
Rev. Mat. Iberoamericana 21 (2005), no. 3, 1071–1095

Lp decay estimates for weighted
oscillatory integral operators on R

Malabika Pramanik and Chan Woo Yang

Abstract

In this paper, we formulate necessary conditions for decay rates
of Lp operator norms of weighted oscillatory integral operators on R

and give sharp L2 estimates and nearly sharp Lp estimates.

1. Introduction

Suppose f and g are real-analytic, real-valued functions in a neighborhood V
of the origin in R

2 with f(0, 0) = g(0, 0) = 0 and let χ be a smooth function
of compact support in V . We consider the oscillatory integral operator

Tλϕ(x) =

∫
R

eiλf(x,y)|g(x, y)|ε/2χ(x, y)ϕ(y)dy,

where ε is any positive number. In this paper we will study the decay rate
in λ of ||Tλ||Lp→Lp as λ→ ∞.

The case where g(x, y) = 1 has been studied in [3], [6], [10], [11], [12],
and [15]. In [10] and [11], Phong and Stein considered a case where the
phase function f(x, y) is a real homogeneous polynomial and they obtained
sharp decay estimates for ||Tλ||L2→L2. In [12], they took into account of
more general cases where the phase function f(x, y) is a real analytic func-
tion and they proved ||Tλ||L2→L2 ∼ λ−δ where δ is the reduced Newton
distance of f(x, y). In [15] Rychkov developed the ideas of Phong and Stein
in [12] and Seeger in [16] to obtain sharp L2 decay estimates for the case
where the phase function f(x, y) is a real smooth function with the condition
that the formal power series expansion of f ′′

xy at the origin does not vanish.
He proved ||Tλ||L2→L2 ∼ λ−δ, where δ is the reduced Newton distance of
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the formal power series expansion of f(x, y) at the origin, with a loss of a
certain power of log λ in the case where all solutions r(x) of f ′′

xy(x, r(x)) = 0
have the same asymptotic fractional power series expansion with leading
power 1. In [3], Greenblatt gave a new proof for the theorem of Phong
and Stein in [12]. For Lp estimates, Greenleaf and Seeger obtained sharp
decay estimates [6]. They considered oscillatory integral operators in R

n

with a real smooth phase function with the assumption of two-sided fold
singularities. They established sharp Lp − Lq decay estimates of the oscil-
latory integral operators. In [17], Seeger formulated optimal Lp regularity
of generalized Radon transforms on R

2 and he obtained sharp Lp regularity
estimates except endpoints. In [19], sharp Lp decay estimates for Tλ have
been established excluding estimates on vertices of Newton polygon of f ′′

xy.

The case where g = f ′′
xy has been studied in [13]. In [13] Phong and

Stein proved best possible decay estimate, that is, ||Tλ||L2→L2 ∼ λ−1/2 when
g(x, y) = f ′′

xy(x, y) and ε = 1/2. We wish to investigate the improvement in
the decay rate of ||Tλ||Lp→Lp when f is unrelated to g.

Higher dimensional case even without any damping factor has not been
understood well. There have been a few L2 estimates of special cases [1],
[2], [6], [7], [9]. Sharp L2 estimates under the assumption of two-sided fold
singularities were obtained in [9]. Optimal estimates with one-sided fold
singularity have been established in [2] and [4]. Related operators with
various types of higher order singularities have been treated in [1], [5] and [7].
We recommend [8] as a more detailed and organized survey on this subject.

The case where the weight g(x, y) is not related to f(x, y) has been con-
sidered by the first author in a different context [14]. In [14] she introduced
weighted Newton distance to treat the weighted integral. We shall use some
notions in [14] and we briefly describe them. We start with factorizing f ′′

xy

and g

f ′′
xy(x, y) = U1(x, y)x

α1yβ1

∏
ν∈I(f ′′xy)

(y − rν(x))(1.1)

g(x, y) = U2(x, y)x
α2yβ2

∏
µ∈I(g)

(y − sµ(x))(1.2)

where I(h) denotes a set whose elements are used to index roots of h and Ui
i = 1, 2 are real analytic functions with Ui(0, 0) �= 0. We assume that index
sets I(f ′′

xy) and I(g) are disjoint. αi’s and βi’s are non-negative integers and
rν(x)’s and sµ(x)’s are Puiseux series of the form

rν(x) = cνx
aν +O(xbν ) and sµ(x) = cµx

aµ +O(xbµ)
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where for any η ∈ I(f ′′
xy)∪I(g), bη > aη are rational numbers and cη �= 0. We

re-index the combined set of distinct exponents aν and aµ with ν ∈ I(f ′′
xy)

and µ ∈ I(g) into increasing order so that

0 < a1 < a2 < · · · < aN .

For l ∈ {1, ..., N} we define

ml = #{ν ∈ I(f ′′
xy) : rν(x) = cνx

al + · · · , cν �= 0}
nl = #{µ ∈ I(g) : sµ(x) = cµx

al + · · · , cµ �= 0},

where #A denotes the cardinality of a set A. We call ml and nl generalized
multiplicities of f ′′

xy and g, respectively, corresponding to the exponent al.
Now we define

Al = α1 +
∑l

i=1 aimi, Bl = β1 +
∑N

i=l+1mi

Cl = α2 +
∑l

i=1 aini, Dl = β2 +
∑N

i=l+1 ni.

Then {(Al, Bl)} and {(Cl, Dl)} are sets of vertices of the Newton diagrams of
f ′′
xy and g, respectively. The number of common roots of f ′′

xy and g is an im-
portant information to obtain optimal estimates. To extract the information
we use a coordinate transformation η given by

η : (x, y) �→ (x, y − q(x))

where q is a convergent real-valued Puiseux series in a neighborhood of the
origin. For f ′′

xy ◦ η and g ◦ η we can define previous notions such as Al, Bl,
Cl, Dl, and al in the same way. To avoid confusion we use notations Al(η),
Bl(η), Cl(η), Dl(η), and al(η) to specify the coordinate transformation η.
For the sake of simplicity we define El(η) and Fl(η) as

El(η) = Al(η) + al(η)Bl(η)
Fl(η) = Cl(η) + al(η)Dl(η)

For a coordinate transform η : (x, y) �→ (x, y − q(x)) we define El,η as

El,η =
{

deg (r(x) − q(x))| y = r(x) is a root of f ′′
xy(x, y) = 0 or g(x, y) = 0,

r(x) = cxal + · · · (c �= 0) and deg(r(x) − q(x)) ≥ al}

where deg(p(x)) is the degree of the leading term of a Puiseux series p. For
al′(η) ∈ El,η we define

Hl,l′(η) = El′(η) + 1 + 2al′(η) − al.
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We define El, Fl, and Hl as

El = El(id), Fl = Fl(id), and Hl = Hl,l′(id)

where id is the identity map on R
2. Here we remark that since El,id = {al},

al′(id) = al soHl = El+1+al. To describe optimal decay rate of ||Tλ,ε||Lp→Lp

we shall need the following notations. Let K = [0, 1] × R. For al′(η) ∈ El,η
we define subsets A0, Al, and Al,l′(η) of K as

A0 =

{(1

p
, α

)
∈ K : α ≤ 1

p
, and α ≤ 1 − 1

p

}
,

Al =

{(1

p
, α

)
∈ K : α ≤ εFl + 2al

2Hl

+
1 − al
Hl

· 1

p

}
,

Al,l′(η) =

{(1

p
, α

)
∈ K : α ≤ εFl′(η) + 2al′(η)

2Hl,l′(η)
+

1 − al
Hl,l′(η)

1

p

}
.

Here we note that if η = id and al = al′(η), then Al,l′(η) = Al. We set

A1 =
⋂
l

Al and A2 =
⋂
η

⋂
l,l′ ;

al′ (η)∈El,η

Al,l′(η).

Now we finally define A as

A = A0 ∩ A1 ∩ A2.

From the definitions it is clear that A1 is a special case of A2 where η = id so
A2 ⊂ A1. Actually it is not necessary to define those two sets in a separate
way. Here we separately define A1 and A2 because we want to simplify
notations in the proof of the first step of each theorem and give clear ideas
of proofs.

Remark 1.1 When we define Al,l′(η) we include the case where al′(η) = ∞.
In this case we assume that

(1.3) Al,l′(η) =

{(1

p
, α

)
∈ K : α ≤ εDl′(η) + 2

2(Bl′(η) + 2)

}
.

Theorem 1.2 (Necessity) If Tλ is bounded on Lp(R) with ||Tλ||Lp→Lp ≤
O(λ−α), then (1/p, α) ∈ A.

Remark 1.3 The definition of domain A has been motivated from earlier
works in [12], [17] and [19]. We write

||Tλ||Lp→Lp = sup
ϕ∈Lp,ψ∈Lp′

< Tλϕ, ψ >

||ϕ||Lp ||ψ||Lp′
.
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To find necessary conditions for Lp decay estimates we have to consider the
case where the oscillation of the phase function λf does not play any role
even if λ is very large. This situation happens when ϕ and ψ are supported in
small intervals whose lengths depend on λ, f , and g so that |λf(x, y)| ∼ cλ−1

and |g(x, y)| is bounded below when x and y are in the support of ψ and ϕ,
respectively. To be more precise we fix λ ≥ λ0 for some λ0, sufficiently large.
A set of the form

B = {(x, y) ∈ suppχ | a ≤ x ≤ b, c ≤ y ≤ d}

is defined to be a “testing box” if there exist functions F1, F2 : R → R

depending on B satisfying

sup
(x,y)∈B

|λ(f(x, y) − F1(x) − F2(y))| < π

4
.

Set I1 = [a, b] and I2 = [c, d]. If F denote the class of all testing boxes, then

||Tλ||Lp→Lp ≥ max

{
sup
B∈F

{
|I1|1−

1
p |I2|

1
p inf

(x,y)∈B
|g(x, y)|ε/2

}
, λ−1/2

}
.

Since we have a weight |g(x, y)|ε/2 in our operator, we have to choose the
testing box carefully so that |g(x, y)|ε/2 has a lower bound in terms of λ.
If not, we just have a trivial bound. If g ≡ 1, then it is known that A is
an image of the reduced Newton polygon by a map (m,n) �→ ( m

m+n
, 1
m+n

)
in [19]. Tλ is called a damped oscillatory integral operator if g = f ′′

xy. This
case has been studied by Phong and Stein in [13]. Their results show that
A is a triangular region with vertices (0, 0), (1, 0), and (1/2, 1/2) if g = f ′′

xy

and ε ≥ 1. When g = f ′′
xy and ε < 1, the region A can be obtained by

interpolation of results in [13] and [19].

Theorem 1.4 (L2 estimates) If (1/2, α) ∈ A, then

||Tλ||L2→L2 ≤ O(λ−α) .

Theorem 1.5 (Lp estimates) If (1/p, α) ∈ int(A), then we have

||Tλ||Lp→Lp ≤ O(λ−α).

Remark 1.6 In Theorem 1.5 we only have estimates in the interior of A.
During the proof of the theorem one can easily observe that we have esti-
mates on some part of the boundary of A. We shall discuss this in detail in
part 1 of the final remark.
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2. Proof of Theorem 1.2

In this section we shall prove Theorem 1.2. The idea of the proof is described
in Remark 1.3.

Proof of Theorem 1.2. Suppose that Tλ is bounded on Lp with

||Tλ||Lp→Lq ≤ O(λ−α) .

First we shall show that (1/p, α) ∈ A1. Suppose f ′′
xy(x, y) =

∑
p,q≥0 cpqx

pyq.
Then we have

f(x, y) =
∑
p,q≥0

cpq
xp+1yq+1

(p+ 1)(q + 1)
+ F1(x) + F2(y)

=
∑
p,q≥1

c̃pqx
pyq + F1(x) + F2(y)

where F1(x) and F2(y) are real analytic. Note that the Newton diagram of∑
p,q≥1 c̃pqx

pyq is same as the reduced Newton diagram of f . We fix l and
recall Hl = Al+alBl+al+1. Let R > 0 and c1 be constants to be specified.
Now, for large positive λ, we define the function ϕλ, ψλ by

ϕλ(y) =

{
e−iλF2(y) if R ≤ yλal/Hl ≤ R+ c1
0 otherwise,

and

ψλ(x) =

{
e−iλF1(x) if R ≤ xλ1/Hl ≤ R + c1
0 otherwise.

We claim that for any ε > 0, in the support of ϕλ(y)ψλ(x) we have:

∣∣∣λf(x, y) − λF1(x) − λF2(y) −
∑′

c̃pqR
q
∣∣∣ < ε,

where the sum
∑′ is taken over (p, q) that belong to the face of the reduced

Newton diagram with equation p + alq = Hl, as long as c1 is taken to be
small in terms of

∑′ |c̃pq|Rq and then λ is taken to be large. To prove the
claim, first we note that if 0 < c1 < R is sufficiently small then we have

∣∣∣∑′
c̃pq(λx

pyq −Rq)
∣∣∣ ≤

∑′ |c̃pq||λxpyq − 1|
≤

∑′ |c̃pq|[(1 +
c1
R

)q(1 + c1)
p − 1] · Rq

<
ε

2
.
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Also, because of the convex nature of the Newton diagram, p+ alq > C for
all other (p, q) such that c̃pq �= 0, so,

λ

∣∣∣∣
∑

(p,q);p+alq �=Hl

c̃pqx
pyq

∣∣∣∣ < ε

2
.

If we take, say ε < π/2 then this shows that

| < Tλϕλ, ψλ > | =

∣∣∣∣
∫

R2

eiλf(x,y)|g(x, y)| ε
2χ(x, y)ϕλ(y)ψλ(x)dydx

∣∣∣∣
=

∣∣∣∣
∫

(x,y)∈Sλ

ei[λf(x,y)−λF1(x)−λF2(y)]χ(x, y)|g(x, y)| ε
2dydx

∣∣∣∣
=

∣∣∣∣
∫

(x,y)∈Sλ

ei[λf(x,y)−λF1(x)−λF2(y)−�′ c̃pqRq ]|g(x, y)| ε
2dydx

∣∣∣∣
where Sλ = {(x, y)|1 ≤ λ1/Hlx ≤ 1 + c1, R ≤ yλal/Hl ≤ R + c1}. Hence we
have

| < Tλϕλ, ψλ > | ≥ C

∫
(x,y)∈Sλ

χ(x, y)|g(x, y)| ε
2dydx.

Let R > 2 ·max{|c|; y = cxal + · · · is a root of g} and R > 1. Then g(x, y) ∼
|x|Cl |y|Dl on the support of ϕλ(y)ψλ(x). We therefore have

| < Tλϕλ, ψλ > | ≥ Cλ
− Fl

Hl
· ε
2λ

− al+1

Hl

as λ→ ∞. Hence, we have

| < Tλϕλ, ψλ > |
||ϕλ||p · ||ψλ||p′ ≥ C

λ
− Fl

Hl
· ε
2λ

− al+1

Hl

λ
− al

Hlp
− 1

Hl
(1− 1

p
)

≥ Cλ
− εFl+2al

2Hl
− 1−al

Hl

1
p ,

which implies

α ≤ εFl + 2al
2Hl

+
1 − al
Hl

1

p
.

Therefore (1/p, α) ∈ A1.

We show that (1/p, α) ∈ A1. Let r be a root of f ′′
xy(x, y) = 0 or

g(x, y) = 0 in (1.1) and (1.2) and set r(x) = cxal + · · · . We choose a coordi-
nate transform η : (x, y) �→ (x, y− q(x)) with convergent Puiseux series q of
real coefficients. We choose al′(η) so that al ≤ al′(η). Here we assume that
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the lowest degree term of q is xal because to define Al,l′(η) we assume that
al′(η) ≥ al. Suppose r(x) = r̃(x) +O(|x|al′ (η)). We define ϕλ and ψλ as

ϕλ(y) =

⎧⎨
⎩

e−iλF2(y) if r̃(λ−1/Hl,l′(η)) +Rλ−al′(η)/Hl,l′(η) ≤ y

≤ r̃(λ−1/Hl,l′(η)) + 2Rλ−al′(η)/Hl,l′(η)

0 otherwise,

and

ψλ(x) =

{
e−iλF1(x) if λ−1/Hl,l′(η) ≤ x ≤ λ−1/Hl,l′(η) + c1λ

−(al′ (η)−al+1)/Hl,l′(η)

0 otherwise

where c1 and R are constants, and F1, F2 are real-valued functions to be
specified later. On the support of ϕλ(y)ψλ(x) we have

|y − r(x)| ≤ |r̃(λ−1/Hl,l′(η)) + 2Rλ−al′(η)/Hl,l′(η) − r̃(x) +O(λ−al′ (η)/Hl,l′(η))|.
Suppose r̃(x) = αxal+βxbl+· · · where without loss of generality α > 0, β > 0.
Then

|y − r(x)| ≤ |αλ−al/Hl,l′ (η) + βλ−bl/Hl,l′ (η) + 2Rλ−al′(η)/Hl,l′(η) − αλ−al/Hl,l′(η)

− β[λ−1/Hl,l′(η)(1 + c1λ
−(al′ (η)−al)/Hl,l′ (η) +O(λ−al′ (η)/Hl,l′(η))]|

≤ 3Rλ−al′(η)/Hl,l′(η)

and

|y − r(x)| ≥ |Rλ−al′(η)/Hl,l′(η) + r̃(λ−1/Hl,l′(η))

− α[λ−1/Hl,l′(η)(1 + c1λ
−(al′ (η)−al)/Hl,l′(η))]al

− βλ−bl/Hl,l′ (η) + o(λ−al′(η)/Hl,l′(η))|
≥ R

2
λ−al′ (η)/Hl,l′(η).

Let (x0(λ), y0(λ)) be a fixed point on the support of ϕλ(y)ψλ(x). Then for
any (x, y) in the support∫ x

x0

∫ y

y0

f ′′
xy(s, t)dtds =

∫ x

x0

[f ′
x(s, y) − f ′

x(s, y0)]ds

= f(x, y) − f(x0, y) − f(x, y0) + f(x0, y0).(2.1)

Let F2(y) = f(x0(λ), y), F1(x) = f(x, y0(λ)) − f(x0(λ), y0(λ)). We notice
that for (s, t) in the support of ϕλ(y)ψλ(x),∣∣f ′′

xy(s, t)
∣∣ ∼ |t− r̃(s)|Bl′ (η)|s|Al′ (η)

∼ RBl′ (η)λ
−A

l′ (η)+a
l′ (η)B

l′ (η)

H
l,l′ (η)

= RBl′ (η)λ
− El′ (η)

H
l,l′ (η) .
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By the same reason if (x, y) is in the support of ϕλ(y)ψλ(x), then

|g(x, y)| ∼ λ
− F

l′ (η)

H
l,l′ (η) .

Therefore we have∣∣∣∣
∫ x

x0

∫ y

y0

f ′′
xy(s, t)dtds

∣∣∣∣ ∼ RBl′(η)+1λ
− E

l′ (η)

Hl,l′ (η)λ
− a

l′ (η)

Hl,l′ (η) · c1λ−
a

l′ (η)−al+1

Hl,l′ (η)

∼ RBl′(η)+1 · c1 · λ−1.

By choosing c1 sufficiently small, we can ensure that for some 0 < ε < π/4

|λf(x, y) − λf(x0, y) − λf(x, y0) + λf(x0, y0)| < ε.

Hence we have

| < Tλϕλ, ψλ > | ≥
∫

(x,y)∈Sλ

|g(x, y)| ε
2dydx

≥ λ
− εFl′ (η)

2Hl,l′ (η)λ
− al′ (η)

Hl,l′ (η)λ
− al′ (η)−al+1

Hl,l′ (η) .

This yields
| < Tλϕλ, ψλ > |

||ϕλ||||ψλ|| ≥ Cλ
− εF

l′ (η)+2a
l′ (η)

2H
l,l′ (η)

− 1−al
H

l,l′ (η)
1
p ,

which implies

α ≤ εFl′(η) + 2al′(η)

2Hl,l′(η)
+

1 − al
Hl,l′(η)

1

p
.

Therefore (1/p, α) ∈ A2.

Finally we shall show that (1/p, α) ∈ A0. There exists (x0, y0) such that
|g(x0, y0)| ≥ k > 0. Let

F1(x) =
∞∑
i=1

(∂ixf)(x0, y0)

i!
(x− x0)

i

and

F2(y) =
∞∑
j=1

(∂jyf)(x0, y0)

j!
(y − y0)

j.

We define ψλ(x) and ϕλ(y) by

ϕλ(y) =

{
e−iλF2(y) if y0 ≤ y ≤ y0 + λ−1

0 otherwise,

ψλ(x) =

{
e−iλF1(x) if x0 ≤ x ≤ x0 + c1
0 otherwise.
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By choosing a small number c1 > 0 we have

|λ(f(x, y) − f(x0, y0) − F1(x) − F2(y))| ≤ π/4.

Hence we have ∣∣∣∣e−iλf(x0,y0)

∫
Tλϕλ(x)ψλ(x)dx

∣∣∣∣ ≥ Cλ−1

and
||fλ||Lp ∼ λ−1/p and ||gλ||Lp′ ∼ 1.

Therefore we have α ≤ 1 − 1/p. By exchanging the role of fλ and gλ we
have α ≤ 1/p. This shows that (1/p, α) ∈ A0. �

3. Proof of Theorem 1.4

The proof of Theorem 1.3 follows the main ideas in [12] and [13]. Namely,
one writes Tλ as a sum of almost orthogonal operators

Tλ =
∑

T λjk

where T λjk will be defined later. The dyadic rectangles [2−j,2−j+1]×[2−k,2−k+1]

in the definition of T λjk can be divided into two categories, depending on their
proximity to the zero varieties of f ′′

xy and g. If a rectangle is located away
from these zero varieties, then the L2-norm of T λjk may be estimated using a
combination of the operator Van der Corput lemma in [12, Section 3] and [13,
Lemma 1] and Schur’s lemma. Near a branch of the zero varieties, one
needs a finer resolution of T λjk to operators supported on “curved rectangles”
adapted to that branch. It is then possible to determine the sizes of f ′′

xy and g
on these finer domains, so that the operator Van der Corput and Schur’s
lemmas can again be used. The resolution process terminates in a finite
number of steps, since a real-analytic function can only vanish to finite
order in a small neighborhood of the origin. Moreover the steps followed
at the finer levels of decomposition match closely those in the first step.
We therefore present in detail only the computations for the initial stage
of recursion. Calculations for the successive steps are left to the interested
reader.

Proof of Theorem 1.4. Recall that the quantities al, al′(η), Al, Bl, Cl, Dl,
etc. can be read off the generalized Newton diagrams of f ′′

xy and g. Without
loss of generality, let a1 ≥ 1. We write

T λjkϕ(x) =

∫
R

eiλf(x,y)|g(x, y)|ε/2χ(x, y)χj(x)χk(y)ϕ(y)dy
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where

χi(z) =

{
1 if 2−i ≤ z ≤ 2−i+1

0 otherwise.

We consider four ranges of j, k:

• alj � k � al+1j;

• k � a1j;

• k � aN ;

• k ≈ alj,

where A � B, A � B, and A ≈ B mean that A + C < B, A > B + C,
and A − C < B < A + C respectively for some C > 0 which makes the
following arguments hold true. Since the treatments of the first three cases
are similar, we only consider two cases: alj � k � al+1j; k ≈ alj.

Case 1: alj � k � al+1j

In this case

|f ′′
xy(x, y)| ∼ 2−Alj2−Blk, |g(x, y)| ∼ 2−Clj2−Dlk

on the support of χj(x)χk(y). The operator Van der Corput lemma in [12,
Section 3] and [13, Lemma 1] yields

(3.1) ||Tjk|| ≤ C(λ2−Alj−Blk)−1/22−ε(Clj+Dlk)/2,

and by using Schur’s lemma we obtain

(3.2) ||Tjk|| ≤ C2−(j+k)/22−ε(Clj+Dlk)/2.

If we put k = alj + r with 0 � r � (al+1 − al)j, we can rewrite (3.1)
and (3.2) as

||Tjk|| ≤ min
{
λ−1/22j(Al−εCl)/22k(Bl−εDl)/2, 2−j(1+εCl)/22−k(1+εDl)/2

}
≤ min

{
λ−1/22j(El−εFl)/22r(Bl−εDl)/2, 2−j(1+al+εFl)/22−r(1+εDl)/2

}
.

First we assume

λ−1/22j(El−εFl)/22r(Bl−εDl)/2 ≤ 2−j(1+al+εFl)/22−r(1+εDl)/2,

which is equivalent to

2jHl/2 ≤ λ1/22−r(1+Bl)/2

i.e.,

(3.3) 2j/2 ≤ λ
1

2Hl 2
− r(1+Bl)

2Hl .
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By the choice of r we also have

(3.4) 2j/2 ≥ 2
r

2(al+1−al) .

By combining (3.3) and (3.4) we obtain

2
r

2(al+1−al) ≤ λ
1

2(1+al+Al+alBl) 2
− r(1+Bl)

2(1+al+Al+alBl) ,

which implies

(3.5) 2
r
2 ≤ λ

1
2
· al+1−al
1+al+1+Al+al+1Bl .

By the definition of Al(η), Bl(η), Cl(η), Dl(η) and al(η) it is easy to see that

Al(η) + al+1(η)Bl(η) = Al+1(η) + al+1(η)Bl+1(η),(3.6)

Cl(η) + al+1(η)Dl(η) = Cl+1(η) + al+1(η)Dl+1(η).(3.7)

Applying (3.6) with η = id to (3.5) we obtain

(3.8) 2
r
2 ≤ λ

1
2
·al+1−al

Hl+1 .

Here we separately treat two cases: El ≥ εFl; El < εFl.

Subcase 1: El ≥ εFl

In this case we use (3.3) to obtain

(3.9)
∑
j

||Tjk|| ≤ λ−1/2λ
El−εFl

2Hl 2
r
2
I

where

I = (Bl − εDl) − (1 +Bl)(El − εFl)

Hl

.

If I < 0, then the summation of (3.9) in r yields

∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ
− 1

2
· 1+al+εFl

Hl .

If I ≥ 0, then we use (3.8) to make a summation of (3.9) in r and obtain

∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ
− 1

2
· 1+al+εFl

Hl λ
1
2
· (al+1−al)I

Hl+1

≤ λ
− 1

2
[
1+al+εFl

Hl
− (al+1−al)I

Hl+1
]
.
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We claim that

(3.10)
1 + al + εFl

Hl
− (al+1 − al)I

Hl+1
=

1 + al+1 + ε(Cl + al+1Dl)

1 + al+1 + Al + al+1Bl
.

By rewriting (3.10) we have to show

[1+ al + ε(Cl + alDl)][1 + al+1 + Al + al+1Bl] − (al+1 − al)

× [(Bl − εDl)(1 + al + Al + alBl) − (Bl + 1){Al + alBl − ε(Cl + alDl)}]
= [1 + al+1 + ε(Cl + al+1Dl)][1 + al + Al + alBl].

Now we take derivatives of the left and right hand sides with respect to al+1:

d

dal+1
(LHS) = (1 +Bl)[1 + al + ε(Cl + alDl)]

− [(Bl − εDl)(1 + al + Al + alBl) − (Bl + 1) ×
×{Al + alBl − ε(Cl + alDl)}]

= (1 +Bl)[1 + al + ε(Cl + alDl) + Al + alBl − ε(Cl + alDl)]

− (Bl − εDl)(1 + al + Al + alBl)

= (1 + εDl)(1 + al + Al + alBl),

d

dal+1

(RHS) = (1 + εDl)(1 + al + Al + alBl).

Also if al+1 = al then it is easy to see that the left hand side is same to the
right hand side. Thus (3.10) has been proved, which implies

∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ
− 1

2
· 1+al+εFl

Hl λ
1
2
· (al+1−al)I

Hl+1 ≤ λ
− 1

2

1+al+1+εFl+1
Hl+1 .

Subcase 2: El < εFl

(3.4), (3.6), and (3.7) yield

∑
j

||Tjk|| ≤ λ−
1
2 2

r
2

El−εFl
al+1−al 2

r
2
(Bl−εDl) ≤ λ−

1
2 2

r
2

El+1−εFl+1
al+1−al .

If El+1 ≥ εFl+1, then (3.5) yields

∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ−
1
2λ

1
2
·El+1−εFl+1

Hl+1 ≤ λ
− 1

2
· 1+al+1+εFl+1

Hl+1 .

If El+1 < εFl+1, then ∑
(j,k); alj�k�al+1j

||Tjk|| ≤ λ−
1
2 .
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Now we consider the case where

(3.11) 2j/2 ≥ λ
1

2Hl 2
− r(1+Bl)

2Hl .

We note that (3.4) still holds true in this case. We consider two cases:

λ
1

2Hl 2
− r(1+Bl)

2Hl ≥ 2
r

2(al+1−al) ;(3.12)

λ
1

2Hl 2
− r(1+Bl)

2Hl < 2
r

2(al+1−al) .(3.13)

We rewrite (3.12) to obtain

(3.14) 2
r
2 ≤ λ

al+1−al
2Hl+1 .

By using (3.11) we obtain

∑
j

||Tjk|| ≤ λ−
1
2λ

El−εFl
2Hl 2

r
2
I .

If I < 0 then we have a convergent geometric series which we sum to obtain

∑
j,k

||Tjk|| ≤ λ
− 1

2
· 1+al+εFl

Hl .

If I ≥ 0 then we use (3.14) and (3.10) to obtain

∑
j,k

||Tjk|| ≤ λ
− 1

2
· 1+al+1+εFl+1

Hl+1 .

Now we rewrite (3.13) to obtain

(3.15) 2
r
2 > λ

al+1−al
2Hl+1 .

By using (3.4) we obtain

∑
j

||Tjk|| ≤ 2
− r

2
· 1+al+εFl

al+1−al 2−
r
2
·(1+εDl).

We then use (3.15) to get

∑
jk

||Tjk|| ≤ λ
− 1+al+1+εFl+1

2Hl+1 ,

which is the desired estimate.



Lp decay estimates for weighted oscillatory integral operators on R 1085

Case 2: k ≈ alj

In this case the dyadic rectangle is close to roots y = r(x) of f ′′
xy(x, y) = 0

or g(x, y) = 0 of the form cxal + · · · (c �= 0). If c is a complex number,
then |y− r(x)| ∼ 2−alj so further resolution of singularities is not necessary.
Therefore we may assume that c is a positive real number. We set t(x) = cxal

and η : (x, y) �→ (x, y − t(x)). Let

a1(η) < a2(η) < · · · < ak(η) < · · ·
be leading exponents of {rν(x)−t(x) | ν ∈ I(f ′′

xy)}∪{sµ(x)−t(x) | µ ∈ I(g)}.
Since we consider a dyadic rectangle close to y = cxal, we may assume that
a1(η) ≥ al. If al′(η)j � m� al′+1j then we have

|f ′′
xy(x, y)| ∼ 2−Ak(η)j2−Bk(η)m; |g(x, y)| ∼ 2−Ck(η)j2−Dk(η)m.

We write

T λj,k,mϕ(x) =

∫
R

eiλf(x,y)|g(x, y)|ε/2χ(x, y)ϕ(y)χj(x)χk(y)χm(y − t(x))dy.

By applying the operator Van der Corput lemma and Schur’s lemma again
we obtain

||T λj,k,m|| ≤ C(λ2−(Al′(η)j+Bl′(η)m))−1/2(2−(Cl′(η)j+Dl′(η)m))ε/2,(3.16)

||T λj,k,m|| ≤ 2−m2j(al−1)/2(2−(Cl′(η)j+Dl′(η)m))ε/2(3.17)

since ∆y ≤ 2−m and ∆x ≤ 2−m2al−1, where ∆y is the maximal variation in y
for a fixed x in the region under consideration and ∆x is defined in a similar
way. Now we follow the same procedure in Case 1 to prove the desired
estimate. Since arguments are parallel to those in Case 1, we omit detailed
calculations. By putting m = al′(η)j + r with 0 � r � (al′+1(η) − al′(η))j,
we obtain

||T λj,k,m|| ≤ min
{
λ−1/22j(El′ (η)−εFl′(η))/22r(Bl′(η)−εDl′(η))/2,

2−j[(1+2al′(η)−al)+εFl′ (η)]/22−r(2+εDl′(η))/2
}
.

First we consider the case where

λ−1/2 2j(El′ (η)−εFl′(η))/2 2r(Bl′ (η)−εDl′(η))/2 ≤
≤ 2−j[(1+2al′(η)−al)+εFl′ (η))]/2 2−r(2+εDl′(η))/2,

that is,

(3.18) 2j/2 ≤ λ
1

2H
l,l′ (η) 2

− r
2
·Bl′ (η)+2

H
l,l′ (η) .
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By the choice of r we also have

(3.19) 2j/2 ≥ 2
r

2(a
l′+1

(η)−a
l′ (η)) .

(3.18) and (3.19) yield

2
r
2 ≤ λ

1
2

a
l′+1

(η)−a
l′ (η)

Hl,l′ (η) .

We therefore have

∑
j

||T λj,k,m|| ≤ λ
− 1

2

2al′ (η)−al+1+εFl′ (η)

Hl,l′ (η) 2
r
2
J ,

where

J = (Bl′(η) − εDl′(η)) − (Bl′(η) + 2)(El′(η) − εFl′(η))

Hl,l′(η)
.

If J < 0, then

∑
j,k,m; al′ (η)j�m�al′+1(η)j

||T λj,k,m|| ≤ λ
− 1

2

2a
l′ (η)−al+1+εF

l′ (η)

H
l,l′ (η) .

If J ≥ 0, then

∑
j,k,m; al′ (η)j�m�al′+1(η)j

||T λj,k,m|| ≤ λ
− 1

2

2al′+1(η)−al+1+εFl′+1(η))

H
l,l′+1 .

To treat the case where

2j/2 > λ
1

2Hl,l′ (η) 2
− r

2
·Bl′ (η)+2

Hl,l′ (η)

we can use the same argument for (3.11). We omit the detail here.

If m ≈ al′(η)j, then there exists t̃ such that y − t̃(x) is “small”. Put
y− t̃(x) ∼ 2−p and repeat the same arguments as before until we completely
resolve the singularities. By putting things together we conclude

||Tλ|| ≤ Cλ−δ/2

where

δ = min

(
1

2
,
1

2
· 1 + al + ε(Cl + alDl)

1 + al + Al + alBl

,

1

2
· 1 + 2al′(η) − al + ε(Cl′(η) + al′(η)Dl′(η))

1 + 2al′(η) − al + (Al′(η) + al′(η)Bl′(η))

)
,

which is the desired estimate for p = 2. �
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4. Proof of Theorem 1.5

In this section we will prove Theorem 1.5. We construct an analytic family of
operators T βλ so that when Re(β) = 1/2, T βλ is a damped oscillatory integral
operator of the form

T
1/2
λ ϕ(x) =

∫
eiλf(x,y)|f ′′

xy(x, y)|1/2χ(x, y)ϕ(y)dy,

whose L2 decay estimate we know of. When Re(β) = −α/(1 − 2α), we

shall prove T βλ is bounded on L
p(1−2α)
1−pα , which yields Theorem 1.5 by complex

interpolation in [18].

Proof of Theorem 1.5. We consider an analytic family of operators

(4.1) T βλ ϕ(x) =

∫
eiλf(x,y)|g(x, y)|ε(1/2−β)|f ′′

xy(x, y)|βχ(x, y)ϕ(y)dy.

We note that T 0
λ = Tλ.

Theorem 4.1 ([13]) If Re(β) = 1/2 then

||T βλ ||L2→L2 = O(λ−1/2).

When Re(β) = −α/(1 − 2α), T βλ is a form of fractional integration and we
want to obtain estimate without any decay rate. To do this we shall use the
following lemma.

Lemma 4.2 If K(x, y) ≥ 0 be the kernel of an operator T and K(x, y)
satisfies the following,∫

K(x, y)y−
1
pdy ≤ Cx−

1
p ,

∫
K(x, y)x−

1
q dx ≤ Cy−

1
q ,

where 1/p+ 1/q = 1, then

Tϕ(x) =

∫
K(x, y)ϕ(y)dy

is bounded in Lp.

Proof of Lemma 4.2. For ϕ ∈ Lp and ψ ∈ Lq (1
p

+ 1
q

= 1) with ||ϕ||p =

||ψ||q = 1, we have

|ϕ(y)ψ(x)| = |ϕ(y)x−
1
pq y

1
pqψ(x)y−

1
pqx

1
pq |

≤ 1

p
|ϕ(y)|px− 1

q y
1
q +

1

q
|ψ(x)|qy− 1

px
1
p .
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Therefore, we have
∣∣∣∣
∫ ∫

K(x, y)ϕ(y)ψ(x)dydx

∣∣∣∣
≤

∫ ∫
K(x, y)

1

p
|ϕ(y)|px− 1

q y
1
q dydx+

∫ ∫
K(x, y)

1

q
|ψ(x)|qy− 1

px
1
pdydx

≤ C/p+ C/q.

This completes the proof. �
Now we shall prove the following lemma.

Lemma 4.3 Let p0 = p(1−2α)
1−pα and β0 = − α

1−2α
. If (1/p, α) ∈ int(A), then

T β0

λ is bounded on Lp0 with the operator norm O(1).

Proof of Lemma 4.3. Since the oscillation does not play any role, it
suffices to obtain Lp0 boundedness of the operator

Dϕ(x) =

∫
|g(x, y)|ε(1/2−β0)|f ′′

xy(x, y)|β0χ(x, y)ϕ(y)dy.

Let
K(x, y) = |g(x, y)|ε(1/2−β0)|f ′′

xy(x, y)|β0 .

By Lemma 4.2, it suffices to show that

(4.2)

∫
I

K(x, y)
1

y1/p0
dy ≤ C

x1/p0

and

(4.3)

∫
I

K(x, y)
1

x1/q0
dx ≤ C

y1/q0
,

where 1/p0 + 1/q0 = 1 and I = [−|I|, |I|] with a sufficiently small |I|. Since
the argument to prove (4.3) is parallel to the argument for (4.2), we shall
only show (4.2). The proof can be divided into finite steps and we shall here
show the first two steps. To complete the proof we can repeat the same
argument.

Step I: Considering each quadrant separately, we may assume that x > 0,
y > 0 and I = [0, |I|]. After reindexing if necessary, we may assume that
there exist cl > 0, dl > 0, and Cl > 0 such that cl < dl < Cl, |rl(x)| = dlx

al +
o(xal), and |sl(x)| = dlx

al + o(xal). We divide I into several subintervals:
0 ≤ y ≤ cnx

an , clx
al ≤ y ≤ Clx

al , Cl+1x
al+1 ≤ y ≤ clx

al, and C1x
a1 ≤ y ≤ |I|

and separately treat each cases.
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Case 1: 0 ≤ y ≤ cnx
an .

If 0 ≤ y ≤ cnx
an , then

|g(x, y)| ∼ xCnyDn , and |f ′′
xy(x, y)| ∼ xAnyBn .

Since (α, 1/p) ∈ A ⊂ A1, we have

(4.4) α <
εDn + 2

2(Bn + 1)
− 1

Bn + 1

1

p
,

which is equivalent to

εDn(
1

2
− β0) +Bnβ0 − 1

p0
> −1.

Consequently,

∫ cnxan

0

K(x, y)y
− 1

p0 dy ∼
∫ cnxan

0

xεCn(1/2−β0)+Anβ0yεDn(1/2−β0)+Bnβ0−1/p0dy

≤ xεFn(1/2−β0)+Enβ0−an/p0+an .

Since (α, 1/p) ∈ int(A) ⊂ int(A1), we have

εFn(
1

2
−β0)+Enβ0− an

p0

+an+
1

p0

=
Hn

1 − 2α

[
εFn + 2an

2Hn

+
1 − an
pHn

− α

]
> 0,

which implies ∫ cnxan

0

K(x, y)
1

y1/p0
dy ≤ C

x1/p0
.

Case 2: Clx
al ≤ y ≤ cl+1x

al+1.

If Clx
al ≤ y ≤ cl+1x

al+1, then

|g(x, y)| ∼ xClyDl, and |f ′′
xy(x, y)| ∼ xAlyBl .

By using (3.6) and (3.7) we obtain

∫ clx
al

Cl+1x
al+1

K(x, y)
1

y1/p0
dy

∼
∫ clx

al

Cl+1x
al+1

xεCl(1/2−β0)+Alβ0yεDl(1/2−β0)+Blβ0−1/p0dy

≤ CxεFl(1/2−β0)+Elβ0−al/p0+al| ln x| + CxεFl+1(1/2−β0)+El+1β0−al+1/p0+al+1 | ln x|,
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where | ln x| occurs when εDl(1/2−β0)+Blβ0−1/p0 = −1. Since (α, 1/p) ∈
int(A) ⊂ int(A1), we have

εFl(
1

2
− β0) + Elβ0 − al

p0

+ al +
1

p0

=
Hl

1 − 2α

[
εFl + 2al

2Hl

+
1 − al
pHl

− α

]
> 0,

which implies ∫ clx
al

Cl+1x
al+1

K(x, y)
1

y1/p0
dy ≤ C

x1/p0
.

Case 3: C1x
a1 ≤ y ≤ |I|.

If C1x
a1 ≤ y ≤ |I|, then

|g(x, y)| ∼ xC0yD0, and |f ′′
xy(x, y)| ∼ xA0yB0 .

By using (3.6) and (3.7) again, we obtain

∫ |I|

C1xa1

K(x, y)
1

y1/p0
dy ∼ xεC0(1/2−β0)+A0β0

∫ |I|

C1xa1

yεD0(1/2−β0)+B0β0−1/p0dy

≤ C[xεF0(1/2−β0)+E0β0 + xεF1(1/2−β0)+E1−a1/p0+a1]| ln x|.
By using the fact (α, 1/p) ∈ int(A) ⊂ int(A1) again, one can see that the
right-hand side is bounded by Cx−1/p0, which is the desired estimate.

Case 4: clx
al ≤ y ≤ Clx

al .

If clx
al ≤ y ≤ Clx

al,

|g(x, y)| ∼ xCl−1yDl

∏
clx

al≤|si(x)|≤Clx
al

|y − si(x)|,

|f ′′
xy(x, y)| ∼ xAl−1yBl

∏
clx

al≤|ri(x)|≤Clx
al

|y − ri(x)|.

To treat this case we need finer decomposition of the domain of integration.
Here we start the second step.

Step II: We introduce the following notation:

Sαl = {ri(x) | ri(x) = cαl x
al + o(xal)}.

We assumed that for all rj(x) and sj(x) satisfying

clx
al < |rj(x)|, |sj(x)| < Clx

al,

|rj(x)| and |sj(x)| have the same leading term dlx
al , that is,

|rj(x)| = dlx
al + o(xal) and |sj(x)| = dlx

al + o(xal).
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If we set rj(x) = cαl x
al +o(xal), we have three possible cases: (i) Im(cαl ) �= 0,

(ii) cαl < 0, and (iii) cαl > 0. In (i) and (ii), we have

|y − rj(x)| ∼ xal

if y is in the range {clxal < y < Clx
al}. Hence we may assume that cαl =

dl > 0. Now we define a coordinate transformation η so that

η(x, y) = (x, y + cαl x
al).

If we rewrite the integral in terms of y1, we have∫ Clx
al

clx
al

K(x, y)
1

y1/p0
dy ≤ x−al/p0

∫ Cxal

−Cxal

K(x, y1 + cαl x
al)dy1

= x−al/p0

∫ 0

−Cxal

K(x, y1 + cαl x
al)dy1 + x−al/p0

∫ Cxal

0

K(x, y1 + cαl x
al)dy1

= Il,− + Il,+.

Since the treatment of Il,+ is similar to that of Il,−, we only treat Il,+.
To do this we may assume that we can find cl,l′ , dl,l′ , and Cl,l′ such that
0 < cl,l′ < dl,l′ < Cl,l′,

|rl(x) − cαl x
al | = dl,l′x

al′ (η) + o(xal′ (η)),

and
|sl(x) − cαl x

al | = dl,l′x
al′ (η) + o(xal′ (η)).

We decompose the region {(x, y) : 0 ≤ y ≤ Cxal} into several subregions:
0 ≤ y ≤ cl,n1x

an1(η), Cl,1x
a1(η) ≤ y ≤ Cxal , Cl,l′+1x

al′+1(η) ≤ y ≤ cl,l′x
al′ (η),

and cl,l′x
al′ (η) ≤ y ≤ Cl,l′x

al′ (η). We treat each cases in a separate way. Since
the treatment of each case is same to that of each case of Step I, we omit the
detailed calculation. Actually one can simply replace al, Al,... with al′(η),
Al′(η),... in the arguments of Step I.

Case 1: 0 ≤ y ≤ cl,n1x
an1(η).

By using the same argument for Case 1 of the previous step we obtain

∫ cl,n1
xan1 (η)

0

K(x, y + cαl x
al)dy ≤ CxεFn1 (η)(1/2−β0)+En1(η)β0+an1(η).

Since (1/p, α) ∈ int(A) ⊂ int(A∈), we obtain

εFn1(η)(1/2 − β0) + En1(η)β0 + an1(η) −
al
p0

+
1

p0

=
Hl,n1(η)

1 − 2α

[
εFn1(η) + 2an1(η)

2Hl,n1(η)
+

1 − al
pHl,n1(η)

− α

]
> 0,

which implies the desired estimate.
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Case 2: Cl,l′+1x
al′+1(η1) ≤ y ≤ cl,l′x

al′ (η1).

We also use the same idea for Case 2 of the previous step to obtain

∫ cl,l′x
al′ (η1)

Cl,l′+1x
a

l′+1
(η1)

K(x, y1 + cαl x
al)dy1

≤ C[xεFl′ (η)(1/2−β0)+El′ (η)β0+al′ (η) + xεFl′+1(η)(1/2−β0)+El′+1(η)β0+al′+1(η)]| ln x|.

Since (1/p, α) ∈ int(A) ⊂ int(A∈), we obtain

εFl′(η)(1/2 − β0) + El′(η)β0 + al′(η) − al
p0

+
1

p0

=
Hl,l′(η)

1 − 2α

[
εFl′(η) + 2al′(η)

2Hl,l′(η)
+

1 − al
pHl,l′(η)

− α

]
> 0,

which implies the desired estimate.

Case 3: Cl,1x
a1(η) ≤ y ≤ Cxal .

In this case we have

∫ Cxal

Cl,1x
a1(η)

K(x, y1+c
α
l x

al)dy1 ≤ xεFl(1/2−β0)+Elβ0+al+xεF1(η)(1/2−β0)+E1(η)β0+a1(η),

which gives the desired estimate of this case.

Case 4: cl,l′x
al′ (η) ≤ y ≤ Cl,l′x

al′(η).

It remains to show

x−al/p0

∫ Cl,l′x
a

l′ (η)

cl,l′x
a

l′ (η)
K(x, y + cαl x

al)dy ≤ Cx−1/p0.

To prove this inequality we start the third step which has the same argu-
ment with the second step. We repeat the same argument until we com-
pletely resolve the roots of f ′′

xy and g, that is, until there is at most one
root in the range of the integral. If we have only one root r(x) in the
range of the integral and if the root is a real root, we have to integrate
|y − r(x)|−(2αBn(η)(η)−εDn(η)(η))/2(1−2α) with respect to y near r(x), where η is
a coordinate change defined by η̃(x, y) = (x, y−r(x)) and n(η̃) is the largest
index of al′(η̃). The convergence of the integration is guaranteed because by
using (1.3) we have

(4.5) α <
εDn(η̃)(η̃)) + 2

2(Bn(η̃)(η̃) + 2)
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and (4.5) implies
2αBn(η̃)(η̃) − εDn(η̃)(η̃)

2(1 − 2α)
< 1.

If r(x) is not real, we perform the same process with summation of first
finite terms of r(x) whose coefficient is real. We can easily see that we have
the desired estimates for all integrals which will occur in each step. �

To finish the proof of Theorem 1.5 we interpolate Lemma 4.3 with The-
orem 4.1. �

Remark 4.4 1. In the proof of Theorem 1.5, we use the strict inequalities
at two places (4.4) and (4.5). When we prove (4.3), we have to use one more
strict inequality

(4.6) α <
εC0

2(1 + A0)
+

1

1 + A0

1

p
.

Therefore, Theorem 1.4. can be extended to the boundary of A when
(1/p, α) is not on any of a line which bounds the region in (4.4), (4.5)
or (4.6). It would be interesting to obtain Lp decay estimates when (1/p, α)
is on one of these lines.

2. Let δ1 and δ2 be the weighted Newton distance and the optimal
decay rate, respectively. We give an example showing that in general the
optimal decay rate for L2 operator norm of Tλ can be smaller than the
weighted Newton distance which has been introduced in [14]. We take f
and g such that

f ′′
xy(x, y) = (y − xN)R1(y − xN − xkN )M1

g(x, y) = (y − xN − x2N)R2.

Without any change of variable, we have

a1 = N, A1 = N(R1 +M1), B1 = 0, C1 = NR2, and D1 = 0.

One can check that

δ1 =
1 +N + εNR2

1 +N +N(R1 +M1)
.

By using the change of variables η : (x, y) �→ (x, y − xN), we have

a2(η) = kN, A2 = kNM1, B2 = R, C2 = 2NR2, and D2 = 0.

We then have

δ2 =
1 + 2kN −N + ε(2NR2)

1 + 2kN −N + kN(M1 +R1)
.



1094 M. Pramanik and C.W. Yang

Given N there exists k such that

δ2 ∼ 2N

2N +N(M1 +R1)
=

2

2 +M1 +R1

.

For large N , we have

δ1 ∼ 1 + εR2

1 +R1 +M1

.

Now choosing ε and R2 so that εR2 > 1, we get δ2 < δ1.
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