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Singular Radon transforms and maximal
functions under convexity assumptions

Andreas Seeger and Stephen Wainger

Abstract

We prove variable coefficient analogues of results in [5] on Hilbert
transforms and maximal functions along convex curves in the plane.

1. Introduction

The purpose of this paper is to prove Lp boundedness results on singular
Radon transforms and maximal operators for variable curves in the plane.
We shall prove a diffeomorphism invariant extension of the result for trans-
lation invariant averages along along convex curves in [5].

To fix our notation let Ω0, Ω1, Ω be open sets in R
2 with compact closure,

so that Ω ⊂⊂ Ω1 ⊂⊂ Ω0. We assume that for each x ∈ Ω0 we are given a
curve

(1.1) t �→ Γ(x, t), −c0 ≤ t ≤ c0

so that Γ(x, t) ∈ Ω0 for all x in a neighborhood of the closure of Ω1 and all
t ∈ [−c0, c0]. Furthermore assume that Γ satisfies

(1.2) Γ(x, 0) = x,

for all x ∈ Ω0. We denote by Γ̇(x, t) the t-derivative of Γ and assume that Γ̇
is an L∞ function, and that Γ and Γ̇ depend smoothly on x. We shall assume
that for |t| ≤ c0 the map x �→ Γ(x, t) is a diffeomorphism on a neighborhood
of Ω1 (for small t this is of course implied by (1.2)). The inverse is denoted
by Γ∗; thus x = Γ∗(y, t) iff y = Γ(x, t).
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The two operators under consideration are the maximal operator

(1.3) Mf(x) = sup
0<h<ε

1

2h

∫ h

−h

|f(Γ(x, t))|dt

and the singular Radon transform

(1.4) Rf(x) = p.v.

∫
ω(x, t)f(Γ(x, t))

dt

t

where ω is a C∞
0 function supported in Ω0 × [−ε, ε]. Here ε ≤ c0. Since Γ̇ is

bounded it is not hard to see that for f ∈ C1 the principal value integral (1.2)
is well defined. Our task will be to show that under suitable assumptions the
operators M and R are Lp bounded. We observe that it suffices to prove
Lp estimates under the assumption that ε � c0 as the contribution for t
bounded away from 0 is easy to handle.

As we are seeking to generalize the result in [5] we wish to make two
assumptions on Γ, namely a convexity hypothesis and a doubling hypothesis.
Since we consider a variable situation our assumptions ought to be invariant
under changes of variables (and the usual assumptions of convexity fail to
meet this requirement).

In order to introduce an invariant convexity assumption we follow [23]
and say that a function h defined on an interval J is quasi-monotonic on J
if there is a constant κ ≥ 0 so that h′(t) = a(t) + E(t) for t ∈ I where a
has constant sign in I and |E(t)| ≤ κ|h(t)| (typically h is monotonic modulo
a function in the ideal generated by h). A family of functions is uniformly
quasi-monotonic if in the latter inequality we can choose a universal κ.

The relevant quantities are

G(x, t) = det
(
Γ̇(x, t) Γ̇∗(w, 0)

)
w=Γ(x,t)

(1.5)

G∗(y, t) = det
(
Γ̇∗(y, t) Γ̇(z, 0)

)
z=Γ∗(y,t)

(1.6)

We now make the following

Convexity Hypothesis (C.H.). For all x ∈ Ω1, y ∈ Ω1 the functions
G(x, ·) and G∗(y, ·) are uniformly quasi-monotonic on [0, c0] and on [−c0, 0].

We turn to our doubling hypothesis. We say that a non-negative con-
tinuous function g on [0, c0] is a doubling function if g(0) = 0, g(t) > 0 for
t > 0 and if there is A ≥ 1 so that

(1.7) g(t2) ≥ 2g(t1) if t2 ≥ At1.
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An immediate consequence is that

(1.8) g(t1) � (t1/t2)
δg(t2), t1 ≤ A−1t2, t2 ≤ c0,

for some δ > 0.

Doubling Hypothesis (D.H.) There is C0 ≥ 1 and a doubling function g
on [0, c0] so that

(1.9) C−1
0 g(A−1|t|) ≤ |G(x, t)| ≤ C0g(A|t|)

and

(1.10) C−1
0 g(A−1|t|) ≤ |G∗(y, t)| ≤ C0g(A|t|).

for all x ∈ Ω1, y ∈ Ω1 and |t| ≤ c0.

In particular the inequality (1.8) holds for G(x, ·) and G∗(y, ·) if t1 ≤
A−3 t2, t2 ≤ c0.

We can now formulate our main result.

Theorem A. If the convexity hypothesis (C.H.) and the doubling hypoth-
esis (D.H.) are satisfied then M is bounded from Lp to Lp(Ω), for p > 1;
moreover H is bounded from Lp to Lp(Ω) for 1 < p < ∞.

Under very general finite type conditions the Lp boundedness of M
and H has been proved by Christ, Nagel, Stein and Wainger [7] (see also
Greenblatt [11]). Thus we are mainly interested in the flat case. The trans-
lation invariant model case of the theorem (where Γ(x, t) = (x1+t, x2+u(t)),
with u convex) was obtained in Carlsson et al. [5] (cf. also [9]); the special
case p = 2 goes back to [19], [20] and in [19] it was also shown that our con-
dition is necessary when u is an even function. See also [9] for a necessary
condition in the general case. In the “semi-translation invariant” case where
Γ(x, t) = (x1 + t, x2 + s(x1, t)) the L2 result had been obtained by one of
the authors in [23]. Lp theorems in somewhat different variable coefficient
settings are in [3], [4] and in [2]. More closely related to the setting here is
the recent paper by Carbery and Pérez [1] who proved Lp bounds for the
semi-translation-invariant case under more restrictive third order assump-
tions. Optimal results on the Heisenberg group related to Theorem A were
obtained by J. Kim [15], [16].
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1.1. Invariance properties and alternative formulations

The main feature of hypotheses (C.H.) and (D.H.) is the invariance under
diffeomorphisms. This is easy to check. Namely if y = Γ(x, t), and y =

Φ(z), x = Φ(u), then z = Γ̃(u, t) with Γ̃(u, t) = Φ−1(Γ(Φ(u), t)); moreover

Γ̃∗(u, t) = Φ−1(Γ∗(Φ(u), t)). Hence we get

˙̃
Γ(u, t) = DΦ−1

Γ(Φ(u),t)Γ̇(Φ(u), t),

and similarly
˙̃
Γ∗(w, 0) = DΦ−1

Γ∗(Φ(w),0)Γ̇
∗(Φ(w), 0).

The latter we apply for w = Γ̃(u, t) and notice that Γ∗(Φ(Γ̃(u, t)), 0) =

Γ∗(Γ(Φ(u), t), 0) = Γ(Φ(u), t). Now let G̃ denote the determinant (1.5)

corresponding to the curve Γ̃; then we obtain

G̃(Φ(u), t) = det(DΦ−1(Γ(Φ(u), t))) det
(
Γ̇(Φ(u), t) Γ̇∗(Γ(Φ(u), t), 0)

)
.

A similar calculation applies to (1.6). From this the invariance property
easily follows, with the possible change of the constants A, C0 (see also the
discussion in [23]).

We also note the our assumptions do not depend on the particular
parametrization. If t = u(x, s) with us 	= 0 we have ∂s(Γ(x, u(x, s))) =
us(x, s)Γ̇(x, u(x, s)) and the independence of the parametrization is easily
verified.

Our hypotheses can also be described in terms of defining functions as
in [21], [24]. Namely let Σ = {(x, y) : y = Γ(x, t), some t} then if we restrict
to small values of t the variety Σ is a smooth hypersurface in Ω×Ω and Σ =
{(x, y) : Ψ(x, y) = 0} where Ψ′

x 	= 0 and Ψ′
y 	= 0. Our quasimonotonicity

and doubling assumptions may be replaced by similar assumptions on the
functions

t �→ det(Ψy(x, y), Ψy(y, y))
∣∣∣
y=Γ(x,t)

(1.11)

t �→ det(Ψx(x, y), Ψx(x, x))
∣∣∣
x=Γ∗(y,t)

.(1.12)

If N∗Σ ⊂ (T ∗
LΩ \ 0) × (T ∗

RΩ \ 0) denotes the conormal bundle of Σ then

N∗Σ = {(x, ξ, y, η) : ξ = τΨ′
x, η = τΨ′

y, τ 	= 0, Ψ(x, y) = 0}

and assumptions on (1.11-12) reflect properties of the projections of N∗Σ to
T ∗

LΩ and T ∗
RΩ.
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In order to see that the conditions involving (1.11-1.12) are equivalent
to the conditions involving (1.5-1.6) we first observe that the conditions for
(1.11-1.12) are invariant under changes of variables, moreover they do not
depend on the particular choice of defining function. By the above discussion
we may without loss of generality assume that

(1.13) Γ(x, t) = (x1 − t, γ(x1, x2, t)).

Then Γ∗(y, t) = (y1 + t, γ∗(y1, y2, t)) where γ(x1, x2, 0) = x2, γ∗(y1, y2, 0) =
y2,

∂γ
∂x2

	= 0 and ∂γ∗
∂y2

	= 0. In fact ∂γ
∂x2

(x1, x2, 0) = 1 and ∂γ∗
∂y2

(y1, y2, 0) = 1.
The equivalence is now obtained by working with the defining functions
Ψ(x, y) = y2 − γ(x1, x2, x1 − y1) or Ψ̃(x, y) = x2 − γ∗(y1, y2, y1 − x1). These
are both defining functions and they are related by

(1.14) y2 − γ(x, x1 − y1) = a(x, y)(x2 − γ∗(y, y1 − x1))

where

a(x, y) =

∫ 1

0

∂γ

∂x2

(x1, (1 − s)γ∗(y, y1 − x1) + sx2, x1 − y1)ds.

To see this expand y2 − γ(x, x1 − y1) about x2 = γ∗(y, y1 − x1) and use that

y2 = γ(x1, γ
∗(y, y1 − x1), x1 − y1).

Note that if ε is chosen small enough we can assume that

(1.15) |a(x, y) − 1| ≤ 1/2 if (x, y) ∈ Ω1 × Ω1, |x1 − y1| ≤ ε.

For later reference we state that the boundedness of γx2 and ∇γx2 (as as-
sumed in Theorem B below) imply that a has a bounded gradient.

1.2. A change of variable

The invariance under changes of variables allows us to make a crucial choice
of coordinates in order to reduce to the situation (1.13) with the additional
normalization γ̇(x, 0) = 0. A related change of coordinates was suggested
years ago by C. Fefferman, in connection with the problem of differentiation
along variable lines. A similar argument was also used in [25].

We set Φ(u1, u2) = (u1, ρ(u1, u2)) where the smooth function ρ is to
be determined and will satisfy ρ(0, u2) = u2. This also implies that for
small u1 the function u2 �→ ρ(u1, u2) is invertible, with inverse σ, so that
σ(u1, ρ(u1, u2)) = u2. Now suppose that are already given Φ and we would
then have

(1.16) Φ−1Γ(Φ(u), t) = (u1 − t, σ(u1 − t, γ(u1, ρ(u1, u2), t)).
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Thus we need to take ρ(·, u2) to satisfy the equation

−σx1(u1, γ(u1,ρ(u1, u2), 0))(1.17)

+ σx2(u1, γ(u1, ρ(u1, u2), 0))γ̇(u1, ρ(u1, u2), 0) = 0.

Now γ(u1, ρ, 0) = ρ and σx1(u1, ρ(u1, u2)) + σx2(u1, ρ(u1, u2))ρu1(u1, u2) = 0,
and thus (1.17) is implied by σx2 	= 0 and

(1.18) ρu1(u1, u2) + γ̇(u1, ρ(u1, u2), 0) = 0.

Thus if we solve the ordinary differential equation (1.18), with parame-
ter u2, under the initial value condition ρ(0, u2) = u2 then we have ρu2 	= 0
and thus σx2(u1, ρ(u)) 	= 0 for small u1 and therefore γ̃(u, t) = σ(u1 − t,
γ(u1, ρ(u1, u2), t)) will satisfy ˙̃γ(u, 0) = 0.

From now on we may and shall work with families of curves defined
by (1.13) which also satisfy

(1.19) γ̇(x, 0) = 0.

By implicit differentiation it also follows that

(1.20) γ̇∗(y1, y2, 0) = 0.

In this situation our convexity hypothesis simplifies to

γ̈(x, t) = a(t, x) + O(γ̇(x, t)),(1.21)

γ̈∗(y, t) = a∗(t, y) + O(γ̇∗(y, t)),(1.22)

where a(x, ·) and a∗(y, ·) are of constant sign for t > 0 and of constant sign
for t < 0. Our doubling hypothesis becomes

C−1
0 g(A−1t) ≤ |γ̇(x, t)| ≤ C0g(A|t|),(1.23)

C−1
0 g(A−1t) ≤ |γ̇∗(y, t)| ≤ C0g(A|t|)(1.24)

for some doubling function g and suitable constant A ≥ 1.

We then have the following result:

Theorem B. Assume that γ and γ∗ satisfy the hypotheses (1.19-1.24). Also
suppose |∂x2γ(x, t)| ≥ c1 > 0. Then M is bounded from Lp to Lp(Ω), for
p > 1, and H is bounded from Lp to Lp(Ω). The operator norms depend
only on the cutoff function ω, the doubling function g, the constants A in
(1.23-1.24) and the L∞ norms of γx2, ∇γx2, γ∗

y2
, ∇γ∗

y2
.

With the change of variables discussed above, Theorem B implies Theo-
rem A.
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Remark. Note that the operator norms do not explicitly depend on the L1

norm of γ̈. Thus by limiting arguments Theorem B covers examples such as
γ(x, t) = x2 +u(t) where u is even or odd, continuous, linear on (2−j, 2−j+1)
with u(2−j) = 2−mj, as well as variable perturbations.

The organization of the paper is as follows. In Section 2 we introduce
some notation and make a preliminary Littlewood Paley decomposition
of our operators; moreover we prove the Lp estimates for the “Calderón-
Zygmund part” of the operator. In section 3 we give an outline of the proof
of Theorem B, and handle the technical details of the main error estimate
in Section 4.

2. Preliminary decompositions and Calderón-Zygmund
estimates

Let φ ∈ C∞
0 (R) be supported in (1/2, 2) ∪ (−2,−1/2) and define φj(s) =

2jφ(2js) for j > 0.

Also let χ ∈ C∞
0 (Ω×Ω), χ̃, φ̃ nonnegative so that 0≤|χ|≤ χ̃, 0≤|φ|≤ φ̃

and φ̃j = 2jφ̃(2j·). Define

(2.1)

Rjf(x) =

∫
φj(x1 − y1)χ(x, y1, x2 + γ(x, x1 − y1))

× f(y1, x2 + γ(x, x1 − y1))dy1

Mjf(x) =

∫
φ̃j(x1 − y1)χ̃(x, y1, x2 + γ(x, x1 − y1))

× f(y1, x2 + γ(x, x1 − y1))dy1;

here we want to explicitly include the case that the functions χ̃ and χ and
the functions φ̃ and φ coincide (and are nonnegative), so that some aspects
of Rj and Mj can be treated at the same time.

The Lp inequality for the maximal function in (1.3) is a simple conse-
quence of the Lp boundedness of the maximal operator M defined with
slight abuse of notation by

Mf(x) = sup
j∈J

|Mjf(x)|;

here J is a finite set of integers j > C and the bound is not supposed
to depend on the cardinality of J . Working with suitable positive cutoff
functions we obtain uniform bounds for M from uniform bounds for the
maximal function

sup
j∈J

|Rjf |.
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Notice that since every individual operator Rj is bounded on L1 and L∞

we need to take the supremum over large j only. Similarly the boundedness
of the Hilbert transform follows from the Lp boundedness of the operator∑

j>C Rjf under the additional assumption that the cutoff function satisfies∫
φ(s)ds = 0; indeed we can choose φ such that

∑∞
j=−∞ φj(s) = 1/s.

Denote by δ0 the Dirac measure on the real line, at the origin. Follow-
ing [21] we express δ0(y2−γ(x, t)) as an oscillatory integral distribution using
the Fourier inversion formula,

δ0(y2 − γ(x, t)) = (2π)−1

∫
eiτ(y2−γ(x,t))dτ,

and then decompose the singular integral operator as in [23] into two parts,
a low frequency part where the cancellation of φ is crucially used, and a high
frequency part where this cancellation does not play a role. See also [18],
[12], [22] for earlier variants of this approach. The analogous decomposition
is made for the maximal operator where of course no cancellation of φ is
needed.

In order to proceed with this decomposition we set B = 220A where A is
the constant in (1.7-10) and define integers aj, bj so that

(2.2)
2−aj−1 < 2−jg(2−5−jB) ≤ 2−aj

2−bj−1 < 2−jg(25−jB−1) ≤ 2−bj

For later reference we note that for 2j−k ≤ (4A)−1 we have 2aj−ak � 2j−k;
this does not use the full strength of the doubling assumption as it follows
from (1.8) with δ = 0. By the doubling assumption the former estimate can
be improved to 2aj−ak � 2(j−k)(1+δ), for some δ > 0.

Let β0 be an even function in C∞
0 (R) so that β0(s) = 1 if |s| ≤ 1/2 and

β0(s) = 0 if |s| ≥ 3/4 and let βk(s) = β0(2
−ks) − β0(2

−k+1s), for k ≥ 1, so
that βk(s) can be nonzero for k ≥ 1 only when 2k−1 < s < 2k+1. Clearly we
have

∑∞
k=0 βk(s) ≡ 1.

For k > 1 we define operators Rk
j with distribution kernel

Rk
j (x, y) = χ(x, y)φj(x1 − y1)

∫
eiτ(y2−γ(x,x1−y1))βk(τ)dτ

as well as operators Hj with distribution kernel

Hj(x, y) = χ(x, y)φj(x1 − y1)

∫
eiτ(y2−γ(x,x1−y1))β0(2

−ajτ)dτ ;

then our basic decomposition is given by

(2.3) 2πRj = Hj +
∑
k>aj

Rk
j .
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In the remainder of this section we shall first prepare further the term Rk
j

which for k > aj will later be treated as a piece of a singular Fourier integral
operator and then deal with the contribution

∑
j Hj (or the associated max-

imal function) which corresponds to a kind of Calderón-Zygmund operator.
In (2.3) the decomposition in k corresponds essentially to a Littlewood-

Paley decomposition in the variable dual to x2. To make this precise we
introduce a Littlewood-Paley operator Lk defined by

(2.4) L̂kf(ξ) =
[
β0(2

−k−10ξ2) − β0(2
−k+10ξ2)

]
f̂(ξ)

so that the multiplier is supported where 2k−10 ≤ |ξ2| ≤ 2k+11 and equals 1
on 2k−9 ≤ |ξ2| ≤ 2k+9.

Lemma 2.1 For 1 ≤ p ≤ ∞
‖Rk

j − LkRk
jLk‖Lp→Lp � 2−k

Lemma 2.1 tells us that for k ≥ aj we may replace the operators Rk
j by

LkRk
jLk since

(2.5)
∑

j

∑
k≥aj

‖Rk
j − LkRk

jLk‖Lp→Lp �
∑

j

∑
k≥aj

2−k �
∑

j

2−aj � 1.

Proof. We write Rk
j − LkRk

jLk = Rk
j (I − Lk) + (I − Lk)Rk

jLk. Thus it
suffices to show that Rk

j (I−Lk) and (I−Lk)Rk
j satisfy the asserted bounds.

Let P l,2 be the convolution operator with Fourier multiplier β0(2
−lξ2) and

let Ql,2 be the convolution operator with multiplier β1(2
−lξ2). Then by the

support properties the symbols we have

I − Lk = (I − Lk)
(
Pk−5,2 +

∑
l≥k+5

Ql,2
)

and consequently it suffices to show that

‖Rk
jQl,2‖Lp→Lp + ‖Ql,2Rk

j‖Lp→Lp � 2−l if l ≥ k + 5 ,(2.6)

‖Rk
jPk−5,2‖Lp→Lp + ‖Pk−5,2Rk

j‖Lp→Lp � 2−k .(2.7)

These estimates follow by standard integration by parts arguments (see [13]).
For the sake of completeness we include the argument. We first estimate the
kernel of the operator Rk

jQl,2 which is given by

Kkl(x, z) = φj(x1 − z1)

∫∫∫
χ(x, z1, y2) ei(τ(y2−γ(x,x1−z1))+ξ2(y2−z2))

× βk(τ) βl(ξ2) dy2 dτ dξ2.
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Note that on the support of the symbol we have |ξ2 + τ | ≈ 2l . We integrate
by parts once with respect to y2 and then we integrate by parts with respect
to τ and ξ2. This yields the bound

|Kkl(x, z)| � |φj(x1−z1)|2−l

∫
2k

(1 + 2k|y2−γ(x, x1−z1)|)N

2l

(1+ 2l|y2−z2|)N
dy2

and integration with respect to z yields that
∫ |Kkl(x, z)|dz � 2−l uniformly

in x. If we take into account (1.15) then we also get that
∫ |Kkl(x, z)|dx �

2−l uniformly in z and the asserted bound (2.6) for Rk
jQl,2 follows. The

proof of (2.7) for Rk
jPk−5,2 is the same.

Next we examine the kernel of the operator Ql,2Rk
j which is given by

K̃kl(x, z) = φj(x1 − z1)

∫∫∫
χ(x1, w2, z) ei(ξ2(x2−w2)+τ(z2−γ(x1,w2,x1−z1)))

× βk(τ) βl(ξ2) dw2 dτ dξ2.

The difference is now the nonlinear dependence on the phase in w2. To re-
move this potential difficulty we may again invoke (1.15) and change vari-
ables in the oscillatory integral to σ = τa(x1, w2, z). Thus we get

K̃kl(x, z) = φj(x1 − z1)

∫∫∫
χ(x1, w2, z)

a(x1, w2, z)
ei(ξ2(x2−w2)+σ(w2−γ∗(z,x1−z1)))

× βk(
σ

a(x1, w2, z)
)βl(ξ2)dw2dτdξ2.

With this representation the estimation of K̃kl is exactly the same as for Kkl.
Recall that |a − 1| ≤ 1/2. In the integration by parts with respect to
w2 we shall also need the boundedness of ∂x2a which is guaranteed by
our assumption, cf. the remark following (1.15). As above we see that
the Lp → Lp bound for Rk

jPk−5,2 is O(2−k). The proof of the bound
‖Pk−5,2Rk

j‖Lp→Lp = O(2−k) is the same. �
Concerning the operators Hj we make the following simple observation

(which is valid without any cancellation property).

Lemma 2.2 The kernels Hj satisfy

|∂n1
y1

∂n2
y2

Hj(x, y)
∣∣≤A02

jn1+ajn22j+aj(1+2j|x1−y1|)−2(1+2aj |x2−y2|)−2(2.8)

|∂n1
x1

∂n2
x2

Hj(x, y)
∣∣≤A02

jn1+ajn22j+aj(1+2j|x1−y1|)−2(1+2aj |x2−y2|)−2(2.9)

for (n1, n2) = (0, 0), (0, 1) or (1, 0).
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Proof. By integration by parts we have

|Hj(x, y)| � 2jχ[−21−j ,2−j+1](x1 − y1)2
aj(1 + 2aj |y2 − γ(x, x1 − y1)|)−N

Now if |x1 − y1| ≤ 2−j+1 then

|γ(x, x1−y1)−x2|= |x1−y1|
∣∣∣ ∫ 1

0

γ̇(x, s(x1−y1))ds
∣∣∣ � |x1−y1|g(A2−j+1) � 2−aj

and thus 1 + 2aj |y2 − γ(x, x1 − y1)| ≈ 1 + 2aj |y2 − x2| if |x1 − y1| ≤ 2−j+1.
This yields the asserted estimate for n1 = n2 = 0. The estimates for the
derivatives are analogous. �

Let Mstr be the strong maximal operator (involving averages over rect-
angles parallel to the coordinate axes). Then the following estimate is an
immediate consequence of Lemma 2.2.

Corollary 2.3 For all x ∈ Ω,

(2.10) sup
j

|Hjf(x)| � Mstrf(x).

In the case where
∫

φ(s)ds = 0 we get a bound for the sum
∑

j Hj.

As in [2], the Lp boundedness is proved by invoking the Hardy space H1
prd :=

H1(R × R) defined using the two-parameter dilations (see [6], [14], [10]).
Recall from [6] that operators which are bounded on H1

prd and bounded on
L2 are also bounded on Lp for 1 < p < 2.

Proposition 2.4 Suppose that the cancellation condition
∫

φ(s)ds = 0 holds.
Then the operators

∑
j Hj and

∑
j H∗

j are both bounded on L2 and on H1
prd,

and consequently on Lp, for 1 < p < ∞.

Proof. We first show the L2 boundedness. By the almost orthogonality
lemma of Cotlar and Stein it suffices to verify

(2.11) ‖HjH∗
k‖L2→L2 + ‖H∗

jHk‖L2→L2 � 2−|j−k|/2.

By taking adjoints it suffices to show (2.11) for k ≥ j and since the operator
norms of Hj are uniformly bounded it suffices to consider the case where
2k−j ≥ 210A.

We first examine HjH∗
k; its kernel is given by∫

Hj(x, z)Hk(y, z)dz =
∑
n≥0

Hn
jk(x, y)
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where

Hn
jk(x, y) =

∫∫∫
φj(x1 − z1)φk(y1 − z1)e

i(τ(z2−γ(x,x1−z1))−σ(z2−γ(y,y1−z1)))

×β0(2
−ajτ)β0(2

−akσ)βn(2−ajσ)dzdτdσ.(2.12)

Here we used that
∑∞

n=0 βn(2−ajσ) ≡ 1. Observe that in view of the support
properties of the symbol we have the restriction aj + n ≤ ak + 1.

Now let h(z1) = φj(x1 − z1)e
i(τ(z2−γ(x,x1−z1))−σ(z2−γ(y,y1−z1))). We use the

cancellation of φk to replace h(z1) in (2.12) by h(z1) − h(y1) = (z1 − y1)∫
h′(y1+s(z1−y1)) ds; this will be relevant for small n. We write ζj,k,n(σ, τ) =

β0(2
−ajτ)β0(2

−akσ)βn(2−ajσ) and obtain

Hn
jk(x, y) =

∫ 1

0

[Is(x, y) + IIs(x, y) + IIIs(x, y)]ds

where

Is(x, y) =

∫∫∫
ei(τ(z2−γ(x,x1−z1))−σ(z2−γ(y,y1−z1)))

× ζj,k,n(σ, τ)χj,k,1(x, y, s)dzdτdσ,

IIs(x, y) =

∫∫∫
ei(τ(z2−γ(x,x1−y1+s(y1−z1)))−σ(z2−γ(y,y1−z1)))

× ζj,k,n(σ, τ)τχj,k,2(x, y, s)dzdτdσ,

IIIs(x, y) =

∫∫∫
ei(τ(z2−γ(x,x1−z1))−σ(z2−γ(y,s(y1−z1))))

× ζj,k,n(σ, τ)σχj,k,3(x, y, s)dzdτdσ.

with

χj,k,1(x, y, s) = (y1 − z1)φ
′
j(x1 − y1 + s(y1 − z1))φk(y1 − z1)

χj,k,2(x, y, s) = φj(x1 − z1)φk(y1 − z1)(y1 − z1)γ̇(x, x1 − y1 + s(y1 − z1))

χj,k,3(x, y, s) = φj(x1 − z1)φk(y1 − z1)(y1 − z1)γ̇(y, s(y1 − z1)).

Since |y1 − z1| ≤ 2−k+1 we then have

|χj,k,1(x, y, s)| ≤ 22j−k

2aj |χj,k,2(x, y, s)| � 2ajg(21−jA)2−k � 2j−k

2aj+n|χj,k,3(x, y, s)| � 2aj+ng(21−kA)2−k � 2aj−ak+n.
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These estimates are used after additional integration by parts in τ and σ. For
the term Is we obtain (taking into account the symbol properties of ζj,k,n)

|I(x, y)| � 22j−k 2k

∫∫
|x1−z1|≤2−j+1

|y1−z1|≤2−k+1

2aj

(1 + 2aj |z2 − γ(x, x1 − z1)|)N

× 2aj+n

(1 + 2aj+n|z2 − γ(y, y1 − z1)|)N
dz1dz2.

Observe that the integral
∫

x2
2aj(1 + 2aj |z2 − γ(x, x1 − z1)|)−Ndx2 is O(1) in

view of (1.15). Thus in evaluating
∫ |I(x, y)|dx, for fixed y, we perform an

x2 integration first and see that∫
|I(x, y)|dx � 22j

∫∫
|x1−z1|≤2−j+1

|y1−z1|≤2−k+1

∫
2aj+n

(1 + 2aj+n|z2 − γ(y, y1 − z1)|)N
dz2 dz1dx1 � 2j−k

We argue similarly for the terms IIs and IIIs. By integration by parts we
get the pointwise estimate

|IIs(x, y)| � 2j+k2aj−ak

∫∫
|x1−z1|≤2−j+1

|y1−z1|≤2−k+1

2aj

(1 + 2aj |z2 − γ(x, x1 − z1 + s(z1 − y1))|)N

× 2aj+n

(1 + 2aj+n|z2 − γ(y, y1 − z1)|)N
dz1dz2

and

|IIIs(x, y)| � 2j+k2aj−ak+n

∫∫
|x1−z1|≤2−j+1

|y1−z1|≤2−k+1

2aj

(1 + 2aj |z2 − γ(x, x1 − z1)|)N

× 2aj+n

(1 + 2aj+n|z2 − γ(y, s(y1 − z1))|)N
dz1dz2.

Since 2aj−ak � 2j−k we obtain the same bound O(2j−k) for
∫ |IIs(x, y)|dx as

above, similarly for
∫ |IIIs(x, y)|dx we obtain the bound O(2aj−ak+n) which

is O(2j−k+n). Thus

(2.13)

∫
|Hn

jk(x, y)|dx ≤
∫ 1

0

∫ [
|Is| + |IIs| + |IIIs|

]
dxds � 2j−k+n.

The same bound is obtained for
∫ |Hn

jk(x, y)|dy, uniformly in x.
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For large n the estimate (2.13) is not sufficient but we can now use an
integration by parts in z2, in order to gain a factor 2−aj−n; this is followed
as above by integration by parts with respect to τ and σ. The result is that
for n ≥ 10 ∫

|Hn
jk(x, y)|dx � 2−aj−n

uniformly in y and again the same bound holds also for
∫ |Hn

jk(x, y)|dy,
uniformly in x.

We sum in n and obtain the bound

‖HjH∗
k‖L2→L2 ≤ C

(
2j−k + 2aj−ak +

∑
n≥10

min{2−aj−n, 2j−k+n}
)
.

Now if n ≥ 10 we use the bound 2−aj−n for n > (k − j)/2 and the bound
2j−k+n for n ≤ (k− j)/2. We sum in n and obtain the asserted bound (2.11)
for the term ‖HjH∗

k‖.
The estimation of ‖H∗

jHk‖ is largely analogous. However we first use
(1.15) to represent the kernel of Hj as

Hj(v, w) = φj(v1 − w1)χ(v, w)

∫
eiτ(v2−γ∗(w,w1−v1))β0

(
2−aj

τ

a(v, w)

) dτ

a(v, w)
.

Thus the kernel of H∗
jHk is given by∫

Hj(z, x)Hk(z, y)dz =

∫∫∫
φj(z1 − x1)χ(z, x)φk(z1 − y1)χ(z, y)

× e−i(τ(z2−γ∗(x,x1−z1))−σ(z2−γ∗(y,y1−z1)))β0

( 2−ajτ

a(z, x)

)

× β0

(
2−ak

σ

a(z, y)

) dτ

a(z, x)

dσ

a(z, y)
dz

and by using this expression the above proof for HjH∗
k can be repeated here.

Again the only difference is that we have to take into account the limited
differentiability of the symbol, but our assumptions on γx2 and its gradient
still allow us to integrate by parts once with respect to z2. �

In order to complete the proof of the H1
prd → L1 boundedness we use the

following Lemma which is proved by standard arguments.

Lemma 2.5 Let {Hj}j∈I be a finite family of Schwartz kernels and let Hj

be the associated operators. Assume that T :=
∑

j∈I Hj is bounded in L2

with operator norm A1, and suppose that the inequalities (2.8), (2.9) hold
for (n1, n2) = (0, 0), (0, 1) and (1, 0). Then T maps H1

prd to L1 with norm
≤ C(A0 + A1) (in particular C is independent of I).
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Proof. This is a straightforward consequence of a theorem of R. Feffer-
man [10] which says that it suffices to check the operator on rectangle atoms.
Suppose that f is supported on a rectangle parallel to the coordinate axes,
with center (c1, c2) with sidelength 2−�1 × 2−�2 and that ‖f‖2 ≤ 2(�1+�2)/2,
moreover f satisfies the strong cancellation condition

∫
f(x1, x2)dx1 = 0 and∫

f(x1, x2)dx2 = 0. Fefferman’s theorem states that if T is L2 bounded and
if the estimate

(2.14)

∫∫
|x1−c1|≥2−�1+n

|Tf(x)|dx1dx2 +

∫∫
|x2−c2|≥2−�2+n

|Tf(x)|dx1dx2 � 2−nε

holds for some ε > 0 then T maps H1
prd(R

2) boundedly to L1(R2). Since we
assume L2 boundedness it suffices to prove (2.14).

We estimate the corresponding integrals with T replaced by Hj. We use
the size estimate in (2.8) obtaining the bound O(2�1−n−j) for the L1 norm
in {x : |x1 − c1| ≥ 2−�1+n} and we use the cancellation in y1 together with
the estimate (2.8) for the y1-derivative to get the bound 2−�1+j. Thus∫∫

|x1−c1|≥2−�1+n

|Hjf(x)|dx1dx2 � min{2−�1+j, 2�1−j−n}.

We sum in j and estimate the first term on the left of (2.14) by C2−n/2.
Similarly (using now cancellation with respect to the y2 variable) we

obtain ∫∫
|x2−c2|≥2−�2+n

|Hjf(x)|dx1dx2 � min{2−�2+aj , 2�2−aj−n}.

Clearly the right hand side is O(2−n/2). Let j0 be the maximal j with
22aj ≤ 2−n+2�2 . Then there is an absolute constant C1 so that 2aj � 2aj02j−j0

if j ≤ j0 − C1. Thus ∑
j≤j0−C1

2−�2+aj � 2−�2+aj0 � 2−n/2.

Similarly if j1 denotes the minimal j with 22aj ≥ 2−n+2�2 then there is C2 so
that for j ≥ j1 + C2 we have 2−aj � 2−aj12j1−j and thus∑

j≥j1+C2

2�2−aj−n � 2�2−aj1
−n � 2−n/2.

We have only a bounded number of terms with j0 − C1 ≤ j ≤ j1 + C2; for
those we use the bound O(2−n/2). Combining the three estimates yields the
bound 2−n/2 for the second term in (2.14). �
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3. Lp-boundedness of the Fourier integral contributions

We now give an outline of the proof of Theorem B and consider first the
maximal operator. In view of Lemma 2.1 and Corollary 2.3 it suffices to
consider the maximal function

(3.1) sup
j

∣∣∣ ∑
k>aj

LkRk
jLkf

∣∣∣.
where the sup is extended over a finite index set J . We use a familiar
square-function technique and dominate

sup
j

∣∣∣ ∑
k>aj

LkRk
jLkf

∣∣∣
≤

(∑
j

∣∣ ∑
aj<k≤bj

LkRk
jLkf

∣∣2)1/2

+
(∑

j

∣∣ ∑
k>bj

LkRk
jLkf

∣∣2)1/2

(3.2)

We define an operator M acting on F ∈ Lp(�q) and an operator M̃ acting
on G ∈ Lp(�q(�2)) by

(3.3)
(MF )j = MjFj

(M̃G)j,k = MjGj,k;

here the �2 norm is taken with respect to the k variable. We denote by ‖M‖p,q

the Lp(�q) → Lp(�q) operator norm of M and by ‖M̃‖p,q,2 the Lp(�q(�2)) →
Lp(�q(�2)) operator norm of M̃.

We follow M. Christ [7] (see also Nagel, Stein and Wainger [17] for a
closely related earlier argument) and observe

Lemma 3.1 For 1 ≤ p ≤ 2

‖M‖p,2 � (1 + ‖M‖Lp→Lp)1−p/2(3.4)

‖M̃‖p,2,2 � (1 + ‖M‖Lp→Lp)1−p/2(3.5)

Proof. Since the operators Mj are bounded on Lp, uniformly in j, it is
clear that the operator norm of M on Lp(�p) is O(1); the same applies to

the vector-valued setting by which we see that the operator norm of M̃ on
Lp(�p(�2)) is finite.

Since |Mjfj| � M[supν |fν |] we see that the operator norm of M on

Lp(�∞) and the operator norm of M̃ on Lp(�∞(�2)) are bounded by the Lp

norm of M. Interpolation gives the assertion. �
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We now consider the first term on the right hand side of (3.2). First
observe that there is a pointwise bound

(3.6) |Rk
j g| � Mstr(Mj(|g|))(x).

To see this we use integration by parts in τ to estimate

|Rk
j g| �

∫
2kφ̃j(x1 − y1)χ̃(x, y)

(1 + 2k|s|)N
|g(y1, γ(x1, x2, x1 − y1) + s)|dy1ds

and change variables s = γ(x1, x2 + u, x1 − y1) − γ(x1, x2, x1 − y1) which is
legitimate since γx2 is close to 1.

By Littlewood-Paley theory for the operators Lk, the pointwise bound (3.6)
and the Fefferman-Stein theorem for the strong maximal function we get

∥∥∥(∑
j

∣∣ ∑
aj<k≤bj

LkRk
jLkf

∣∣2)1/2∥∥∥
p

�
∥∥∥( ∑

j,k: aj<k≤bj

∣∣Mstr(Mj(|Lkf |))∣∣2)1/2∥∥∥
p

�
∥∥∥( ∑

j,k: aj<k≤bj

∣∣Mj(Lkf)
∣∣2)1/2∥∥∥

p
� ‖M̃‖p,2,2

∥∥∥( ∑
j,k: aj<k≤bj

∣∣Lkf |2
)1/2∥∥∥

p

� ‖M̃‖p,2,2‖f‖p(3.7)

where for the last application of Littlewood-Paley theory we have used that
for fixed k the cardinality of the set {j : aj < k ≤ bj} is bounded.

Similar but somewhat more complicated arguments apply to the second
term in (3.2). We need to introduce an additional dyadic decomposition in
the variable dual to x1 and define operators Pl, Ql, Πm by

P̂lf(ξ) = β0(2
−lξ1)f̂(ξ)

Q̂lf(ξ) = βl(ξ1)f̂(ξ)

and

Πm = Pm−aj+10 − Pm−bj−10

and decompose for fixed k the identity operator as

(3.8) I = Pj+k−bj−10 + Πj+k +
∑

l>j+k−aj+10

Ql.

Then we change variables k = bj +n, l = j+k−aj +m = j+(bj−aj)+m+n
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and see that∥∥∥(∑
j

∣∣∑
k>bj

LkRk
jLkf

∣∣2)1/2∥∥∥ �
∑
n>0

∥∥∥(∑
j

∣∣Lbj+nRbj+n
j Pj+n−10Lbj+nf

∣∣2)1/2∥∥∥
p

+
∥∥∥( ∑

j

∣∣ ∑
k>bj

LkRk
jLkΠj+kf

∣∣2)1/2∥∥∥
p

+
∑
n>0

∑
m>0

∥∥∥( ∑
j

∣∣Lbj+nRbj+n
j Qj+n+m+bj−aj

Lbj+nf
∣∣2)1/2∥∥∥

p
.(3.9)

We need to show part (i) of the following proposition (part (ii) will be
needed for the singular Radon transform).

Proposition 3.2 Let p0 > 1, let p0 ≤ p ≤ 2 and define θ ∈ [0, 1] by
(1/p0 − 1/p) = θ(1/p0 − 1/2). Then for n > 0, m > 0

(i) ∥∥∥(∑
j

∣∣Rbj+n
j Pj+n−10Lbj+nf

∣∣2)1/2∥∥∥
p

� 2−θn/2‖M‖1−θ
p,2 ‖f‖p(3.10)

∥∥∥( ∑
j

∣∣ ∑
k>bj

LkRk
jLkΠj+kf

∣∣2)1/2∥∥∥
p

� ‖M̃‖1−θ
p,2,2‖f‖p(3.11)

∥∥∥( ∑
j

∣∣Rbj+n
j Qj+n+m+bj−aj

Lbj+nf
∣∣2)1/2∥∥∥

p
� 2−θ(n+m)/2‖M‖1−θ

p,2 ‖f‖p(3.12)

(ii) ∥∥∥(∑
j

∣∣Pj+n−10Rbj+n
j Lbj+nf

∣∣2)1/2∥∥∥
p

� 2−θn/2‖M‖1−θ
p,2 ‖f‖p(3.13)

∥∥∥( ∑
j

∣∣Qj+n+m+bj−aj
Rbj+n

j Lbj+nf
∣∣2)1/2∥∥∥

p
� 2−θ(n+m)/2‖M‖1−θ

p,2 ‖f‖p(3.14)

If we use the Fefferman-Stein theorem for vector-valued maximal func-
tions we see that (3.9) and Proposition 3.2 imply the bound∥∥∥( ∑

j

∣∣ ∑
k>bj

LkRk
jLkf

∣∣2)1/2∥∥∥
p

� (1 + ‖M‖p,2 + ‖M̃‖p,2,2)‖f‖p

� (1 + ‖M‖Lp→Lp)1−p/2‖f‖p(3.15)

where for the last inequality we have used Lemma 3.1. This in conjunction
with (2.5), (2.10) and (3.7) shows that

(3.16) ‖M‖Lp→Lp � (1 + ‖M‖1−p/2
Lp→Lp)
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which implies of course the Lp boundedness of M for 1 < p ≤ 2, with
bound independent of J . Since M is bounded on L∞ the Lp boundedness
for 2 < p < ∞ follows as well. By the monotone convergence theorem this
shows the Lp boundedness of the maximal operator in Theorem B.

We turn to the proof of Proposition 3.2. The main technical Lemma
used here concerns L2 estimates for the kernels Rk

jPj+k−bj−10 and Rk
jQl.

Lemma 3.3 We have for n > 0, m > 0

(3.17) ‖Rk
jQl‖L2→L2 � 2−n/2, if k = bj + n, l = j + k − aj + m,

and

(3.18) ‖Rk
jPj+k−bj−10‖L2→L2 � 2−(n+m)/2 if k = bj + n.

The estimates (3.17)-(3.18) also hold with Rk
j replaced by its adjoint (Rk

j )
∗.

The proof of Lemma 3.3 will be given in the next section. The estimates
involving the adjoint operator are only needed for estimating the singular
Radon transform. Taking the lemma for granted we can now give the

Proof of Proposition 3.2. The scheme of the proof is the same as for
the chain of inequalities in (3.7). For the main term (3.11) we use the
Littlewood-Paley inequality

(3.19)
∥∥∥( ∑

j,k

|LkΠj+kf |2
)1/2∥∥∥

p
� ‖f‖p, 1 < p < ∞,

and with (3.19) the proof of (3.11) follows by the argument given in (3.7).
The inequality (3.19) in turn follows by the usual argument involving the
Marcinkiewicz multiplier theorem and Rademacher functions (see [26]). Here
it is necessary to show the Lp boundedness of the operators

∑
j,k ±LkΠj+k

(for any choice of ±) and the doubling assumption on g is crucially used here.
We note that (3.19) is essentially a version of the angular Littlewood-Paley
theorem used in [17], [5], [7], [25] and elsewhere.

For the terms (3.10), (3.12) we use that for fixed n the Lp(�2) norm of
{Lbj+nf}j∈Z is bounded by C‖f‖p and the argument in (3.7) shows that the
left hand sides of both (3.10) and (3.12) are dominated by C‖M‖p,2‖f‖p

if p > 1.
For p = 2 we have better bounds by Lemma 3.3; indeed the left hand side

of (3.10) for p = 2 is dominated by C2−εn‖f‖2, the left hand side of (3.11)
by C‖f‖2 and for (3.12) we obtain the bound C2−ε(n+m)‖f‖2. Interpolation
yields (3.10), (3.11) (3.12). The proof of (3.13) and (3.14) is analogous if we
take part (iii) of Lemma 3.3 into account. �
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3.1. Lp-boundedness of the singular Radon transform

In view of Proposition 2.4 and estimate (2.5) we have to prove the bound-
edness of the Fourier integral operator F given by

(3.20) Ff =
∑

j

∑
k>aj

LkRk
jLkf.

By a Littlewood-Paley estimate in the x2 variables we see that

∥∥∥∑
j

∑
aj<k≤bj

LkRk
jLkf

∥∥∥
p

�
∥∥∥( ∑

k

∣∣ ∑
j: aj<k≤bj

LkRk
jLkf

∣∣2)1/2∥∥∥
p

� ‖M̃‖p,2,2‖f‖p(3.21)

where we argue as in (3.7). Next we use the decomposition (3.8) and obtain∥∥∥ ∑
j

∑
k>bj

LkRk
jLkf

∥∥∥
p

�
∑
n≥10

In + II +
∑
n≥10

∑
m>0

IIIm,n

where

In =
∥∥∥∑

j

Lbj+nPj+n−10Rbj+n
j Lbj+nf

∥∥∥
p

II =
∥∥∥∑

j

∑
k>bj

LkΠj+kRk
jLkf

∥∥∥
p

IIIm,n =
∥∥∥∑

j

Lbj+nQj+n+m+bj−aj
Rbj+n

j Lbj+nf
∥∥∥

p
.

Now using for fixed n the Littlewood-Paley decomposition {Lbj+n}j∈Z we see
that In is estimated by the left hand side of (3.13) and thus by C2−nε(p)‖f‖p

with ε(p) > 0. Similarly IIIm,n is dominated by C2−(m+n)ε(p)‖f‖p, by (3.14).

Finally by Littlewood-Paley theory

II �
∥∥∥(∑

j

∑
k>bj

|Rk
jLkf |2

)1/2∥∥∥
p

:= ĨI.

Now we decompose as in (3.8), but to the right hand side of Rj
k. Thus

ĨI �
∑
n≥10

I ′
n + II ′ +

∑
n≥10

∑
m>0

III ′
m,n
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where I ′
n is the left hand side of (3.10), and III ′

m,n is the left hand side
of (3.12). Moreover

II ′ =
∥∥∥(∑

j

∑
k>bj

|Rk
jLkΠj+kf |2

)1/2∥∥∥
p

which is dominated by C‖M̃‖p,2‖f‖p; here we use again (3.19) and the
Fefferman-Stein inequality.

Since we have already established the Lp bounds for the maximal op-
erator we know now by (3.4), (3.5) that ‖M‖p,2, ‖Mp,2,2‖p,2,2 are O(1) and
thus the combination of previous estimates shows the Lp boundedness of
the Fourier integral operator F in (3.20). As pointed out above this yields
the Lp boundedness for the singular Radon transform, for 1 < p ≤ 2. The
estimates can be applied to the adjoint operator which yields the estimates
in the complementary range 2 < p < ∞. �.

4. Proof of Lemma 3.3

The kernel of Rk
jQl is given by

K(x, y) =

∫∫∫
ei(τ(y2−γ(x,x1−z1))+ξ1(z1−y1))χ(x, z1, y2)φj(x1 − z1)(4.1)

× β1(2
−kτ)β1(2

−lξ1)dξ1dτdz1.

By integration by parts with respect to z1 we obtain

K(x, y) =

∫∫∫
ei(τ(y2−γ(x,x1−z1))+ξ1(z1−y1))i−1a(x, z1, y2, τ, ξ1)dξ1dτdz1

where a = a1 + a2 with

a1(x, z1, y2, τ, ξ1) =
γ̈(x, x1 − z1)

(τ γ̇(x, x1 − z1) + ξ1)2
χ(x, z1, y2)φj(x1 − z1)

× β1(2
−kτ)β1(2

−lξ1)

a2(x, z1, y2, τ, ξ1) =
∂z1

(
χ(x, z1, y2)φj(x1 − z1)

)
τ γ̇(x, x1 − z1) + ξ1

β1(2
−kτ)β1(2

−lξ1).

The localization of the symbol in (4.1) implies that here

|ξ1| � |τ γ̇(x, x1 − z1)|.
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The following fact will be crucial in the estimation of the L1 norms in x or y.

Sublemma. For large j we have the estimates

(i)

∫
|z1−x1|≤2−j+1

2−j|γ̈(x, x1 − z1)|dz1 � 2−aj ,(4.2)

(ii)

∫
2−j−1≤|z1−x1|≤2−j+1

2j |γ̈(x, x1 − z1)|
(γ̇(x, x1 − z1))2

dz1 � 2bj .(4.3)

Proof. Let Ij(x1) := {z1 : 0 ≤ x1 − z1 ≤ 2−j+1}. By the quasimonotonicity
assumption we have for t > 0 that

γ̈(x, t) = a(x, t) + O(γ̇(x, t))

where a does not change sign and thus∫
Ij(x1)

|γ̈(x, x1 − z1)|dz1 �
∣∣∣ ∫

Ij(x1)

γ̈(x, x1 − z1)dz1

∣∣∣ +

∫
Ij(x1)

|γ̇(x, x1 − z1)|dz1

� g(A2−j−1) � 2j−aj .

The same bound holds for the contribution over x1 ≤ z1. This proves (4.2).

Now we turn to (4.3) and let Jj(x1) := {z1 : 2−j−1 ≤ x1 − z1 ≤ 2−j+1}.
Again by the quasimonotonicity of γ̇ we get∫

Jj(x1)

|γ̈(x, x1 − z1)|
(γ̇(x, x1 − z1))2

dz1 ≤
∣∣∣ ∫

Jj(x1)

γ̈(x, x1 − z1)

(γ̇(x, x1 − z1))2
dz1

∣∣∣
+

∫
Jj(x1)

|γ̇(x, x1 − z1)|−1dz1.

The first term on the right hand side equals

∣∣∣ 1

γ̇(x, 2−j+1)
− 1

γ̇(x, 2−j−1)

∣∣∣ � [g(2−j−1/A)]−1 � 2bj−j

and the second term is estimated by∫
Jj(x1)

g(2−j−1/A)dz1 � 2bj−2j � 2bj−j.

The contributions for 2−j−1 ≤ z1 − x1 ≤ 2−j+1 are estimated in the same
way and (4.3) is proved. �
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Proof of Lemma 3.3, cont. Integration by parts yields

|K(x, y)| �
∫∫∫

(I − 22l∂2
ξ1

)N(I − 22k∂2
τ )

Na(x, z1, y2, τ, ξ1)

(1 + 22k|y2 − γ(x, x1 − z1)|2)N(1 + 22l|y1 − z1|2)N
dz1dξ1dτ.

Assume that |C| ≤ 1, |τ |, |ξ1| ≥ 1 and that either |Cτ | ≥ 2|ξ1| or |ξ1| ≥ 2|Cτ |.
(actually, for the present proof of (3.17) we need this for |ξ1| ≥ 2|Cτ |).

It is easy to verify that under these assumptions we have the product
type symbol estimates∣∣∣∂α1

ξ1
∂α2

τ

(
β1(2

−kτ)β1(2
−lξ1)τ(Cτ + ξ1)

−2
)∣∣∣ � 2−lα12−kα22k(|Cτ | + |ξ1|)−2,∣∣∣∂α1

ξ1
∂α2

τ

(
β1(2

−kτ)β1(2
−lξ1)(Cτ + ξ1)

−1
)∣∣∣ � 2−lα12−kα2(|Cτ | + |ξ1|)−1.

We apply this with C = γ̇(x, x1 − z1) and see that

∣∣∂α1
ξ1

∂α2
τ a1(x, z1, y2, τ, ξ1)

∣∣ � 2−lα12−kα2

[ 2k+j

|Cτ | + |ξ1|)2
+

2j

|Cτ | + |ξ1|
]
,

∣∣∂α1
ξ1

∂α2
τ a2(x, z1, y2, τ, ξ1)

∣∣ � 2−lα12−kα2
22j

|Cτ | + |ξ1| .

Consequently

|K(x, y)| �
∫∫∫
|ξ1|≈2l

|τ |≈2k

|x1−z1|≤2−j+1

[ 2j+k|γ̈(x, x1 − z1)

(|τ γ̇(x, x1 − z1)| + |ξ1|)2
+

22j

|τ γ̇(x, x1 − z1)| + |ξ1|
]

× (1 + 22k|y2 − γ(x, x1 − z1)|2)−N(1 + 22l|y1 − z1|2)−Ndz1dξ1dτ.(4.4)

We now examine the L1 norm in y. We interchange the order of integration
and first integrate out in the y-variable. We take into account that now
|ξ1| ≥ 2|τ γ̇(x, x1 − z1)| and obtain

(4.5)∫
|K(x, y)|dy �

∫∫∫
|ξ1|≈2l

|τ |≈2k

|x1−z1|≤2−j+1

[
2j+k|γ̈(x, x1 − z1)| |ξ1|−2 + 22j|ξ1|−1

]
2−k−ldz1dξ1dτ.

By part (i) of the Sublemma this is dominated by a constant times

(4.6) 2−l−k

∫∫
|ξ1|≈2l

|τ |≈2k

[22j+k−aj−2l + 2j−l]dξ1dτ �
[
22j+k−aj−2l + 2j−l

]
� 2−m−n.
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It is possible to show the same inequality for
∫ |K(x, y)|dx but we can get

away with the bound O(1) for the latter integral and still get (3.18).

We proceed similarly for the estimation of the kernel K̃ of Rk
jPj+k−bj−10.

Now however we have the restrictions |ξ1| � 2j+k−bj−9 and |τ γ̇(x, t)| ≥
2k−1g(2−j−1/A) ≥ 2k−1+j−bj so that the latter expression is dominant.

The above analysis leads to

|K̃(x, y)| �
∫∫∫

|ξ1|≤2j+k−bj−9

2k−1≤|τ |≤2k+1

|x1−z1|≤2−j+1

[2j+k|γ̈(x, x1 − z1)

|τ γ̇(x, x1 − z1)|2 +
22j

|τ γ̇(x, x1 − z1)|
]

× (1 + 22k|y2 − γ(x, x1 − z1)|2)−N(1 + 22(j+k−bj)|y1 − z1|2)−Ndz1dξ1dτ.

and as above we get∫
|K̃(x, y)|dy �

∫
|x1−z1|≤2−j+1

[2j+k|γ̈(x, x1 − z1)|
|2kγ̇(x, x1 − z1)|2 +

22j

|τ γ̇(x, x1 − z1)|
]
dz1dξ1dτ

� 2bj−k � 2−n

where for the second to last inequality we use (4.3). Combining this with∫ |K̃(x, y)|dx = O(1) we obtain (3.17). �
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