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Local and Global Theory of the Moduli
of Polarized Calabi-Yau Manifolds

Andrey Todorov

Abstract

In this paper we review the moduli theory of polarized CY mani-
folds. We briefly sketched Kodaira-Spencer-Kuranishi local deforma-
tion theory developed by the author and G. Tian. We also construct
the Teichmüller space of polarized CY manifolds following the ideas
of I. R. Shafarevich and I. I. Piatetski-Shapiro. We review the funda-
mental result of E. Viehweg about the existence of the course moduli
space of polarized CY manifolds as a quasi-projective variety. Re-
cently S. Donaldson computed the moment map for the action of the
group of symplectic diffeomorphisms on the space of Kähler metrics
with fixed class of cohomology. Combining this results with the solu-
tion of Calabi conjecture by Yau one obtain a very conceptual proof
of the existence of the coarse moduli space for a large class of vari-
eties. We follow the approach developed in [24] to study the global
properties of the moduli of polarized CY manifolds. We discuss the
latest results connecting the discriminant locus in the moduli space
of polarized odd dimensional CY manifolds with the Bismut-Gillet-
Soule-Quillen-Donaldson Theory of Determinant line bundles.

1. Introduction

There are two approaches to the construction of the moduli spaces of the
polarized algebraic varieties. The first one is analytic. It is based on the local
deformation theory of Kodaira-Spencer-Kuranishi. Once such a theory is
developed, one can construct the Teichmüller space. The moduli space then
is the quotient of the Teichmüller space by some subgroup of the mapping

2000 Mathematics Subject Classification: 14C30, 14E30, 32J27, 32Q57.
Keywords: Calabi-Yau manifold, Hilbert schemes, Teichmüller space, moduli space of
polarized algebraic variety, Weil-Petersson metric, Hodge metric.



688 A. Todorov

class group of the algebraic variety. It is difficult to obtain some information
on the course moduli space of the polarized varieties from this approach. One
needs to know some specific proprieties of the Teichmüller space, for instance
whether it is a Stein manifold or domain of holomorphy. Once such facts
are established if some natural metric like the Weil-Petersson metric or the
Hodge metric has some nice curvature properties, then there is a hope that
one can prove that the quotient is quasi-projective.

The other approach to the construction of the moduli space of the polar-
ized algebraic varieties is through Hilbert-Mumford’s approach to the geo-
metric invariant theory. The role of the Teichmüller space is replaced by the
Grothendieck’s theory of the Hilbert schemes. Then the moduli space is the
quotient of the Hilbert scheme by the group PGL(N) on the stable points.
Viehweg proved that for a large class of polarized variety the quotient exists
as a quasi-projective variety. This class includes the polarized CY manifold.
Recently S. Donaldson computed the momentum map of the action of the
group of symplectic diffeomorphisms on the space of Kähler metrics with a
fix class of cohomology. Combining Donaldson’s result with the famous so-
lution of Calabi conjecture of Yau, one obtain immediately the existence of
the coarse moduli space for polarized CY manifolds and algebraic manifolds
of general type.

One of the main achievements in the theory of Riemann surfaces was
the construction of the Teichmüller spaces of the Riemann surfaces. This
project was started by Teichmüller and finished by L. Bers and L. Alfors.
The definition of a Teichmüller space implies that the mapping class group of
the Riemann surface of a fixed genus acts on it. The quotient is the moduli
space. In the case of Riemann surfaces of genus greater or equal to one, it
is a well known fact that the Teichmüller space is a domain of holomorphy.
The Weil-Petersson metric plays important role in the study of moduli of
Riemann surfaces. In the case of Riemann surfaces of genus greater than one
it was noticed by H. Mazur that the Weil-Petersson metric is not complete.
It was Mumford who proved that the moduli space of Riemann surfaces is
a quasi-projective variety. He used geometric invariant theory. Later the
same result was proved by Bers by using the Weil-Petersson metric.

In the case when the Riemann surface is an elliptic curve, i.e. of genus 1,
then it a well-known fact that the Teichmüller space is the upper half plane
and the Weil-Petersson metric in this case is the Poincaré metric.

Very little is know about the Teichmüller space in higher dimensions.
In the case of polarized abelian varieties of complex dimension g ≥ 2, the
Teichmüller space is the Siegel upper half plane of genus g. In the case of po-
larized algebraic K3 surfaces, Piatetski-Shapiro and Shafarevich constructed
the Teichmüller space of marked polarized algebraic K3 surfaces and proved
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the Global Torelli Theorem. It implies that the Teichmüller space is an open
and everywhere dense subset in

h2,19 := SO0(2, 19)/SO(2) × SO(19).

The complement to the Teichmüller space in h2,19 corresponds to alge-
braic K3 surfaces admitting double rational points.

We define the Teichmüller space of any complex manifold as the quo-
tient of all integrable complex structures on M by the action of the group
of diffeomorphisms isotopic to the identity. We will show that there the
Teichmüller space of a Calabi-Yau manifold T̃ (M) exists and it has a finite
number of irreducible components. Each component T (M) is a non-singular
complex manifold.

In this paper we review some recent results obtained by the author and
K. Liu, Shing-Tung Yau and K. Zuo about the global properties of the
moduli space of CY manifolds. See [46], [24], [47] and [48]. We proved that
the Teichmüller space of CY manifolds exists and it is non-singular. Based
on a result of Selberg and the local Torelli Theorem, we proved the existence
of a subgroup in the mapping class group that fixes the polarization such
that the quotient of the Teichmüller space by this subgroup is non-singular
one. From here using the theory of the determinant line bundles equipped
with the Quillen metric we derived that for polarized odd dimensional CY
manifolds the moduli space is quasi-affine.

The Dedekind eta function plays an important role in different branches
of mathematics. In this paper we will construct the analogue of the Dedekind
eta function for odd-dimensional CY manifolds. One way to define the
Dedekind eta function is by computing the regularized determinant in the
case of the flat metric on an elliptic curve. It is a well-known fact that the
zeta function of the Laplacian of the flat metric is given by

E(s) =

(
1

2π

)2s ∑
(n,m)�=(0,0)

1

|n + mτ |2s

where τ ∈ C, Im τ > 0. The computation of the regularized determinant of
the flat metric on an elliptic curve is based on the Kronecker limit formula.
It was proved that E(s) has a meromorphic continuation in C with only one
pole at s = 1. According to the Kronecker limit formula

(1.1) exp
(
− d

ds
E(s)|s=0

)
= (Im τ)2 |η|4

where η is the Dedekind eta function.
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In the case of the elliptic curves formula (1.1) has the following inter-
pretation. There exists a C∞ section of the determinant line bundle whose
Quillen norm is the exponential of the Ray Singer analytic torsion. More-
over, the existence of such a section implies the existence of a multi valued
holomorphic section η4 of the determinant line bundle whose L2 norm is
equal to the exponential of the Ray Singer analytic torsion. (η4)6 can be
realized as a holomorphic section of the 24th power of the determinant line
bundle over PSL2(Z)\h. Notice that

6 = # (PSL2(Z)/[PSL2(Z), PSL2(Z)]) .

One of the versions of the proof of the Kronecker limit formula is based
on the facts that the logarithm of the regularized determinant of the flat
metric on the elliptic curve is the potential for the Poincaré metric and this
determinant is bounded as a function on the moduli space. For this proof
of the Kronecker limit formula see [18]. In this paper we will generalize
this method of proving the existence of the analogue of the Dedekind eta
function to the case of odd dimensional CY manifolds.

The most interesting property of the η function is that it is related to
the algebraic discriminant of the elliptic curve. It will be of considerable
interest to see the connections between the analogue of the η function of
odd dimensional CY manifolds and the Gelfand, Kapranov and Zelevinsky
theory of the algebraic discriminant. See [16].

In this review paper we gave proofs of some of the Theorems. Some
results are just stated.

2. Local Deformation Theory of CY manifolds

We will review the local deformation theory for manifolds with canonical
class zero that was developed in [42] and [45].

2.1. Basic Definitions

Definition 1 Let M be an even dimensional C∞ manifold. We will say that
M has an almost complex structure if there exists a section

I ∈ C∞(M,Hom(T ∗, T ∗))

such that

I2 = −id.

T is the tangent bundle and T ∗ is the cotangent bundle on M.
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This definition is equivalent to the following one:

Definition 2 Let M be an even dimensional C∞ manifold. Suppose that
there exists a global splitting of the complexified cotangent bundle

T ∗
M ⊗ C = Ω1,0

M ⊕ Ω0,1
M ,

where

Ω0,1
M = Ω1,0

M .

Then we will say that M has an almost complex structure.

We are going to define what it means that the almost complex structure
is integrable.

Definition 3 We will say that an almost complex structure is an integrable
one if for each point x ∈M there exists an open set U ⊂M such that we can
find local coordinates z1, . . . , zn such that dz1, . . . , dzn are linearly indepen-
dent in each point m ∈ U and they generate Ω1,0|U .

It is easy to see that any complex manifold has an almost integrable
complex structure. We will define what is a Beltrami differential. We will
see how Beltrami differentials distinguish the different complex structures.

Definition 4 Let M be a complex manifold. Let

φ ∈ Γ(M,Hom(Ω1,0
M ,Ω0,1

M )),

then we will call φ a Beltrami differential.

Since

Γ(M,Hom(Ω1,0
M ,Ω0,1

M )) � Γ(M,Ω0,1
M ⊗ T 1,0

M ),

we deduce that locally φ can be written as follows:

φ|U =
∑

φβ
α dz

α ⊗ ∂

∂zβ
.

From now on we will denote by

Aφ =

(
id φ(τ)

φ(τ) id

)
.

We will consider only those Beltrami differentials φ such that det(Aφ) �= 0.
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Definition 5 It is easy to see that the Beltrami differential φ defines a new
almost complex structure operator

Iφ = A−1
φ IAφ .

With respect to this new almost complex structure the space Ω1,0
φ is

defined as follows; if dz1, . . . , dzn generate Ω1,0|U , then

dz1 + φ(dz1), . . . , dzn + φ(dzn)

generate Ω1,0
φ |U and, moreover we have: Ω1,0

φ ∩ Ω1,0
φ = 0.

We will formulate a criterion for the Beltrami differential φ to define
an integrable complex structure: The Beltrami differential φ defines an
integrable complex structure on M if and only if the following equation
holds:

∂φ =
1

2
[φ, φ] .

where

[φ, φ] |U :=

n∑
ν=1

∑
1�α<β�n

(
n∑

µ=1

(
φµ

α

(
∂µφ

ν
β

)
− φµ

β
(∂νφ

ν
α)

))
dz

α ∧ dz
β ⊗ ∂

dzν
.

(See [31].)

2.2. Main Results of Local Deformation Theory of CY Manifolds

The main result in [45] and [42] is the following Theorem:

Theorem 6 Let M be a CY manifold and let {φi} be a basis of harmonic
(0, 1) forms with coefficients in T 1,0 of H1(M, T 1,0), then the equation

∂φ =
1

2
[φ, φ]

has a solution in the form:

φ(τ1, . . . , τN ) =

N∑
i=1

φiτ
i +

∑
|IN |�2

φIN
τ IN

where IN = (i1, . . . , iN ) is a multi-index,

φIN
∈ C∞(M,Ω0,1 ⊗ T 1,0),

τ IN = (τ 1)i1 . . . (τN)iN

and there exists ε > 0 such that

φ(τ) ∈ C∞(M,Ω0,1 ⊗ T 1,0)

for |τ i| < ε for i = 1, . . . , N.
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In [45] we proved the following basic fact:

Theorem 7 Let ω0 be a holomorphic n-form on the n dimensional CY
manifold M. Let {Ui} be a covering of M and let{

zi
1, . . . , z

i
n

}
be local coordinates in Ui such that

ω0|Ui
= dzi

1 ∧ · · · ∧ dzi
n.

Then for each τ = (τ 1, . . . , τN) such that |τi| < ε the forms on M defined as:

ωτ |Ui
:= (dzi

1 + φ(τ)(dzi
1)) ∧ · · · ∧ (dzi

n + φ(τ)(dzi
n))

are globally defined complex n forms ωτ on M and, moreover, ωτ are closed
holomorphic n forms with respect to the complex structure on M defined
by φ(τ).

Corollary 8 We have the following Taylor expansion for the form ωτ :

ωτ |Ui
= ω0 +

n∑
k=1

(−1)
k(k−1)

2

((
∧kφ

)
�ω0

)
.

(See [45]). From here we deduce the following Taylor expansion for the
cohomology class [ωτ ] ∈ Hn(M,C) :

Corollary 9 We have

[ωτ ] = [ω0] +
∑

[(φi�ω0)]τ
i −

∑
[((φi ∧ φj)�ω0)]τ

iτ j + O(τ 3).

(See [45]). We are going to define the Kuranishi family of CY manifolds of
any dimension.

Definition 10 Let K ⊂CN be the policylinder defined by |τ i| < ε for every
i = 1, . . . , N , where ε is chosen such that for every τ ∈ K ,

φ(τ) ∈ C∞(M,Ω0,1 ⊗ T 1,0),

where φ(τ) is defined as in Definition 4. On the trivial C∞ family M×K, we
will define for each τ ∈ K an integrable complex structure Iφ(τ) on the fibre
over τ of the family M×K ,where Iφ(τ) was defined in Definition 5. Thus we
obtained a complex analytic family

π : X → K
of CY manifold. We will call this family the Kuranishi family.

Definition 11 We introduce a coordinate system (τ 1, . . . , τN) in K as in
Theorem 6. We call this coordinate system a flat coordinate system. The
coordinates (τ 1, . . . , τN) introduced in [45] are exactly the flat coordinates
used in [4].



694 A. Todorov

2.3. Automorphisms of CY Manifolds that act trivially on Hn(M,Z)

Theorem 12 Let
π : X → K

be the Kuranishi family of a polarized CY manifold M=π−1(τ0), τ0 ∈ K.
Suppose that G is a group of holomorphic automorphisms of M such that
G acts trivially on Hn(M,Z) and preserves the polarization. Then G is a
finite group of holomorphic automorphisms of all the fibres of the Kuranishi
family.

Proof: Since G acts trivially on Hn(N,Z) and fixes the polarization class L
then the uniqueness the Calabi-Yau metric that corresponds to L implies
that the group G is an isometry with respect to the CY metric. Since on
CY manifolds there does not exist global holomorphic vector fields, we can
conclude that G is a discrete subgroup of the orthogonal group. The com-
pactness of the orthogonal group implies that G is finite. The local Torelli
Theorem implies that

K ⊂ P(Hn(M,Z) ⊗ C).

So G acts on K and fixes the point τ0. Since G acts trivially on Hn(M,Z),
then it will act trivially on K. Next we are going to prove that if g ∈ G is
any element of G then it acts as complex analytic automorphism on each
Mτ = π−1(τ) for any τ ∈ K. This means that

(2.1) g∗(Iτ ) = Iτ ,

where
Iτ ∈ C∞(M,Hom(T ∗

M, T ∗
M)), I2

τ = −id + integrability

is the complex structure operator that defines Mτ for τ ∈ K. T ∗
N is the

cotangent C∞ real bundle. It is a well known fact that

(2.2) Iτ = (Aτ )
−1 ◦ I0 ◦ Aτ ,

where

Aτ =

(
id φ(τ)

φ(τ) id

)
.

See [45]. Let me recall that

φ(τ) ∈ C∞
(
M,Hom

(
Ω1,0

M ,Ω1,0
M

))
� C∞ (

M,ΘM ⊗ Ω0,1
M

)
and φ(τ) satisfies the equation that guarantees the integrability of Iτ defined
by (2.2):

(2.3) ∂φ(τ) =
1

2
[φ(τ), φ(τ)] and

(
∂
)∗

φ(τ) = 0 .
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ΘM is the holomorphic tangent bundle. For all the details see [45]. Here
(
∂
)∗

means the conjugate of the operator ∂ with respect to the Calabi-Yau metric
corresponding to the polarization class L. If we prove that for each g ∈ G

(2.4) g∗(φ(τ)) = φ(τ)

then (2.4) implies (2.1) and so it is a complex analytic automorphism of Nτ .

Proof of (2.4): According to [45] if we fix a basis φ1, . . . , φN of harmonic
forms of H1(M,ΘM) then the solution of the equations (2.3) are given by the
power series

φ(τ) =

N∑
i=1

φiτ
i +

∑
i1+···+iN=m>1

φi1,...,iN

(
τ 1

)i1 × · · · ×
(
τN

)iN =

N∑
m=1

φ[m](τ)

(2.5) φ[m](τ) =
∑

i1+···+iN=m

φi1,...,iN

(
τ 1

)i1 × · · · ×
(
τN

)iN

which satisfies the recurrent relation:

(2.6) φ(τ) =
N∑

i=1

φiτ
i +

1

2

(
∂

)∗ ◦ G[φ(τ), φ(τ)].

See [45]. Here G is the Green operator associated with the Laplacian with
respect to the CY metric associated with the polarization class L. Notice
that since G is the group of isometries of CY metric then for any g ∈ G the
Green operator will be invariant, i.e. g∗G = G.

In [45] it is proved that if φ ∈ H1(N,ΘN) is a harmonic form with respect
to the CY metric then φ�ωM will be a harmonic form of type (n−1, 1). This
fact together with the fact that G acts trivially Hn(M,C) imply that the
group acts trivially on H1(M,ΘM). This implies that the linear term of (2.5)
satisfies

(2.7) g∗ (
φ[1](τ)

)
= φ[1](τ).

The proof of the fact that
g∗φ(τ) = φ(τ)

is done by induction on the homogeneity of the terms of the power series
(2.5) . Form m = 1 this was done. See (2.7) . Since for the higher order terms
of (2.5) the relation (2.6) implies

φ[k] =
∑

p+q=k

[φ[p](τ), φ[q](τ)]

and g∗(φ[p]) = φ[p] for p < k then we can conclude that g∗φ[k](τ) = φ[k](τ)
for any k > 0. So the relation (2.4) is proved. Theorem 12 is proved. �
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3. Weil-Petersson Geometry

3.1. Basic Facts about Kähler Metrics

It is stated in [15] that the following conditions are equivalent:

1. Let gi,j be a Kähler metric on a complex manifold M.

2. The (1, 1) form ω := Im(g) is closed.

3. The complex structure operator JM on M is a parallel tensor with
respect to the Levi-Cevita connection, i.e. ∇JM = 0.

4. Around any point m0 ∈ M there exist, in an open set U ⊂M , holomor-
phic coordinates {z1, . . . , zn} such that locally the metric g is given by:

gi,j = δij +
1

4

∑
k,l

Rij,klz
kzl + . . .

where Rij,kl is the curvature tensor.

The coordinates {z1, . . . , zn} will be called flat coordinates with respect
to the Kähler metric g.

3.2. A Geometric Construction of the Flat Coordinates of a Kähler
Metric

Let us fix a point m0 in the complex Kähler manifold M. Let Tm0 be the
tangent space at the point m0 ∈ M. We will consider for the moment the
tangent space Tm0 as a real 2n dimensional vector space. Let e1 ∈ Tm0 be a
vector of length 1. We will define

en+1 := JMe1.

Let e2 be a vector perpendicular to the vectors e1 and en+1 and ‖e2‖ = 1.
We will define

(3.1) en+2 := JMe2 .

Continuing this process we obtain a basis in Tm0 consisting of vectors

{e1, . . . , en, JMe1 = en+1, . . . , JMen = e2n}

such that they satisfy (3.1) and <ei, ej >= δij .

Let γi(t) be geodesics for |t| < ε with respect to the metric g on M such
that γi(0) = m0 ∈M and

dγi(t)

dt
|t=0 = ei

for i = 1, . . . , n.
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Definition 13 We will define two dimensional distributions Di in the tan-
gent bundle T (M) in a small neighborhood U of the point m0 ∈M. Di are
defined by parallel transportation along the geodesics containing the point
m0 of the two dimensional subspaces Ei(0) ⊂ Tm0,M span by ei and JMei

for i = 1, . . . , n.

Theorem 14 Locally around the point m0 ∈M there exist one dimensional
complex manifolds Zi for each 1 ≤ i ≤ n such that

1. For each point x ∈ γi(t) ⊂ Zi the tangent space Tx,Zi
of Zi is equal

to Di(t).

2. Zi is a totally geodesic two dimensional real submanifold.

Proof: See [24]. �
At the origin of a geodesic coordinate system, the metric has the following

Taylor expansion:

gij = δij +
1

3
Rip,gjx

pxq + O(|x|3),

where Ri,p,q,j is the curvature tensor of g. (See Proposition 1.14 on page 8
of the book [33].)

3.3. Basic Definitions and Properties of the Weil-Petersson Metric

In [42] and [45] a metric on the Kuranishi space K was defined. This metric
was called the Weil-Petersson metric. We will review the basic properties
of the Weil-Petersson metric which were established in [42] and [45]. In [45]
we proved the following theorem:

Theorem 15 Let M be a CY manifold of dimension n and let ωM be a non
zero holomorphic n form on M such that

(−1)
n(n−1)

2 (
√
−1)n

∫
M

ωM ∧ ωM = 1.

Let g be a Ricci flat (CY) metric on M. Then the map:

ψ ∈ L2(M,∧mT 1,0) → ψ�ωM ∈ L2(M,Ωn−m,k)

gives an isomorphism between Hilbert spaces and preserves the Hodge de-
composition.
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Corollary 16 We can identify the tangent space Tτ at each point τ ∈ K
with H1(M,Ωn−1) by using the map ψ → ψ�ωM.

Definition 17 Let ψ1, ψ2 ∈ Tτ = H1(Mτ , T
1,0
τ ) (the space of harmonic forms

with respect to the CY metric g). We will define the Weil-Petersson metric
as follows:

〈ψ1, ψ2〉 := − (−1)
n(n−1)

2 (
√
−1)n

∫
Mτ

(ψ1�ωτ ) ∧ ψ2�ωτ =

− (−1)
n(n−1)

2 (
√
−1)n < (ψ1�ωτ ), ψ2�ωτ >

and ‖ωτ‖2 = 1.

Notice that 〈ψ, ψ〉 > 0 for ψ ∈ H1(Mτ , T
1,0
τ ). Next we are going to re-

view the main properties of the Weil-Petersson metric on the Teichmüller
space T̃ (M). The Weil-Petersson metric is a Kähler metric and it defines a
natural connection, namely the Levi-Cevita connection. We will denote the
covariant derivatives in direction ∂

∂τ i at the tangent space of a point τ ∈ K
defined by φi by �i.

3.4. Flat Coordinates and Curvature

In [45] we proved the following theorem:

Theorem 18 In the flat coordinate system

gi,j̄(τ, τ̄) = δi,j̄ +
1

6
Rij̄,kl̄ τ

k τ l + O(τ 3)

the following formulas are true for the curvature:

Rij,kl = δij δkl + δil δkj +
√
−1

∫
M

((φi ∧ φk)�ωM) ∧ ((φj ∧ φl)�ωM) =

(3.2) δij δkl + δil δkj − 〈(φi ∧ φk)�ωM, (φj ∧ φl)�ωM〉 .

3.5. Review of Some Recent Results of Z. Lu and X. Sun

The formula (3.2) for the curvature of the Weil-Petersson metric shows that
its holomorphic sectional curvature is not negative. On the other hand
the results of Griffiths and Schmidt combined with the local Torelli The-
orem showed that there exists a Hermitian metric on the moduli space of
CY manifolds with a non-positive holomorphic sectional curvature bounded
away from zero. Recently Z. Lu gave explicit formulas for the Hodge metric
and proved that it is Kähler and have a non-positive holomorphic sectional
curvature bounded away from zero. See [26]. Lu and Sun constructed a
Kähler metric with non positive bisectional curvature on the moduli space
of CY manifolds. See [28].
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4. Teichmüller Theory of CY Manifolds (See [24].)

4.1. Some Definitions

We will follow the methods developed in [24].

Definition 19 We will define the Teichmüller space T (M) of a CY mani-
fold M as follows:

T (M) := I(M)/Diff0(M),

where
I(M) := {all integrable complex structures on M}

and Diff0(M) is the group of diffeomorphisms isotopic to identity. The
action of the group Diff(M0) is defined as follows; Let φ ∈Diff0(M), then φ
acts on integrable complex structures on M by pull back, i.e. if

I ∈ C∞(
M,Hom(T (M), T (M))

)
,

then we define φ(Iτ ) = φ∗(Iτ ).

We will call a pair (M; γ1, . . . , γbn) a marked CY manifold when M is a
CY manifold and {γ1, . . . , γbn} is a basis of Hn(M,Z)/Tor.

Remark 20 Let K be the Kuranishi space. It is easy to see that if we choose
a basis of Hn(M,Z)/Tor in one of the fibres of the Kuranishi family M → K
then all the fibres will be marked, since as a C∞ manifold XK �M×K.

4.2. The Construction of the Teichmüller Space

Next we are going to construct a universal family of polarized marked CY
manifolds π : UL→ T L(N) up to the action of the group of complex analytic
automorphisms G which acts trivially on H2(N,Z) on the fibres. The con-
struction of the family π : UL→ T L(N) of marked polarized CY manifolds
follows the ideas of Piatetski-Shapiro and I. R. Shafarevich (see [36]).

Theorem 21 There exists a family of marked polarized CY manifolds

(4.1) π : UL→ T L(M),

which possesses the following properties:
A. TL(M) is a smooth manifolds of complex dimension hn−1,1.
B. The holomorphic tangent space Θτ,TL(M) at each point τ ∈ TL(M) is

naturally embedded into H1(Mτ ,ΘMτ ) and
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C. Let πC : Y → C be any complex analytic family of marked polarized CY
manifolds such that there exists a point x0 ∈ C and the fibre (πC)

−1 (x0) =Mx0

as a marked polarized CY manifold is isomorphic to some fibre of the fam-
ily (4.1). Then there exists a unique holomorphic map of families

(4.2) κ : (Y → C) → (UL → TL(M))

defined up to a biholomorphic map φ of the fibres which induces the identity
map on Hn(M, Z). The restriction of the map κ on the base C is unique.

Proof: In this paragraph we will use the following result of Y.-T. Siu.
See [10] and [37].

Theorem 22 Let X be an algebraic variety and let L be an ample line bundle
then (KX)⊗2 ⊗ (L)⊗m is very ample for any

(4.3) m ≥ 2 +

(
3n + 1

n

)
,

where n is the dimension of X.

Let us fix the following data; a complex Kähler manifold M with a canon-
ical class zero, its cohomology ring H∗(M,Z) over Z, its Chern classed and
the polarization class L ∈ H2(M,Z) which is the Chern class of an ample line
bundle. According to a Theorem of Sullivan there are only finite number of
C∞ structures on M if the real dimension of M is greater or equal to 5 with
the data mentioned above. See [39]. Suppose that m satisfy the inequal-
ity (4.3) then from the Riemann-Roch-Hirzebruch Theorem, the fact that for
very ample line bundles L we have Hk(X,L) = 0 for k > 0 and Theorem 22,
we can deduce that if we consider a CY manifold with fixed Chern classes
c2, . . . , cn, fixed cohomology ring H∗(M,Z) and polarization class L, then all
these Kähler manifolds with a canonical class zero can be embedded in a
fixed projective space CPk. Indeed the Hirzebruch-Riemann-Roch theorem
implies that for all Kähler manifolds with canonical class zero with we fixed
the cohomology ring H∗(M,Z), fixed Chern classes and the line bundle L
with a fixed ample Chern class L the Euler characteristics:

χ(M,Lm) = dimC H0(M,Lm) =

∫
M

Td(M)Ch(Lm)

is one and the same polynomial of m. Using the theory of Hilbert schemes
of Grothendieck in [12], we can conclude that there are a finite number of
components of the Hilbert scheme that parametrizes all polarized Kähler
manifolds with fixed cohomology ring H∗(M,Z), Chern classes and the po-
larization class L.
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The following result is proved in [17]:

Theorem 23 Let HL be the Hilbert scheme of non-singular CY mani-
folds embedded by the linear system |Lm| defined by the polarization class L,
then HL is a non-singular quasi-projective variety.

We know from the results in [12] there exists a family of polarized CY
manifolds:

(4.4) YL → HL,

where YL ⊂ CPN ×HL. Let H̃L be the universal covering of HL and let

(4.5) ỸL → H̃L

be the pullback family of (4.4). It is easy to see that the group SLN+1

acts on HL. So this implies that SLN+1 acts also on H̃L. We will need the
following Lemma and its Corollary:

Lemma 24 Let G be a subgroup of SLN+1 that fixes a point τ0 in H̃L, then
G is a finite group of complex analytic automorphisms of the CY manifold
Mτ0 and it is a normal subgroup of SLN+1 that acts trivially on Hn(M,Z).

Proof: According to Theorem 23, HL is a smooth quasi-projective variety.
So its universal cover H̃L is a simply connected complex manifold and we may
suppose that the family (4.5) is marked and polarized. The Definition 20
of the marked family of CY manifolds implies that if G fixes the point
τ0 ∈ H̃L, then G is a subgroup in SLN+1 that stabilizes Mτ0 in CPN . This
shows that G must be a group of holomorphic automorphisms of Nτ0 and
it must act trivially on Hn(M,Z). Theorem 12 implies that G acts trivially

on H̃L. This will imply that it is a normal subgroup in SLN+1. To show this
we need to prove that for any element g ∈ SLN+1 we have

g−1Gg = G.

Let τ = g−1(τ0). Then direct computations show that for any element h ∈ G
we have

g−1hg(τ) = τ.

The last equality shows that G is a normal subgroup. Lemma 24 is proved. �
Corollary 25 The group G1 := SLN+1(C)/G acts freely on H̃L.

We will prove that the quotients ỸL/G1 and H̃L/G1 exist as complex
manifolds and that

UL := ỸL/G1 → TL(N) := H̃L/G1

will be the family (4.1) with the properties stated in the Theorem.
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Palais proved in [32] that if an arbitrary Lie group G acts on a complex
manifold Y, then the quotient Y/G exists in the category of complex spaces,
provided that the map

(4.6) f : G × Y → Y × Y

defined as f(g,m) = (g(m),m) is proper. In order to prove that the mor-
phism defined by the action of the Lie group

G =G1 := SLk+1(C)/G

acts properly on H̃L and ỸL, we need to use the following criterion for the
properness of the map that can be found in [11], Chapter II, 7:

Criterion 26 Let f :X→Z be a morphism of two complex manifolds, let D
be the unit disk, let φ∗ : D∗→X be a holomorphic map from the punctured
disk to X and let h : D →Z be a holomorphic map such that

(4.7) f ◦ φ∗ = h.

If for such g and h there exists a holomorphic map φ;D →X coinciding with
φ∗ on D∗, then the morphism f is proper.

The existence of the Grothendieck families ỸL → H̃L defines the following
families

π1 : ÑL → G1 × H̃L ,(4.8)

π2 : R̃L → H̃L × H̃L ,(4.9)

where π−1
1 (g, τ) :=Ng(τ)×Nτ and π−1

2 (g(τ), τ) =Ng(τ)×Nτ .
Next we will apply Criterion 26 to the map f defined by (4.6). The

condition (4.7) and the definition of the map f as the action of the group G1

on H̃L, imply that for the image g(D) of the disk D we have two possibilities.

I. Let
p2 : H̃L × H̃L → H̃L

be the projection on the second factor. The first one is that the second
projection p2 (f(φ∗(D∗))) is a punctured disk in H̃L. Since p2 (f(φ∗(D∗)))
has complex dimension one and the map f is defined as

f(g, τ) = (g(τ), τ),

we can conclude that the first projection p1 (φ∗(D∗)) ⊂ G1 is a point in
g0 ∈ G1. Then the condition (4.7) implies directly the existence of φ which
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is an extension of the map φ∗ from the punctured disk to the disk. Indeed
this follows directly since the second projection restricted to the second
summand is the identity map.

II. The second possibility is that

(4.10) p2 (f(φ∗(D∗))) = τ0

is a point. This means

(4.11) φ∗(D∗) = D∗
1 × τ0 ⊂ H̃L × H̃L

where D∗
1 is a punctured disk in the Lie group G1. This means that p1(h(D∗))

will be contained in the orbit G1 of the point τ0 in H̃L. So combining (4.11)
with the existence of the families (4.8) and (4.9) one gets that the pull-
backs by

(4.12) h : D →H̃L × H̃L = Z

and

(4.13) φ∗ : D∗ → G1 × H̃L = X

define families V → D and W ∗ → D∗ of marked and polarized CY manifolds
over the disk and the punctured disk respectively. (4.10) implies that the
family of polarized CY manifolds W ∗ → D∗ is the trivial family, i.e.

W ∗ � D∗ × M.

The condition (4.7) implies that the holomorphic map f induces a non trivial
map between the families f ∗ : W ∗ → V |D∗ = V ∗ which on each fibre is an
isomorphism. So the family V ∗ → D∗ will be trivial too. Since M is a CY
manifold and thus is not ruled then Theorem 2 of [29] allows us to conclude
that the map f can be prolonged to a map f : W → V of the trivial
families such that its restriction to each fibre is an isomorphisms preserving
the polarization. So the restriction of f over the zero fibre

(4.14) f0 : M → M

is an isomorphism which preserve the polarization. Now can conclude that φ∗

can be prolonged to a holomorphic map

φ : D → G1 × H̃L.

So the action of G1 on H̃L is proper. The quotient H̃L/G1 exists and it is a
smooth algebraic variety.
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The situation is analogous to the morphism

ỸL → UL = ỸL/G1.

Thus I proved that the quotients ỸL/G1 and H̃L/G1 exist as complex spaces.
It is obvious that they define a family

UL → TL(N)

of marked polarized CY manifolds. According to Corollary 25, G1 acts on YL

and HL without fixed points. Therefore,

(4.15) ỸL/G1 = UL and H̃L/G1 = TL(N)

are manifolds. Thus we constructed the family (4.1) . We also proved that
the base of the family (4.1) TL(N) is smooth. Next we will prove that the
complex dimension of TL(N) is hn−1,1 and that the tangent space at each
point τ ∈ TL(N) is embedded in H1(Mτ ,ΘMτ ).

We shall prove that the family (4.1) is effectively parametrized. Accord-
ing to Kodaira this means that for any point s ∈ T (M) the mapping

Ts,TL(M) → H1(Ms,ΘMs)

is an isomorphism. From the construction of TL(M) as defined in (4.15) we
can conclude that

Ts,TL(M) � H0(M,N
CP

N/M)/sl(N + 1)

where sl(N +1) is the Lie algebra of the group SL(N +1). In [17] we proved
that

H0(M,N
CP

N/M)/sl(N + 1) � H1(M,ΘM).

Theorem 23 is proved. �

Corollary 27 Let Y →X be any family of marked CY manifolds, then there
exists a unique holomorphic map

φ : X → TL(M)

up to a biholomorphic map ψ of M which induces the identity map on
Hn(M, Z).

From now on we will denote by T (M) the irreducible component of the
Teichmüller space that contains our fixed CY manifold M.
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4.3. Global Properties of the Teichmüller Space

We will conjecture that

Conjecture 28 There exists a normal subgroup Γ0 in the mapping class
group Γ(M) of a CY manifold such that T (M)/Γ0 can be realized as an open
and everywhere dense subset in a domain of holomorphy D(M) embedded in
H1(M,T 1,0

M ). The complement of T (M)/Γ0 in D(M) is a countable union of
closed analytic subvarieties.

Conjecture 28 can be considered as the analogue of the epimorphism The-
orem for polarized algebraic K3 surfaces. In case of marked polarized K3
surfaces the Teichmüller space is an open and everywhere dense subset in
the symmetric domain SO0(2, 19)/SO(2) × SO(19). The complement to it
consists of countable union of divisors and the points of the complement cor-
respond to K3 surfaces with double rational points. In case of CY manifolds
the points of the complement to T (M)/Γ0 in D(M) correspond to singular
manifolds such that after we resolved the singularities on them we obtain a
non singular manifold with a holomorphic n form which has zeros.

It seems possible that Conjecture 28 implies the analogue of the global
Torelli Theorem for the Teichmüller space. Global Torelli Theorem fails for
the moduli space of polarized CY manifolds. Balàzs Szendroi constructed
counter examples to the Global Torelli Theorem for the case when one con-
siders the period map from moduli space of polarized CY manifolds to period
domain. See [40] and [41].

5. Moduli of CY Manifolds (See [24])

5.1. Application of a Theorem of Selberg to the Moduli of CY
Manifolds

Definition 29 We will define the mapping class group Γ(M) of any com-
pact C∞ manifold M as follows: Γ = Diff+(M)/Diff0(M), where Diff+(M)
is the group of diffeomorphisms of M, preserving the orientation of M,
and Diff0(M) is the group of diffeomorphisms isotopic to identity.

Definition 30 Let L ∈ H2(M, Z) be the imaginary part of a Kähler met-
ric. Let

ΓL := {φ ∈ ΓL|φ(L) = L}.

It is a well known fact that the moduli space of polarized algebraic man-
ifolds ML(M) = T (M)/Γ(M).
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Theorem 31 There exists a subgroup of finite index Γ of Γ(M) such that Γ
acts freely on T (M) and Γ\T (M)= M(M) is a non-singular quasi-projective
variety.

Proof of Theorem 31: In the case of odd dimensional CY manifolds there
is a homomorphism induced by the action of the diffeomorphism group on
the middle homology with coefficients in Z :

φ : Γ(M) → Sp(2bn, Z).

In the case of even dimensional CY, there is a homomorphism

φ : Γ(M) → SO(2p, q; Z) .

SO(2p, q; Z) is the group of the automorphisms of the lattice Hn(M,Z)/Tor.
An important theorem due to Sullivan, proved in [39], states:

Theorem 32 Suppose that the real dimension of a C∞ manifold M is bigger
or equal to 5, then the image φ(Γ(M)) of the mapping class group is an
arithmetic group.

This result of Sullivan implies that Γ(M) is an arithmetic group and
the image of Γ(M) has a finite index in the groups Sp(2bn, Z), SO(2p, q; Z)
and ker(φ) is a finite group. A theorem of Borel implies that we can al-
ways find a subgroup of finite index Γ in Γ(M) such that Γ acts freely on
Sp(2bn, R)/U(bn) or on SO0(2p, q; R)/SO(2p)×SO(q). We will prove that Γ
acts without fixed points on T (M).

Let K be the Kuranishi space of the deformations of M. Suppose that
there exists an element g ∈ Γ, such that g(τ) = τ for some τ ∈ K ⊂ T (M).

From the local Torelli theorem we deduce that we may assume that the
Kuranishi space K is embedded in G, the classifying space of the Hodge struc-
tures of weight n on Hn(M,Z) ⊗ C. Griffiths proved in [14] that G ≈G/K
where G in the odd dimensional case is Sp(2bn, R) and SO0(2p, q; R) in the
even dimensional and K is a compact subgroup of G.

Let K0 be the maximal compact subgroup of G. So we have a natural C∞

fibration
K0/K ⊂ G/K → G/K0.

Griffith’s transversality theorem implies that K is transversal to the fibres
K0/K of the fibration G/K → G/K0.

The first part of our theorem follows from the fact that K is transversal
to the fibres K0/K of the fibration G/K → G/K0 and the following obser-
vation; if g ∈ Γ fixes a point τ ∈ G/K0, then g ∈ K0∩Γ.1 On the other hand

1We suppose that K or K0 acts on the right on G and Γ acts on the left on G.
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side it is easy to see that the local Torelli theorem implies that the action
of Γ on K is induced from the action Γ on G/K by left multiplications. So
we can conclude that the action of Γ preserves the fibration

K0/K ⊂ G/K → G/K0.

The first part of our theorem follows directly from here and the fact that Γ
acts without fixed points on G/K0.

The second part of the theorem, namely that the space Γ\T (M) is a
quasi projective follows directly from the fact that Γ\T (M)→ Γ(M)\T (M)
is a finite map and that Γ(M)\T (M) is a quasi projective variety according
to [50]. Our theorem is proved. �

5.2. Construction of the Moduli Space of CY Manifolds

According to Viehweg, the coarse moduli space of polarized CY manifolds

ML(M) = HL/SLN+1(C)

is a quasi-projective variety. See [50]. On the other hand it is a standard
that the coarse moduli space is just the following quotient:

ML(M) = TL(M)/ΓL.

Theorem 33 There exists a finite cover ML(M) of ML(M) = TL(M)/ΓL

with the following properties:
A. ML(M) is a smooth algebraic variety.
B. Over ML(M) there exists a family

(5.1) NL → ML(M)

of polarized CY manifolds with the following property: Let

(5.2) πC : Y → C

be any complex analytic family of polarized CY manifolds with a class of
polarization L such that at least one of its fibres of the family (5.2) is iso-
morphic as a polarized variety to a fibre of the family (5.1). Then there
exists a unique complex analytic map

ρ : C → ML(M).

which induces a holomorphic map between the families (5.2) and (5.1) . The
map between the families is defined uniquely up to a biholomorphic map φ
of M which induces the identity map on Hn(M, Z).
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Proof: Let

(5.3) ψ : ΓL → Hn(M,Z)

be the natural representation of the group ΓL. This results of Sullivan imply
that the image ψ(ΓL) is an arithmetic group. According to Theorem 31,
there exists a subgroup Γ

′′
L of finite index in ψ(ΓL) such that ψ(ΓL) acts

freely on the Teichmüller space TL(M). From here we deduce that the space
Γ

′′
L\TL(M) is smooth. Let us define Γ

′
L := ψ−1(Γ

′′
L). Clearly Γ

′
L is a subgroup

of finite index in ΓL. The local Torelli theorem implies that TL(M)/Γ
′
L will

be a non-singular variety. From the definition of ψ given by (5.3) it follows
that ker ψ = G acts trivially on Hn(M,Z). The local Torelli Theorem implies
that G acts trivially on the Teichmüller space TL(M). The existence and the
properties of the family

NL → ML(M)

follows from the existence and the properties of the family ZL → TL(M)
proved in Theorem 27. �

6. The Theory of Determinant Line Bundles

6.1. Geometric Data

In order to construct the determinant line bundle, we need the following
data:

1. A smooth fibration of manifolds π : X → M(M). In our case it will
be the smooth fibration of the family of CY manifolds over the moduli
space as defined in Theorem 31. Let n = dimCM.

2. A metric along the fibres, that is, a metric g(τ) on the relative tangent
bundle T (X /M(M)). In this paper the metric will be the families of
CY metrics g(τ) such that the class of cohomology [Im(g(τ))] = L is
fixed.

From this data we will construct the determinant line bundle L over the
moduli space of CY manifolds M(M). We will consider the relative ∂X/M(M)

complex:

0 −→ ker ∂X/M(M) −→ C∞(X )
∂0,X/M(M)−→ Ω0,1

X/M(M)

∂1,X/M(M)−→

∂1,X/M(M)−→ Ω0,n−1
X/M(M)

∂n−1,X/M(M)−→ Ω0,n
X/M(M) −→ 0.
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For each τ ∈ M(M) and k, we will define D to be:

Dk := ∂k,X/M(M) +
(
∂k,X/M(M)

)∗
and

Dk,τ := Dk |Mτ = ∂k,τ +
(
∂k,τ

)∗
.

Definition 34 We will call the above complex the relative Dolbault complex.

Let us define
Hk

τ := L2(Mτ ,Ω
0,k
τ ).

Furthermore, as τ varies over M(M), the spaces
(
Hk

τ

)
fit together to form

continuous Hilbert bundles Hk over M(M).2 Thus we can view ∂k,X/M(M)

as bundle maps:
∂k,X/M(M) : Hk → Hk+1.

The Hilbert bundles Hk carry L2 metrics by definition.
Now we are ready to construct the Determinant line bundle L of the

operator ∂X/M(M). We will recall some basic consequences of the ellipticity
of Dτ . Each fibre Hk

τ of the Hilbert bundles Hk decomposes into direct
sums of eigen spaces of non-negative Laplacians DkD

∗
k and D∗

kDk. The spec-
trums of these operators are discrete, and the nonzero eigen values {λk,i} of
D∗

kDk and DkD
∗
k agree and Dk defines a canonical isomorphism between the

corresponding eigen spaces.

Definition 35 1. Let

Ua : {τ ∈ M(M)|a /∈ Spec(DkD
∗
k)

for 0 ≤ k ≤ n and any a > 0}. (Ua are open sets in M(M) and they form
an open covering of M(M) since the spectrum of D∗

τDτ is discrete.)
2. Let the fibres of Hk

a be the vector subspaces Hk
τ,a in Hk

τ spanned by
eigen vectors with eigen values less than a for τ ∈ Ua. Then we can define
the complex:

0 −→ Γ(Ua,OUa) −→ H0
a

∂0,X/M(M)−→ . . .

. . . −→ Hn−1
a

∂n−1,X/M(M)−→ Hn
a −→ ker(Dn−1 ◦ D∗

n) −→ 0.

If b > a we set Hk
a,b := Hk

b/Hk
a. The spaces Hk

a form smooth finite dimen-
sional C∞ bundles over an open set Ua ⊂ M(M). For the proof of this fact
see [1].

2These bundles are not smooth since the composition L2 × C∞ → L2 is not a differ-
entiable map.
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6.2. Construction of the Generating Sections det(Da) over Ua

Definition 36 Let

ωk
1 , . . . , ω

k
mk

, ψk
1 , . . . , ψ

k
Nk

, φk
1, . . . , φ

k
Mk

be an orthonormal basis in the trivial vector bundle Hk
a over Ua, where

Dkω
k
i = 0, ∂

∗
k( ∂kψ

k
j ) = λk

j ψ
k
j , ∂k( ∂

∗
kφ

k
j ) = λk

j φ
k
j , φ

k
j ∈ Im ∂k−1,X/M(M)

and
ψk

j ∈ Im( ∂
∗
k,X/M(M))

for 1≤ i ≤ k and 0 < λj < a for 1≤ j ≤ N . Let

det( ∂k,a) =
(
ωk

1 ∧ · · · ∧ ωk
mk

∧ ( ∂k−1,X/M(M)ψ
k−1
1 )

∧ · · · ∧ ( ∂k−1,X/M(M)ψ
k−1
Nk

) ∧ φk
1 ∧ · · · ∧ φk

Mk

)(−1)k

.

We will define the line bundle L restricted on Ua as follows:

La := L|Ua = ⊗n
k=0

(∧dimHk
a Hk

a

)(−1)k

.

Definition 37 The generator det( ∂a) of La := L|Ua is defined as follows:

det( ∂a) := ⊗
k

det( ∂k,a).

We will define how we patch together La and Lb over Ua ∩U b.3 On that
intersection we have:

Lb = La ⊗ La,b,

where
La,b := ⊗k(detHk

a,b)
(−1)k

on Ua∩U b. We can identify La, b over Ua∩U b with the line bundle spanned
by the section

det(∂a,b) = ⊗n
k=0 det(∂k,a,b)

(−1)k

,

where

det(∂k,a,b) :=((∂k−1,X/M(M)ψ
k−1
1 )

∧ · · · ∧ (∂k−1,X/M(M)ψ
k−1
Nk

) ∧ φk
1 ∧ · · · ∧ φk

Mk
),

φk
j ∈ Im ∂k−1,X/M(M), ψk

j ∈ Im(∂
∗
0,X/M(M)), ∆kφ

k
j = λk

j φ
k
j ,∆k(∂(ψk−1

i )) =

λk
i (∂(ψk−1

i )) and a < λk
i < b.

3We may suppose that b > a.
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Remark 38 We can view det(∂a,b) as a section of the line bundle La,b over
Ua ∩ U b. It defines canonical smooth isomorphisms over Ua ∩ U b :

La → La ⊗ La,b = Lb(s → s ⊗ det(∂a,b)

for all 0 < a < b.

We define the determinant line bundle L by patching the trivial line bun-
dles La over Ua by using the canonical isomorphism defined in Remark 38.

6.3. The Description of the Quillen Metric on L

We now proceed to describe the Quillen metric on L. Let us fix a > 0. Then
the subbundles Hk

a of the Hilbert bundles Hk on Ua inherit metrics from Hk.
According to standard facts from linear algebra, metrics are induced on
determinants, duals, and tensor products. So the La inherits a natural
metric. We will denote by ga the L2 norm of the section det(∂a). Clearly,

ga =
n∏

k=0

(
λk

1 . . . λk
nk

)(−1)k

,

and λk
i are all nonzero eigen values of the operators ∂

∗
k ∂k−1 which are less

than a.
If b > a, then under the isomorphism defined in Remark 38, we have two

metrics on Lb and their ratio is a real number equal to the L2 norm of the

section
∥∥det(∂a,b)

∥∥2
. The definition of the section det(∂a,b) implies that we

have the following formula:

∥∥det(∂a,b)
∥∥2

=

n∏
k=0

∏
i=1

∥∥φk
i

∥∥2
∏
j=1

∥∥∂ψk
j

∥∥2(−1)k

=

=
∏
i=1

∥∥φk
i

∥∥2
∏
j=1

〈
∂
∗
k ∂k−1ψ

k
j , ψ

k
j

〉(−1)k

=
∏(

λk
i

)(−1)k

where λk
i are all the non-zero eigen values of the operators ∂

∗
k ∂k−1 such that

a < λk
i < b. In other words, on Ua ∩ U b

gb = ga
∏

a<λk
i <b

(
λk

i

)(−1)k

.

To correct this discrepancy, we define

g a = ga det(∂
∗
∂) |λ>a ,
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where

det(∂
∗
∂) |λ>a =

n∏
k=1

det(∂
∗
k ∂k−1 |λ>a )(−1)k

,

det(∂
∗
k ∂k−1 |λ>a ) = − exp(− (ζa

k )
′
(0)),

and

ζa
k (s) =

∞∑
λi>a

(
λk

i

)s
.

The crucial property of this regularization is that it behaves properly with
respect to the finite number of eigen values, i.e.

det(∂
∗
k ∂k−1 |λ>b ) = det(∂

∗
k ∂k−1 |λ>a )

N∏
a<i<b

λk
i

on the intersection Ua ∩U b. From the last remark we deduce that ga and gb

agree on Ua ∩ U b. Thus ga and gb patch together to a Hermitian metric gL

on L. The metric gL will be called the Quillen metric on L.

Definition 39 We will define the holomorphic Ray Singer analytic torsion
I(M) for the odd dimensional CY manifold M as follows:

I(M) :=
1

2
log

(
n∏

q=1

(det(�′
q)

(−1)q

)
.

See [34].

Remark 40 It is easy to see that if M is a CY manifold and dimCM=2n,
then logI(M)=0. We know from the results in [47] that for odd dimensional
CY manifolds exp(I(M)) > 0. So from now on we will consider only odd
dimensional CY manifolds.

We will need the following result from [6] on p. 55:

Theorem 41 The Quillen norm of the C∞ section det(∂a) on Ua of L is
equal to exp(−I(M)).

Proof: It follows from Definition 36 of the section det(∂) |Ua of L and the
definition of the Quillen metric that at each point τ ∈ M(M) the following
formula is true: ∥∥det(∂)τ |Ua

∥∥2

Q
= exp(I(Mτ ))|Ua ,

where
∥∥det(∂)τ |Ua

∥∥2

Q
means the Quillen norm of the section det(∂)τ |Ua .

Theorem 41 is proved. �
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7. Construction of a C∞ Non-Vanishing Section of the
Determinant Line Bundle L for Odd Dimensional CY
Manifolds

7.1. Some Preliminary Results

Let us denote by

π∗
(
ωX/M(M)

)
:= π∗

(
Ωn,0

X/M(M)

)
the relative dualizing sheaf. The local sections of π∗

(
ωX/M(M)

)
are families of

holomorphic n-forms ωτ on Mτ . Then on π∗
(
ωX/M(M)

)
we have a natural L2

metric defined as follows:

(7.1) ‖ωτ‖2 := (−1)
n(n−1)

2

(√
−1

)n
∫

M

ωτ ∧ ωτ .

Theorem 42 If the dimension of the CY manifold is even, then L is iso-
morphic to the dual of the line bundle π∗

(
ωX/M(M)

)
. If the dimension of the

CY manifold is odd, then L is isomorphic to the line bundle π∗
(
ωX/M(M)

)
over M(M).

Proof: The definition of CY manifold states that:

(7.2) dimC Hj(M,OM) =

{
1 j = 0 or j = n,
0 for j �= 0 or n.

Formula (7.2) and the definition of CY manifolds imply that

(7.3) Rqπ∗OM =

{ (
π∗ωX/M(M)

)∗
for j = n,

OM(M) for j �= n.

From the definition of L it follows that

L �
n∏

q=0

(−1)q det (Rqπ∗OM) .

Combining (7.2) and (7.3) , we directly deduce Theorem 42. �

Corollary 43 Let M be a CY manifold of odd dimension n = 2m+1. Then
the index of the operator ∂ on the complex defined in Definition 34 is zero.
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7.2. Holomorphic Structure on the Determinant line Bundle L

In [6] a canonical smooth isomorphism is constructed between the holo-
morphic determinant of the Grothendieck-Knudsen-Mumford and Quillen
determinant bundle. More precisely, the following theorem is proved:

Theorem 44 Let
π : X → M(M)

be a holomorphic fibration with smooth fibres. Suppose X admits a closed
(1,1) form ψ which restricts to a Kähler metric on each fibre. Let E → X
be a holomorphic Hermitian bundle with its Hermitian connection. Then
the determinant line bundle L → M(M) of the relative ∂ complex (coupled
to E) admits a holomorphic structure. The canonical connection (constructed
in [5]) on L is the Hermitian connection for the Quillen metric. Finally, if
the index of ∂ is zero, the section det( ∂E) of L is holomorphic.

From now on we will consider the family of CY manifolds X → M(M) as
defined in Theorem 33 together with the trivial line bundle E over M(M).
It is easy to see that the family X → M(M) fulfills the conditions of Theo-
rem 44.

7.3. Construction of a C∞ Section of the Determinant Line Bundle
L with Quillen Norm Equal to Ray-Singer Analytic Torsion

Definition 45 Let

H+ = ⊕
k
L2

(
M,Ω0,2k

M

)
, H− = ⊕

k
L2

(
M,Ω0,2k+1

M

)
and

D = ∂X/M(M) + ∂
∗
X/M(M).

Theorem 46 Let M be a CY manifold of odd dimension, then as a C∞

bundle the determinant line bundle L is trivial and, moreover, there exists
a global C∞ section det(∂) of

L → M(M)

which has no zeroes on M(M) and whose Quillen norm is the exponential
of the Ray Singer Analytic Torsion.
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Proof: The proof of Theorem 46 is based on the following three Theorems:

Theorem 47 The Chern form of the relative dualizing sheaf π∗ωX/M(M) is
given locally by the formula

c1(π∗ωX/M(M)) = ddc (〈ωτ , ωτ 〉) = − Im (Weil-Petersson metric) ,

where ωτ is a holomorphic family of holomorphic n forms. (See [45].)

Theorem 48 The following formula holds true locally on the moduli space
M(M):

ddc (log(det(�0))) = Im (Weil-Petersson metric) .

(See [47]).

Theorem 49 (i) I(M)=− log det(�0). (ii) Around each point τ ∈ Uτ ⊂
M(M) we have

exp(I(M))|Uτ =< ω, ω > |φ|2,
where φ is a holomorphic function on U . And (iii) the positive function
det(�0) is bounded by a constant C if the dimension of M is three, i.e.

det(�0) < C

(See [47]). We will prove the following Lemma:

Lemma 50 The first Chern class c1(L) of the C∞ determinant line bundle
L is equal to zero in H2(M(M), Z).

Proof: Theorem 42 implies that when the CY manifold M has an odd
dimension, then the determinant line bundle L is isomorphic to the relative
dualizing sheaf π∗(ωX/M(M)). So we need to prove that

c1(π∗(ωX/M(M))) = 0.

The proof of Lemma 50 is based on the following observation: Notice that
the definition of the exponential of the Ray Singer analytic torsion implies
that exp(I(Mτ )) is a positive function different from a constant on M(M).
From Theorem 49 we know that we have the following local expression of
exp(I(Mτ )) :

exp(I(Mτ ))|U = ‖ωτ‖2 |φ|2

where ωτ is a holomorphic family of holomorphic n-forms on Mτ , φ is a
holomorphic function on U and ‖ωτ‖2 is defined by (7.1). Theorems 48
and 47 imply that

2
√
−1

2

(
∂∂(I(Mτ ))

)
= c1(L) = c1(π∗(ωX/M(M))).
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Since
∂∂(I(Mτ )) = d

(
∂(I(Mτ ))

)
,

we deduce that

2
√
−1

2
∂∂(I(Mτ )) = c1(L) =

2
√
−1

2
d

(
∂(I(Mτ ))

)
= dα.

So c1(L) = 0 in H2(M(M), Z). This proves Lemma 50. �

Corollary 51 The determinant line bundle L is trivial as a C∞ bundle.

So the first part of Theorem 46 is proved. The proof of the second part
of Theorem 46 is based on the following Lemma:

Lemma 52 There exists a nonvanishing global section det(∂) of the deter-
minant line bundle L such that the Quillen norm of det(∂) is exp(I(M)).

Proof: From Corollary 51 we can conclude the existence of a global C∞

section ωτ of the line bundle

L → M(M)

which has no zeroes on M(M) and which for each τ ∈ M(M) has L2 norm 1,
i.e. we have ‖ωτ‖2 = 1. Since Mτ is an odd dimensional CY manifold, we
know from Theorem 42 that L is isomorphic to π∗(ωX/M(M)). The nonvan-
ishing section ωτ of the determinant line bundle L can be interpreted as a
family of (2n+1,0) forms ωτ which generate the kernel of

D∗ : H− → H+.

The kernel of D : H+ → H− is generated by the constant 1. This follows
directly from the definition of the CY manifold.

From Definition 36 of the section det(∂a) on the open set Ua in M(M),
as well as the existence of a C∞ family of antiholomorphic forms ωτ with L2

norm 1, which trivializes R2n+1π∗(OX ) over M(M), and the definition of
the transition functions {σa,b} of L with respect to the covering {Ua}, we
deduce that for b > a we have on Ua ∩ Ub

det(∂b) = det(∂b) (σa,b) .

This fact and Theorem 41 imply that we have constructed a global C∞

section det(∂) of L whose Quillen norm is exp(−I(M)). So the determinant
line bundle L is a trivial C∞ line bundle. Theorem 46 is proved. �

Corollary 53 The determinant line bundle as a holomorphic bundle is flat
over M(M).
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8. The Discriminant Locus and the analogue of the
Dedekind Eta Function for odd-dimensional Calabi-
Yau Manifolds

8.1. Metrics on Vector Bundles with Logarithmic Growth

In Theorem 31 we constructed the moduli space M(M) of CY manifolds.
From the results in [50] and Theorem 31 we know that M(M) is a quasi-
projective non-singular variety. Using Hironaka’s resolution theorem, we
may suppose that

M(M) ⊂ M (M),

where
M (M) �M (M) = D

is a divisor with normal crossings. We need now to show how we will extend
the determinant line bundle L to a line bundle L to M (M). For this reason
we are going to recall the following definitions and results from [30]. We will
look at policylinders

DN ⊂ M (M),

where D is the unit disk,
N = dimM (M)

such that

DN ∩ D∞ = {union of hyperplanes; τ1 = 0, . . . , τk = 0}.

Hence,
DN ∩M(M) = (D∗)k × DN−k.

On D∗ we have the Poincaré metric

ds2 =
|dz|2

|z|2 (log |z|)2

and on D we have the simple metric |dz|2 , giving us a product metric on
(D∗)k×DN−k which we call ω(P ).

A complex-valued C∞ p-form η on M(M) is said to have Poincaré growth
on M (M) �M (M) if there is a set of if policylinders

Uα ⊂ M (M)

covering
M (M) �M (M)
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such that in each Uα an estimate of the following type holds:

|η(τ1, . . . , τN | ≤ Cαω
(P )
Uα

(τ1, τ1) . . . Cαω
(P )
Uα

(τN , τN ).

This property is independent of the covering Uα of M (M) � M (M) but
depends on the compactification M (M). If η1 and η2 both have Poincaré
growth on

M (M) �M (M) ,

then so does η1 ∧ η2. The basic property of the Poincaré growth is the
following:

Theorem 54 A p-form η with a Poincaré growth on M (M)�M (M) = D

has the property that for every C∞ (r-p) form ψ on M (M) we have:∫
M(M)�M(M)

|η ∧ ψ| < ∞.

Hence, η defines a current [η] on M (M).

Proof: For the proof see [30]. �
A complex valued C∞ p-form η on M (M) is good on M if both η and dη

have Poincaré growth. Let E be a vector bundle on M(M) with a Hermitian
metric h. We will call h a good metric on M (M) if the following holds:

1. If for all x∈ M (M)�M (M) there exist sections e1, . . . , em of E which
form a basis of E

∣∣
Dr�(Dr∩D∞) .

2. In a neighborhood D r of x in which M (M) �M (M) is given by

z1 × · · · × zk = 0.

3. The metric hij =h(ei, ej) has the following properties:

(a)
∣∣hij

∣∣ ≤ C
( k∑

i=1

log |zi|
)2m

, (det (h))−1 ≤ C
( k∑

i=1

log
∣∣∣zi

∣∣∣)2m

for some C > 0, m ≥ 0. (b) The 1-forms ((dh) h−1)ij are good forms

on M (M) ∩ DN .

It is easy to prove that there exists a unique extension E of E on M (M), i.e.
E is defined locally as holomorphic sections of E which have a finite norm
in h.

Theorem 55 Let (E,h) be a vector bundle with a good metric on M (M),
then the Chern classes ck(E,h) are good forms on M (M) and the currents
[ck(E , h)] represent the cohomology classes

ck(E , h) ∈ H2k(M (M), Z).

Proof: For the proof see [30]. �
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8.2. Applications of Mumford’s Results to the Moduli of CY

We are going to prove the following result:

Theorem 56 Let

π : X →M (M)

be the flat family of non-singular CY manifolds. Let π∗(Ω
n,0
X/M(M)) be equipped

with the metric h defined in (7 .1 ). Then h is a good metric.

Proof: Let τ0 ∈ D = M (M) � M (M). Let D be a one dimensional disk
in M (M) which intersects D in τ0 and

D∗ = D � τ0 ⊂ M (M) .

Over D∗ :=D�τ0 we have a family MD∗ →D∗ of CY manifolds. We will
assume that D is the unit disk and τ0 is the origin of the disk. We know from
the theory of Hodge structures that if {γ1, . . . , γbn} is a basis of Hn(M,Z)/Tor,
then the functions: (

. . . ,

∫
γi

ωτ , . . .

)
for 0 < |τ | < 1 and 0 < arg(τ) < 2π are solutions of a differential equation
with regular singularities. From the fact that the solutions of any differential
equation with regular singularities has a logarithmic growth and

h(ωτ , ωτ ) =

(
. . . ,

∫
γi

ωτ , . . .

)
(< γi, γj >)

(
. . . ,

∫
γi

ωτ , . . .

)t

,

we deduce that

h(ωτ , ωτ ) ≤ C
( k∑

i=1

log |τi|
)2m

.

On the other hand it is not difficult to see that we have the following ex-
pression for(

. . . ,

∫
γi

ωτ , . . .

)
=

(
. . . ,

n∑
k=0,αk>0

ak,αk
zαk

(
log

1

z

)k

, . . .

)

From here we conclude that the form ∂ (log(h)) also has a logarithmic
growth. Our theorem is proved. �
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8.3. Construction of the Analogue of the Dedekind η Function for
Odd Dimensional CY manifolds

In this paragraph we will construct a holomorphic section ηN of some power
of the dual of the determinant line bundle for any odd dimensional CY

manifold. I do not know if the Quillen norm
∥∥ηN

∥∥2

Q
will be det(∆0)

2N in

case the dimension of M is greater than 3.
Kazhdan proved that for any arithmetic groups G of rank ≥ 2 the abelian

group G/[G,G] is finite. See [9]. According to Sullivan, the subgroup Γ of
the mapping class group Γ(M) constructed in Section 3.2 is an arithmetic
group of rank ≥ 2

Theorem 57 Let M be an odd dimensional CY manifold. Let N = #Γ/[Γ,Γ].
Then L⊗N is a trivial complex analytic line bundle over M(M).

Proof: According to Theorem 42

L � R0π∗(Ω
2n+1,0
X/M(M)),

where dimC M = 2n+1. Therefore, L is a subbundle of the flat vector bundle
R2n+1π∗C, where C is the locally constant sheaf on X , and

π : X → M(M)

is the versal family of CY manifolds over M(M). We know from Theorem 31
that

M(M) = T (M)/Γ,

where T (M) is the Teichmüller space and Γ is the subgroup of of the mapping
class group Γ(M) constructed in Section 3.2. According to [39], Γ is an
arithmetic group.

If we lift the flat bundle Rnπ∗C on T (M), then R2n+1π∗C will be the
trivial bundle, i.e.

R2n+1π∗C �T (M) × H2n+1(M0, C).

Let us denote by
σ : T (M) → M(M) = T (M)/Γ

the natural projection map. Clearly σ∗(L) will be a flat complex analytic
subbundle of the trivial bundle T (M) × H2n+1(M0, C).

Proposition 58 Let N be a quasi-projective variety, E � Cn×N a trivial
bundle and L a flat line bundle over N such that the dual L∗ of L satisfies

L∗⊂ E ,

then L is also trivial.

Proof : The proof of Proposition 58 is obvious. �
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Proposition 58 implies we that σ∗(L) will be a trivial line bundle. So we
get that

L � C×T (M)/Γ,

where Γ acts in a natural way on the Teichmüller space and it acts by a
character

χ ∈ Hom(Γ, C∗
1) � Hom(Γ/[Γ,Γ], C∗

1)

of the group Γ on the fibre C. A Theorem of Kazhdan states that Γ/[Γ,Γ]
is a finite group if the rank of Γ is bigger or equal to 2. For CY manifolds Γ
is an arithmetic group of rank ≥ 2 according to [39]. From here we deduce
that LN will be a trivial bundle on M(M), where

(8.1) N = #Γ/[Γ,Γ].

Theorem 57 is proved. �

Definition 59 We will define D∞ as follows: Let

D := M(M) �M(M)

be the discriminant locus, then a point τ∞ is in D∞ if around τ∞ we can
find a disk D such that

τ∞ ∈ D,D � τ∞ ⊂ M(M )

and over D � τ∞ the family of polarized CY manifolds has a monodromy
group of infinite order in Hn(Mτ , Q).

Theorem 60 Let M be an odd dimensional CY and dimCM ≥ 3. Let N be
defined as in (8.1). There exists a holomorphic section ηN of (L∗)⊗N such

that it can be prolonged to a holomorphic section ηN of the line bundle
(
L∗

)⊗N

such that for each point m ∈ M(M ), ηN(m) �= 0, i.e. the support of the zero
set of ηN is contained in the support of the divisor D or it is equal to it.

Proof: Let D =
⋃

i Di be the decomposition of the divisor D on irreducible

components. Theorem 57 implies that the line bundle (L∗)⊗N is holomorphic
trivial bundle on M(M). N is defined as in (8.1) . So we can conclude that

(8.2)
(
L∗

)⊗N
� OM(M)

(∑
j

kjDj

)
,

where Dj are the components of D. We will prove that the multiplicities
ki are non negative integers. Indeed we know from Theorem 56 that the
metric defined by formula (7.1) on the line bundle L is a good one in the
sense of Mumford.
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So the Chern form c1(L∗,h) of the good metric h defined by (7.1) is a
positive current on M(M). The Poincaré dual of the cohomology of the
current

[c1(L∗, h)] ∈ H2(M(M), Z)

is

(8.3) P ([c1(L∗, h)]) =
∑

j

kj [Dj ] ∈ H2n−2(M(M), Z)

where the coefficients ki are defined as in (8.2). The positivity of the current
c1(L∗, h) implies that its Poincaré dual current∑

j

kj [Dj ]

is positive. From here we can conclude that the coefficients ki are positive
integers. Indeed, let [ωDi

] ∈ H2n−2(M,Z) be such classes of cohomology that:

(8.4)

∫
Dj

[ωDi
] = δij .

Since the current
∑

j ki[Dj ] is positive, (8.4) implies

(8.5)
〈 ∑

j

ki[Dj ], [ωDi
]
〉

= ki ≥ 0.

Theorem 60 follows from (8.5). �

Corollary 61 The zero set
(
ηN

)
0
of the section ηN of the line bundle

(
L∗

)⊗N

is a nonzero divisor such that

(8.6) Supp (D∞) ⊆ Supp
((

ηN
)
0

)
⊆ Supp(D).

Proof: According to Theorem 56 the L2 metric h on the relative dual-
izing sheaf R0π∗Ω

n,0
X/M(M) had logarithmic singularities. So from here we

can conclude that the section ηN constructed in Theorem 60 had a finite
L2 norm, i.e.

(8.7)
∥∥ ηN

∥∥2 ≤ c0.

Let Uτ∞ will be an open set containing the point τ∞ ∈ D∞. From Defini-
tion 59 it follows that the monodromy around the point τ∞ ∈ D∞ will be of
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infinite order. From here we can conclude that the L2 metric on the relative
dualizing sheaf has a logarithmic growth and so

(8.8) lim
τ→τ∞

∣∣∣∣ 〈ωτ , ωτ 〉
k log |τ − τ∞|

∣∣∣∣ = c < ∞

for some k > 0 which depends on the index of nilpotency of the monodromy.
From the explicit expression for the L2 norm of the section ηN we see that

(8.9)
∥∥ ηN

∥∥2|Uτ =< ωτ , ωτ > |f(τ)|2 ≤ c0

So from (8.8) and (8.9) we can conclude that

(8.10) lim
τ→τ∞

f(τ) = 0.

From (59) we deduce (8.6) . Corollary 61 is proved. �

Remark 62 It is not difficult to prove that in the case of odd dimensional
CY manifolds if τ is a point in M(M) around which we can find one param-
eter family of polarized CY manifolds whose monodromy operator acting on
the middle homology is of finite order then

ηN(τ) �= 0.

9. CY Threefolds

Theorem 63 Let M be a three dimensional CY manifold and let N =

#Γ/[Γ,Γ]. Then there exists a section ηN of the line bundle (L∗)⊗N such
that the norm of ηN with respect to the N tensor power of the L2 metric
on L∗ is given by:∥∥ηN

∥∥2

L2 = exp(−NI(M)) = (det(∆0))
N .

The zero set of ηN is a nonzero effective divisor whose support contains or
is equal to the support of D∞, where D∞ is defined in Definition 59.

Proof: We know from Theorem 46 that the Quillen norm of the section
det(∂) of the determinant line bundle L on M(M) is equal to the exponential
of the holomorphic Ray-Singer analytic torsion I(M). So∥∥det(∂)∗

∥∥2

Q
= exp(−I(M)).

On the other hand, we proved in [47] that

exp(−I(M)) = (det(∆0)) ≤ c0.
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This fact, combined with Theorems 48 and 47, imply that locally on M(M)
the following formula is true:

ddc

(
log

(∥∥det(∂)∗
∥∥2

Q

〈ωτ , ωτ 〉

))
= ddc

(
log

(
det(�0)

〈ωτ , ωτ 〉

))
= 0.

From here we deduce in [47] that for each point τ ∈ M(M) there exists an
open set Uτ such that

τ ∈ Uτ

and we have

(9.1)
∥∥det(∂)∗ |Uτ

∥∥2

Q
= exp(−I(M))|U = 〈ωτ , ωτ 〉 |fUτ (τ)|2 ,

where fUτ (τ) is a holomorphic function in Uτ .

Proposition 64 Let us choose U such that U∩D∞ �= ∅. Let

τ∞ ∈ D∞ ∩ U .

Let fU(τ) be the holomorphic function defined by (9.1) in U �U∩D∞. Then
fU is well defined at the point

τ∞ ∈ D∞ = M(M) �M(M)

and fU(τ∞) = 0.

Proof: Indeed, we proved in Theorem 56 that 〈ωτ , ωτ 〉 have a logarithmic
growth around τ∞ ∈ D∞. This follows from the definition of D∞. Theorem 49
implies that ∥∥det(∂)∗

∥∥2

Q
= exp(−I(M)) = (det(�0)) ≤ c0

if the complex dimension of M is three. We know from (9.1) that

(9.2) exp(−I(M))|U =< ωτ , ωτ > |fU(τ)|2 ≤ c0.

So by using the same arguments as in the proof of Corollary 61, we can
conclude that

(9.3) lim
τ→τ0

fU(τ∞) = 0.

From (9.3) we deduce that fU can be continued analytically around any
point

τ∞ ∈ D = M(M) �M(M).

Proposition 64 is proved. �
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From (9.2) we can conclude:

Corollary 65 The zero set DI(M) of the function exp(−I(M)) is a nonzero
effective divisor such that

Supp D∞ ⊆ Supp DI(M) ⊆ Supp DI(M)

Proposition 64 and Corollary 65 imply Theorem 63. Let the complex
analytic functions fU be defined by (9.1) . According to Proposition 64 the
functions fU vanish exactly where exp(−I(M)) is zero. So we can conclude
that the zero set of exp(−I(M)) is an effective divisor DI(M) such that

(9.4) Supp D∞ ⊆ Supp DI(M) ⊆ Supp D

where
D = M(M) �M(M).

So the zero set of the complex analytic functions fU is exactly the divisor
DI(M) ∩ U . From 9.1 we derive that on open sets U and V such that

U ∩ D∞ �= ∅ and V ∩ D∞ �= ∅ ,

we have on U ∩ V

(9.5) |fU |2 = |σUV |2 |fV |2 ,

where σUV are the transition functions that define the line bundle L∗.
From Theorem 57 we know that the line bundle (L∗)⊗N is a trivial holo-

morphic one on M(M) where

N = # (Γ/[Γ,Γ]) .

From this fact and (9.5) we deduce that if you fix a covering {Ui} of M(M)

then the functions {(fUi
)N} define a global section ηN of (L∗)

⊗N
.

The equation (9.1) implies that the support of the zero set
(
ηN

)
0

of the

section ηN is the same as of the support of the zero set DI(M) of exp(−I(Mτ )),
i.e.

(9.6) Supp
(
ηN

)
0
≡ Supp DI(M).

Combining (9.4) and (9.6) , we get that

(9.7) Supp (D∞) ⊆ Supp
(
ηN

)
0
⊆ Supp (D) .

If we prove that the effective divisor
(
ηN

)
0

is nonzero then Theorem 63 will
be proved.
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Proposition 66
(
ηN

)
0

is a nonzero divisor.

Proof: Since the L2 metric on the line bundle L∗ defines a Chern form which
is exactly the imaginary part of the Weil-Petersson metric and by (9.6), we

can conclude that the support Supp
(
det(∂)∗

)
of the section det(∂)∗ will be

a nonzero divisor. This is so since by combining (9.6), (9.2) and (9.5) we

can conclude that the line bundle
(
L∗

)⊗N
has a non holomorphic section

ηN whose zero set
(
ηN

)
0

is a nonzero effective divisor. �

Theorem 63 is proved. �
Corollary 67 There exists a multi-valued holomorphic section η of the dual
of the determinant line bundle L over M(M) such that the norm of η with
respect to the metric defined in Theorem 56 is equal to exp(−I(M)).

10. Some Problems

Problem 68 Can one find a product formula for η around points of max-
imal degenerations, which would mean that around such points the mon-
odromy operator has an index of unipotency n + 1?

For a more precise discussion of Problem 68, see [48]. Problem 68 is
closely related to paper [4] and more precisely to the counting problem of
elliptic curves on the CY threefold.

Problem 69 Is is true that any CY manifold can be deformed to an alge-
braic manifold with one conic singularity?

Problem 69 is related to the following problem: Let M be an algebraic
variety embedded in PN . Let HM/PN be the component of the Hilbert scheme
that contains the point that corresponds to M. Let DM be the set of the
points in HM/PN that correspond to singular varieties. It is not difficult to
prove that DM is a closed subvariety in HM/PN .

Problem 70 Suppose that DM is a divisor in HM/PN . Is it true that the
generic point of DM corresponds to a projective manifold with only one conic
singularity?

The results of this paper suggest that one can expect DM to be a divisor
in HM/PN when M is an odd dimensional CY manifold M. Problem 70 is
closely related to Miles Ried’s conjecture that the moduli spaces of all CY
threefolds are connected.

Problem 71 In Theorem 60 we constructed a holomorphic section ηN of

the prolonged line bundle
(
L∗

)⊗N
for any odd dimension. It is natural to

expect that the L2 norm of ηN to be det(∆0)
2N .
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on Arakelov Geometry. Cambridge Studies In Advanced Mathematics 33,
Cambridge University Press, Cambridge, 1992.

[2] Aspinwall, P. and D. Morrison: Chiral Rings do not Suffice: N =(2, 2)
theories with non zero fundamental group, Phys. Lett. B 334 (1994), 79–86.

[3] Berline, N., E. Getzler and M. Vergne: Heat Kernels and Dirac
Operators, Springer Verlag, 1991.

[4] Bershadsky, M., S. Cecotti, H. Ooguri and C. Vafa: Kodaira-
Spencer Theory of Gravity and Exact Results for Quantum String Ampli-
tude, Comm. Math. Phys. 165 (1994), 311–428.

[5] Bismut, J.-M. and D. Freed: The Analysis of Elliptic Families I. Metrics
and Connections on Determinant Line Bundles, Comm. Math. Phys. 106
(1986), 159–176.

[6] Bismut, J.-M., H. Gillet and C. Soulé: Analytic Torsion and Holo-
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