω ⊂ Σ be a sequence of measurable sets with µ(An) > δ > 0 for all
n < ω and some δ > 0. Then there exists an infinite subset I ⊂ ω such that
∩n∈IAn �= ∅.

Proof. Consider the sequence Bn = ∪k≥nAk, n ≥ 1. The sequence {Bn}n≥1

is decreasing and µ(Bn) > δ for every n ≥ 1. Hence µ(∩n<ωBn) ≥ δ and
therefore ∩n<ωBn �= ∅. Choose w ∈ ∩n<ωBn and inductively a sequence
{Ank

}k<ω, nk < nk+1, such that w ∈ Ank
for all k < ω. Then I = {nk : k <

ω} is the desired infinite subset. �

Proposition 9 Let I be an infinite set and X = (c0(I), ‖ · ‖∞). Then every
w∗-compact subset K ⊂ X∗∗ satisfies d(K,X) = d(cow∗

(K), X).

Proof. First, recall that if f ∈ X∗∗ = �∞(I), then

d(f,X) = sup{|f̌(p)| : p ∈ βI \ I}.
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Suppose that there exists a w∗-compact subset K ⊂ B(X∗∗) such that
d(K,X) < d(cow∗

(K), X). Then we can find two real numbers a, b such
that

d(K,X) < a < b < d(cow∗
(K), X) ≤ 1.

Pick z0 ∈ cow∗
(K) such that d(z0, X) > b. So, there exist ε > 0 and p0 ∈

βI\I such that |ž0(p0)| > b+ε, for example, ž0(p0) > b+ε. Let U ⊂ I be such

that p0 ∈ U
βI

and z0(j) > b+ε, ∀j ∈ U . Let µ be a Radon Borel probability
on K such that z0 = r(µ) and denote Aj := {k ∈ K : k(j) ≥ b}, j ∈ U ,
which is a closed subset of K.

Claim. µ(Aj) >
ε

1−b
, ∀j ∈ U .

Indeed, let πj : �∞(I) → R, j ∈ I, be such that πj(f) = f(j) for every
f ∈ �∞(I). Observe that πj is a w∗-continuous linear map on �∞(I), for
every j ∈ I. Thus, for every j ∈ U we have

z0(j) = πj(z0) = πj(r(µ)) =

∫
K

πj(k)dµ =

∫
K

k(j)dµ =

=

∫
Aj

k(j)dµ+

∫
K\Aj

k(j)dµ ≤ µ(Aj) + (1 − µ(Aj))b,

and this implies

µ(Aj) ≥ z0(j) − b

1 − b
>

ε

1 − b
.

Let V0 ⊂ U be an arbitrary infinite subset. By Lemma 8 there exists
an infinite countable subset N0 ⊂ V0 such that ∅ �= ∩j∈N0Aj ⊂ K. Pick

x0 ∈ ∩j∈N0Aj. Then for every q ∈ N0
βI \ I we have x̌0(q) ≥ b, which implies

d(x0, X) ≥ b, a contradiction, because x0 belongs to K. �
If (X, τ) is a topological space, a subset K ⊂ X is said to be regular in

X if and only if the interior set int(K) is dense in K.

Corollary 10 Let I be an infinite set, H ⊂ βI \ I a compact subset which
is regular in βI \ I, and YH = {f ∈ �∞(I) : f̌|H = 0}. Then for every
w∗-compact subset K ⊂ �∞(I) we have d(K,YH) = d(cow∗

(K), YH).

Proof. First, observe that d(z, YH) = sup{|ž(x)| : x ∈ H} for every z ∈
�∞(I). Suppose that there exist a w∗-compact subset K ⊂ B(�∞(I)) and
real numbers a, b such that:

d(K,YH) < a < b < d(cow∗
(K), YH) ≤ 1.

Let z0 ∈ cow∗
(K) be such that d(z0, YH) > b. Since int(H) is dense in H,

there exists p0 ∈ int(H) such that, for example, ž0(p0) > b + ε, for some
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ε > 0. Let U ⊂ I be an infinite subset such that p0 ∈ U
βI \ I ⊂ H and

z0(j) > b + ε, ∀j ∈ U . By an argument similar to that of Proposition 9,
we find an infinite countable subset N0 ⊂ U and a vector x0 ∈ K such

that x̌0(q) ≥ b, for every q ∈ N0
βI \ I ⊂ H, which implies d(x0, YH) ≥ b, a

contradiction, because x0 ∈ K and d(K,YH) ≤ a < b. �

We now prove Theorem 3 and Corollary 4.

Proof of Theorem 3. Suppose that there exist a w∗-compact subset K ⊂
B(X∗∗) and real numbers a, b such that:

d(K,X) < a < b < d(cow∗
(K), X).

Pick z0 ∈ cow∗
(K) with d(z0, X) > b. Since X ∈ J we can choose a sequence

{x∗n}n≥1 ⊂ S(B(X∗), z0, b) such that x∗n
w∗→ 0. Let T : X → c0 := c0(N) be

such that T (x) = (x∗n(x))n≥1, ∀x ∈ X. Clearly, T is a linear continuous map
with ‖T‖ ≤ 1. Let L = T ∗∗(K), which is a w∗-compact subset of B(�∞).

Claim 1. d(L, c0) ≤ d(K,X).

Indeed, let c⊥0 = {f ∈ c∗∗∗0 : 〈f, u〉 = 0, ∀u ∈ c0} and pick v ∈ B(c⊥0 ).
Then ‖T ∗∗∗(v)‖ ≤ 1 and for every x ∈ X we have:

〈T ∗∗∗(v), x〉 = 〈v, T ∗∗x〉 = 〈v, Tx〉 = 0.

So, T ∗∗∗(B(c⊥0 )) ⊂ B(X⊥). Hence, if k ∈ K and T ∗∗(k) =: h ∈ L we have:

d(h, c0) = sup{〈v, h〉 : v ∈ B(c⊥0 )} =

= sup{〈v, T ∗∗(k)〉 : v ∈ B(c⊥0 )} = sup{〈T ∗∗∗(v), k〉 : v ∈ B(c⊥0 )} ≤
≤ sup{〈w, k〉 : w ∈ B(X⊥)} = d(k,X).

Claim 2. If w0 := T ∗∗(z0) ∈ cow∗
(L), then d(w0, c0) ≥ b.

Indeed, let {en}n≥1 be the canonical basis of �1, which satisfies T ∗(en) =
x∗n, ∀n ≥ 1. Since x∗n ∈ S(B(X∗), z0, b), then

(2.1) 〈w0, en〉 = 〈T ∗∗(z0), en〉 = 〈z0, T
∗(en)〉 = 〈z0, x

∗
n〉 ≥ b.

Let ψ be a w∗-limit point of {en}n≥1 in (�∗∞, w
∗). Clearly, ψ ∈ B(c⊥0 ) and

also ψ(w0) ≥ b by (2.1). So, d(w0, c0) ≥ b.
Therefore, L ⊂ B(�∞) is a w∗-compact subset such that

d(L, c0) ≤ d(K,X) < a < b ≤ d(w0, c0) ≤ d(cow∗
(L), c0),

a contradiction to Proposition 9. �
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Of course, not every Banach space has property J . Indeed, if X is a
non-reflexive Grothendieck Banach space (for example, if X = �∞(I) with I
infinite), then clearly X does not have property J . Moreover, X cannot be
isomorphically embedded into a Banach space with property J .

However, the family of Banach spaces fulfilling property J is very large.
For example, this family includes the class of Banach spaces X whose dual
unit ball (B(X∗),w∗) is angelic in the w∗-topology. Recall that every WCG
(even every WLD) Banach space belongs to this class (see [2]).

Proof of Corollary 4. The proof of this fact is standard and well known.
Let us prove that if z0 ∈ B(X∗∗) \X and 0 < b < d(z0, X), then

0 ∈ S(B(X∗), z0, b)
σ(X∗,X)

.

Find ψ ∈ S(X⊥) ⊂ X∗∗∗ such that ψ(z0) > b. As B(X∗) is w∗-dense in
B(X∗∗∗) and ψ(z0) > b, then

ψ ∈ S(B(X∗), z0, b)
σ(X∗∗∗,X∗∗)

,

whence we obtain
0 ∈ S(B(X∗), z0, b)

σ(X∗,X)
,

because ψ ∈ X⊥. Finally, it is enough to apply the fact that (B(X∗),w∗) is
angelic. �

Now we prove some auxiliary facts. IfX is a Banach space, let IX : X→X
denote the identity map of X, JX : X → X∗∗ the canonical embedding of
X into X∗∗ and RX : X∗∗∗ → X∗ the canonical restriction map such that
〈RX(z), x〉 = 〈z, JX(x)〉, for every z ∈ X∗∗∗ and every x ∈ X. Notice that
RX = (JX)∗ and that RX ◦ JX∗ = IX∗ .

It is well-known that JX∗(X∗) is 1-complemented into X∗∗∗, by means of
the projection PX : X∗∗∗ → X∗∗∗ such that PX = JX∗ ◦RX . Since ker(PX) =
{z ∈ X∗∗∗ : 〈z, JX(x)〉 = 0, ∀x ∈ X} = X⊥, we have the decomposition
X∗∗∗ = X⊥⊕JX∗(X∗). The subspace X⊥ is complemented in X∗∗∗ by means
of the projection QX : X∗∗∗ → X∗∗∗ such that QX = IX∗∗∗ − PX . Observe
that 1 ≤ ‖QX‖ ≤ 2 and that:

B(X⊥) ⊂ QX(B(X∗∗∗)) ⊂ ‖QX‖ · B(X⊥) ⊂ 2B(X⊥).

Lemma 11 Let X be a Banach space and QX : X∗∗∗ → X∗∗∗ be the canon-
ical projection onto X⊥. Assume that Y ⊂ X is a closed subspace. Then,
for every u ∈ Y ∗∗ (considered Y ∗∗ as a subspace of X∗∗) we have:

d(u,X) ≤ d(u, Y ) ≤ ‖QX‖ · d(u,X) ≤ 2d(u,X).
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Proof. First, it is clear that d(u,X) ≤ d(u, Y ), because Y ⊂ X.

In the following we distinguish X from JX(X), Y from JY (Y ), etc. Let
i : Y → X denote the inclusion map. Then i∗ : X∗ → Y ∗ is a quotient
map, i∗∗ : Y ∗∗ → X∗∗ is an inclusion map such that (i∗∗)�Y = i, and i∗∗∗ :
X∗∗∗ → Y ∗∗∗ is a quotient map such that (i∗∗∗)�X∗ = i∗. Observe that
i∗∗∗(B(X∗∗∗)) = B(Y ∗∗∗). It is easy to see that JX ◦ i = i∗∗ ◦ JY and that
JY ∗ ◦ i∗ = i∗∗∗ ◦ JX∗ , whence we obtain

i∗ ◦RX = i∗ ◦ (JX)∗ = (JX ◦ i)∗ = (i∗∗ ◦ JY )∗ = (JY )∗ ◦ i∗∗∗ = RY ◦ i∗∗∗.
Claim. QY ◦ i∗∗∗ = i∗∗∗ ◦QX .

Indeed, we have

QY ◦ i∗∗∗ = (IY ∗∗∗ − JY ∗ ◦RY ) ◦ i∗∗∗ = i∗∗∗ − JY ∗ ◦RY ◦ i∗∗∗ =

= i∗∗∗ − JY ∗ ◦ i∗ ◦RX = i∗∗∗ − i∗∗∗ ◦ JX∗ ◦RX =

= i∗∗∗ ◦ (IX∗∗∗ − JX∗ ◦RX) = i∗∗∗ ◦QX .

From the Claim we obtain ‖QY ‖ ≤ ‖QX‖ and

B(Y ⊥) ⊂ QY (B(Y ∗∗∗)) = QY (i∗∗∗(B(X∗∗∗))) =

= i∗∗∗(QX(B(X∗∗∗))) ⊂ i∗∗∗(‖QX‖ · B(X⊥)).

Thus, if u ∈ Y ∗∗, we finally get

d(u, JY (Y )) = sup{〈z, u〉 : z ∈ B(Y ⊥)}
≤ sup{〈i∗∗∗(w), u〉 : w ∈ ‖QX‖ · B(X⊥)}
= ‖QX‖ · sup{〈w, i∗∗(u)〉 : w ∈ B(X⊥)}
= ‖QX‖ · d(i∗∗(u), JX(X))

≤ 2d(i∗∗(u), JX(X)). �

Let us prove our extension of the Krein-Šmulian Theorem.

Proof of Theorem 5. Suppose that there exist a closed subspace Z ⊂ X
and a w∗-compact subset K ⊂ B(X∗∗) such that

d(cow∗
(K), Z) > 5d(K,Z).

Then we can find z0 ∈ cow∗
(K) and a, b > 0 such that

d(z0, Z) > b > 5a > 5d(K,Z).

Pick ψ ∈ S(Z⊥(X∗∗∗)) with ψ(z0) > b.
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Step 1. Since ψ(z0) > b, there exists x∗1 ∈ S(X∗) such that x∗1(z0) > b.
So, as z0 ∈ cow∗

(K) we can find η1 ∈ co(K) with

η1 =
n1∑
i=1

λ1iη1i, η1i ∈ K, λ1i ≥ 0,
n1∑
i=1

λ1i = 1,

such that x∗1(η1) > b. Since d(η1i, Z) < a we have the decomposition η1i =
η1

1i + η2
1i with η1

1i ∈ Z and η2
1i ∈ aB(X∗∗).

Step 2. Let Y1 = [{η1
1i : 1 ≤ i ≤ n1}] ⊂ Z. Since dim(Y1) ≤ n1 < ∞,

ψ(z0) > b and ψ ∈ Y ⊥
1 (X∗∗∗), there exists x∗2 ∈ S(X∗) such that x∗2(z0) > b

and x∗2�Y1
= 0. So, as x∗i (z0) > b, i = 1, 2, and z0 ∈ cow∗

(K), we can find
η2 ∈ co(K) with

η2 =

n2∑
i=1

λ2iη2i, η2i ∈ K, λ2i ≥ 0,

n2∑
i=1

λ2i = 1,

such that x∗i (η2) > b, i = 1, 2. Since d(η2i, Z) < a we have the decomposition
η2i = η1

2i + η2
2i with η1

2i ∈ Z and η2
2i ∈ aB(X∗∗).

By reiteration, we obtain the sequences {x∗n}n≥1 ⊂ S(X∗), ηk ∈ co(K)
with

ηk =

nk∑
i=1

λkiηki, ηki ∈ K, λki ≥ 0,

nk∑
i=1

λki = 1,

ηki = η1
ki + η2

ki with η1
ki ∈ Z and η2

ki ∈ aB(X∗∗), k ≥ 1,

such that x∗i (ηk) > b, i = 1, ..., k, and x∗k+1�Yk
= 0, where

Yk = [{η1
iji

: i = 1, ..., k; 1 ≤ ji ≤ ni}] ⊂ Yk+1 ⊂ Z.

Let Y = ∪k≥1Yk ⊂ Z and K1 = (K+aB(X∗∗))∩Y ∗∗. Then Y is a closed
separable subspace of Z and K1 is a w∗-compact subset of Y ∗∗ (considered
Y ∗∗ canonically embedded into Z∗∗ ⊂ X∗∗). Observe that {η1

iji
: i ≥ 1, 1 ≤

ji ≤ ni} ⊂ K1. By Lemma 11, since K1 ⊂ Y ∗∗ and d(K1, Z) ≤ 2a, we have
d(K1, Y ) ≤ 4a (in fact, d(K1, Y ) ≤ 2‖QZ‖a ≤ 2‖QX‖a ≤ 4a). As Y has
property J (because Y is separable and, so, WCG, see Corollary 4), we get
d(cow∗

(K1), Y ) = d(K1, Y ), whence d(cow∗
(K1), Y ) ≤ 4a.

Let η0 be a w∗-limit point of {ηk}k≥1 in X∗∗.

Claim 1. d(η0, Y ) ≤ 5a.

Indeed, first

η0 ∈ cow∗
({ηiji

: i ≥ 1, 1 ≤ ji ≤ ni}) ⊂ cow∗
(K1) + aB(X∗∗).

On the other hand, d(cow∗
(K1), Y ) ≤ 4a. Hence, d(η0, Y ) ≤ 5a.
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Claim 2. d(η0, Y ) ≥ b.

Indeed, let φ ∈ B(X∗∗∗) be a w∗-limit point of {x∗n}n≥1. Since x∗n(ηk) > b
if k ≥ n, then x∗n(η0) ≥ b, ∀n ≥ 1, whence φ(η0) ≥ b. Moreover, φ ∈
Y ⊥(X∗∗∗) because x∗n+1|Yn

= 0 and Yn ⊂ Yn+1. Hence, d(η0, Y ) ≥ φ(η0) ≥ b.

Since b > 5a we get a contradiction and this completes the proof. �

Proof of Theorem 6. Suppose that there exist a closed subspace Z ⊂ X
and a w∗-compact subset K ⊂ B(X∗∗), with Z ∩ K w∗-dense in K, such
that d(cow∗

(K), Z) > 2d(K,Z). Then we can find z0 ∈ cow∗
(K) and a, b > 0

such that d(z0, Z) > b > 2a > 2d(K,Z). Pick ψ ∈ S(Z⊥(X∗∗∗)) such that
ψ(z0) > b. We follow the argument of Theorem 5 with the following changes:

(i) As Z ∩ K is w∗-dense in K we choose ηk ∈ co(Z ∩ K) with ηk =∑nk

i=1 λkiηki, ηki ∈ Z ∩K and λki ≥ 0,
∑nk

i=1 λki = 1;

(ii) Define

Yk = [{ηiji
: i = 1, ..., k; 1 ≤ ji ≤ ni}] , Y = ∪k≥1Yk ⊂ Z and

K1 = w∗-cl({ηiji
: i ≥ 1, 1 ≤ ji ≤ ni}) ⊂ Y ∗∗ ∩K.

Clearly, d(K1, Z) ≤ d(K,Z) < a, whence d(K1, Y ) ≤ 2d(K1, Z) ≤ 2a
(in fact, d(K1, Y ) ≤ ‖QZ‖a ≤ ‖QX‖a ≤ 2a). Since Y is separable, we
have d(cow∗

(K1), Y ) = d(K1, Y ) ≤ 2a. Finally, every w∗-limit point η0 of
{ηk}k≥1 in X∗∗ satisfies η0 ∈ cow∗

(K1), d(η0, Y ) ≤ 2a and d(η0, Y ) ≥ b, a
contradiction. �

Remarks. (1) The argument of Theorem 5 in fact yields the following

d(cow∗
(K), Z) ≤ (2‖QZ‖ + 1)d(K,Z) ≤ (2‖QX‖ + 1)d(K,Z) ≤ 5d(K,Z).

In Theorem 6 we also obtain

d(cow∗
(K), Z) ≤ ‖QZ‖d(K,Z) ≤ ‖QX‖d(K,Z) ≤ 2d(K,Z).

(2) Let Y ⊂ X be a subspace of the Banach space X and assume
that d(cow∗

(K), X) ≤ Md(K,X) for some 1 ≤ M < ∞ and every w∗-
compact subset K ⊂ X∗∗. Then using the fact that d(z,X) ≤ d(z, Y ) ≤
‖QX‖d(z,X) ≤ 2d(z,X), for every z ∈ Y ∗∗, it can be proved easily that
d(cow∗

(K), Y ) ≤M‖QX‖d(K,Y ) ≤ 2Md(K,X), for every w∗-compact sub-
set K ⊂ Y ∗∗.

A subset A ⊂ X∗ is said to be fragmented by the norm of X∗ (see [6,
p. 81], [10]) if for every subset B ⊂ A and every ε > 0 there exists a w∗-
open subset V ⊂ X∗ such that V ∩ B �= ∅ and diam(V ∩ B) ≤ ε, where
diam(V ∩ B) means the diameter of V ∩ B. In order to prove Corollary 13
and Theorem 7 we need the following lemma.
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Lemma 12 Let X be a Banach space, Z ⊂ X∗ a subspace and K ⊂ B(X∗)
a w∗-compact subset such that there exist a, b > 0 with:

d(K,Z) < a < b < d(cow∗
(K), Z).

Then there exist z0 ∈ cow∗
(K) and ψ ∈ S(Z⊥(X∗∗)) with ψ(z0) > b such

that, if µ is a Radon Borel probability measure on K with barycentre r(µ)=z0,
then: (a) µ is atomless; (b) if H = supp(µ), for every w∗-open subset V of
X∗ with V ∩ H �= ∅ there exists ξ ∈ cow∗

(V ∩ H) such that ψ(ξ) > b; and
(c) H is not fragmented by the norm of X∗.

Proof. Pick z ∈ cow∗
(K) and ψ ∈ S(Z⊥(X∗∗)) such that ψ(z) > b + ε for

some ε > 0. By the Bishop-Phelps theorem, there exists φ ∈ S(X∗∗) with
‖ψ − φ‖ ≤ ε/4 such that φ attains its maximum value on cow∗

(K) in some
z0 ∈ cow∗

(K). So:

φ(z0) ≥ φ(z) = ψ(z) + (φ− ψ)(z) > b+ ε− 1

4
ε = b+

3

4
ε ,(2.2)

ψ(z0) = φ(z0) + (ψ − φ)(z0) > b+
3

4
ε− 1

4
ε = b+

1

2
ε and(2.3)

∀k ∈ K,φ(k) = ψ(k) + (φ− ψ)(k) < a+
1

4
ε < b+

3

4
ε < φ(z0).(2.4)

In particular, observe that z0 /∈ K by (2.4).

(a) Let µ be a Radon Borel probability on K with barycentre r(µ) = z0

and suppose that µ has some atom, that is, there exist 0 < λ ≤ 1 and
k0 ∈ K such that µ = λ · δk0 + µ1, µ1 ≥ 0. If λ = 1 then µ = δk0 , whence
r(µ) = k0 ∈ K, which is impossible because r(µ) = z0 /∈ K by (2.4). So,
0 < λ < 1, i.e., µ1 �= 0 and ‖µ1‖ = 1−λ > 0. Then µ = λ · δk0 + (1−λ) µ1

‖µ1‖
and

z0 = r(µ) = λk0 + (1 − λ)r(
µ1

‖µ1‖),

whence, since φ(k0) < φ(z0) (by (2.4)) and φ(r( µ1

‖µ1‖)) ≤ φ(z0) (because

r( µ1

‖µ1‖) ∈ cow∗
(K)), we get

φ(z0) = λφ(k0) + (1 − λ)φ(r(
µ1

‖µ1‖)) < λφ(z0) + (1 − λ)φ(z0) = φ(z0),

a contradiction.

(b) LetH = supp(µ) and suppose that there exists a w∗-open subset V of
X∗ with V ∩H �= ∅ such that ψ(ξ) ≤ b, for every ξ ∈ cow∗

(V ∩H). Let µ1 =
µ�V ∩H denote the restriction of µ to V ∩H (that is, µ1(B) = µ(B ∩V ∩H),
for every Borel subset B ⊂ K) and µ2 := µ − µ1. Observe that µ1, µ2 are
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positive measures such that µ1 �= 0 (because ∅ �= V ∩H = V ∩ supp(µ)) and
µ2 �= 0 (if µ2 = 0, i.e., µ = µ1 = µ�V ∩H , then z0 = r(µ) ∈ cow∗

(V ∩ H))
and ψ(z0) ≤ b, a contradiction to (2.3)). Thus, we have the decomposition
µ = µ1 + µ2 and so:

z0 = r(µ) = ‖µ1‖ · r( µ1

‖µ1‖) + ‖µ2‖ · r( µ2

‖µ2‖).

Since r( µ1

‖µ1‖) ∈ cow∗
(V ∩H), then ψ(r( µ1

‖µ1‖)) ≤ b, whence φ(r( µ1

‖µ1‖)) ≤ b+ 1
4
ε

(because ‖ψ − φ‖ ≤ ε/4). Therefore, taking into account that r( µ2

‖µ2‖) ∈
cow∗

(K) and (2.2) we get

φ(z0) = ‖µ1‖φ(r(
µ1

‖µ1‖)) + ‖µ2‖φ(r(
µ2

‖µ2‖)) ≤

≤ ‖µ1‖(b+
1

4
ε) + ‖µ2‖φ(z0) < ‖µ1‖φ(z0) + ‖µ2‖φ(z0) = φ(z0),

a contradiction.

(c) Let η = b− a and suppose that H is fragmented by the norm of X∗.
Then there exists a w∗-open subset V such that V ∩H �= ∅ and diam(V ∩
H) < η

2
. Therefore, if h0 ∈ V ∩H, then cow∗

(V ∩H) ⊂ B(h0; η/2) (= closed
ball with center h0 and radius η/2). Hence, for every ξ ∈ cow∗

(V ∩ H)
we have

ψ(ξ) ≤ ψ(h0) +
η

2
≤ d(h0, Z) +

η

2
< a+

η

2
< b,

a contradiction to (b). �

Corollary 13 Let X be a Banach space, Z ⊂ X∗ a subspace and K ⊂
X∗ a w∗-compact subset which is fragmented by the norm of X∗. Then
d(cow∗

(K), Z) = d(K,Z).

Proof. This follows immediately from Lemma 12. It also follows from [10,
Theorem 2.3] where it is proved that co(K) = cow∗

(K) whenever K ⊂ X∗ is
w∗-compact subset such that (K,w∗) is fragmented by the norm of X∗. �

Now we prove Theorem 7. Observe that we cannot apply Theorem 3
because we do not know whether �1(I) has property J when I is uncount-
able (if I is countable it has because �1(I) is separable in this case). In
fact, if we assume that there exists an uncountable measurable cardinal α
(see [4, p. 186, 196] for definitions) and I is a set with |I| = α, then it is easy
to prove that �1(I) fails to have property J .
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Proof of Theorem 7. First, observe that X∗ = �∞(I) and X∗∗ is the space
MR(βI) of Radon Borel measures on βI. Thus, X∗∗ has the decomposition

X∗∗ = �1(I) ⊕1 MR(βI \ I).
Notice that the subspace �1(I) of this decomposition coincides with the space
J(X), J : X → X∗∗ being the canonical inclusion. If µ ∈ MR(βI), we
write µ = µ1 + µ2, where µ1 ∈ �1(I) and µ2 = µ�βI\I ∈ MR(βI \ I). So,
d(µ,X) = ‖µ2‖.

Suppose that there exist a w∗-compact subset K ⊂ B(X∗∗) and two
numbers a, b > 0 such that:

d(K,X) < a < b < d(cow∗
(K), X).

By Lemma 12 we have the following Fact:

Fact. There exist ψ ∈ S(X⊥) and a w∗-compact subset ∅ �= H ⊂ K such
that for every w∗-open subset V with V ∩H �= ∅ there exists ξ ∈ cow∗

(V ∩H)
with ψ(ξ) > b.

Step 1. By the Fact we can pick ξ1 ∈ cow∗
(H) with ψ(ξ1) > b and

x∗1 ∈ S(X∗) with x∗1(ξ1) > b. Now we choose

η1 =

n1∑
i=1

λ1iη1i ∈ co(H), η1i ∈ H, λ1i ≥ 0,

n1∑
i=1

λ1i = 1,

such that x∗1(η1) > b. If η1 = η1
1 + η2

1, with η1
1 ∈ �1(I) and η2

1 ∈MR(βI \ I),
then

‖η2
1‖ = d(η1, X) ≤ d(K,X) < a,

whence ‖η1
1‖ = ‖η1‖ − ‖η2

1‖ > b− a, because ‖η1‖ ≥ x∗1(η1) > b. So, we can
find y1 ∈ B(X∗) = B(�∞) with finite support supp(y1) = {γ11, ..., γ1p1} ⊂ I
such that y1(η

1
1) > b− a. Since y1(η

2
1) = 0, we have

y1(η1) = y1(η
1
1) > b− a,

whence it follows that y1(η1i) > b− a for some 1 ≤ i ≤ n1.

Step 2. Let V1 = {u ∈ X∗∗ : y1(u) > b− a}, which is a w∗-open subset
of X∗∗ with V1 ∩ H �= ∅, because η1i ∈ V1 ∩ H for some 1 ≤ i ≤ n1. By
the Fact there exists ξ2 ∈ cow∗

(V1 ∩ H) with ψ(ξ2) > b. Since ψ(ξ2) > b
and ψ(eγ1i

) = 0, 1 ≤ i ≤ p1 (where eγ1i
∈ �1(I) is the unit vector such that

eγ1i
(γ) = 1, if γ = γ1i, and eγ1i

(γ) = 0, if γ �= γ1i), there exists x∗2 ∈ B(X∗)
with x∗2(ξ2) > b and x∗2(eγ1i

) = 0, 1 ≤ i ≤ p1. Clearly, we can choose

η2 =

n2∑
i=1

λ2iη2i ∈ co(V1 ∩H), η2i ∈ V1 ∩H, λ2i ≥ 0,

n2∑
i=1

λ2i = 1,

such that x∗2(η2) > b.
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As y1(η2i) > b− a, 1 ≤ i ≤ n2, we get y1(η2) > b− a. Let η2 = η1
2 + η2

2,
with η1

2 ∈ �1(I), η
2
2 ∈MR(βI \ I) and ‖η2

2‖ = d(η2, X) ≤ d(K,X) < a. Since

‖η1
2‖ ≥ |x∗2(η1

2)| = |x∗2(η2) − x∗2(η
2
2)| ≥ |x∗2(η2)| − |x∗2(η2

2)| > b− a,

and x∗2 = 0 on supp(y1), we can find y2 ∈ B(X∗) with finite support
supp(y2) = {γ21, ..., γ2p2} ⊂ I \ supp(y1) such that y2(η

1
2) > b − a. Hence,

y2(η2) = y2(η
1
2) > b− a and this implies y2(η2i) > b− a for some 1 ≤ i ≤ n2.

By reiteration, we obtain the sequence {yk}k≥1 ⊂ B(X∗) with pairwise
disjoint supports and the sequence {ηk}k≥1 ⊂ co(H) ⊂ B(X∗∗) such that
yn(ηk) > b− a for k ≥ n.

Since ‖∑n
i=1 yi‖ ≤ 1 (because the vectors {yk}k≥1 ⊂ B(�∞) have pairwise

disjoint supports) and (
∑n

i=1 yi)(ηn) > n(b − a), ∀n ≥ 1, we get ‖ηn‖ >
n(b− a), ∀n ≥ 1, a contradiction, because ‖ηn‖ ≤ 1. �
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