
Rev. Mat. Iberoamericana 19 (2003), 613–621

Modular Deformations and Space
Curve Singularities

Bernd Martin

Abstract

We investigate different concepts of modular deformations of germs
of isolated singularities (infinitesimal, Artinian, formal). An obstruc-
tion calculus based on the graded Lie algebra structure of the tangent
cohomology for modular deformations is introduced. As the main re-
sult the characterisation of the maximal infinitesimally modular sub-
germ of the miniversal family as flattening stratum of the relative
Tjurina module is extended from ICIS to space curve singularities.

Introduction

The notion of a modular deformation has been introduced for complete
complex varieties by Palamodov, cf. [P1], later on by Laudal in a formal
context, cf. [L], and for analytic polyhedrons in [P3].

The deformation functor of an isolated singularity is usually not univer-
sal. Although every deformation of a fixed isolated singularity is induced by
a versal deformation of it, the inducing morphism is in general not unique
because trivial subfamilies exist in any representing versal family as, for
instance, in the case of an isolated complete intersection singularity. One
approach to the construction of local moduli for singularities, which should
describe continuous invariants in the classification of singularities, is the
study of those deformations that do not contain trivial subfamilies. This
can be done by restricting the versal family to subgerms that have a univer-
sal property at least for all families that they induce.

In [M2] we have used various characterisations of modular families in
a strictly local context, i.e., in the category of analytic germs. Here we
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introduce these properties as formal, Artinian and infinitesimal versions of
modularity. The associated infinitesimal notion corresponds to injectivity
of the relative Kodaira-Spencer map of the deformation. One formal ver-
sion defined as modular over all Artinian subgerms —we call it Artinian
modular— is equivalent to a lifting property of vector fields of the special
fiber to vertical vector fields of the family. The equivalence is based on an
obstruction calculus for lifting the modularity. The obstruction element is
induced by the Lie bracket of the tangent cohomology

T 0(X0) × T 1(X0) −→ T 1(X0).

Note that the implication from infinitesimal modularity to modularity is
proved for ICIS only with an additional assumption on the singular locus.

The first non-trivial examples of the modular stratum of an isolated
complete intersection singularity (ICIS) have been computed in [M2] using a
new algorithm to determine the local flattening stratification. Its application
is possible by the characterisation of formal modular families of ICIS by
flatness of the relative Tjurina module of the deformation. Here we extend
this result to space curve singularities.

1. Modular deformations and their obstructions

Throughout the paper we will be dealing with analytic germs. Let X0

be an isolated singularity. Choose a miniversal deformation F : X → S.
By definition of versality any other deformation of X0 over T is induced
from the family F , i.e. the functorial maps ξT : Hom(T,S) −→ DefX0(T),
g �→ g∗(F ), are all surjective.

Definition 1 A subgerm M ⊂ S of the base space of a miniversal deforma-
tion F : X → S is called modular if for all germs T the induced maps ξT

restricted to ξ−1
T (ξT(Hom(T,M)) are injective.

A modular germ is not assumed to be reduced. By definition any two maxi-
mal modular subgerms of a miniversal family of X0 are uniquely isomorphic
and independent of the choice of the miniversal family. We call it the mod-
ular stratum of the singularity X0. For instance, the modular stratum of a
quasi-homogeneous isolated complete intersection singularity (ICIS) consists
of its reduced τ -constant stratum, cf. [A]. However, the modular stratum
usually carries a non-reduced structure for most non-quasi-homogeneous hy-
persurface singularities, cf. [M2].

We have to distinguish carefully between two different versions of the
term formally modular.
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Definition 2 A subgerm M ⊂ S of a miniversal deformation F : X → S
is called Artinian modular if any Artinian subgerm N of M is modular with
respect to F .

Any pull-back of an automorphism of M to the modular family induces an
isomorphism of the modular family by definition. Infinitesimally, it corre-
sponds to the statement that any vector field on M causes a trivial infinites-
imal deformation of the modular family. This leads to the infinitesimal
notion:

Definition 3 A subgerm M ⊂ S of a miniversal deformation F : X → S is
called infinitesimally modular if the restriction to M of the relative Kodaira-
Spencer map θF of F is injective,

θF : T 0(S) −→ T 1(X/S), δ �→ cl(δ(F )).

Obviously, any modular family is Artinian modular, any Artinian modular
family is infinitesimally modular. Are these notions all equivalent as, for
instance, in the cited cases considered by Palamodov?

Proposition 4 For a subgerm M ⊂ S of a miniversal deformation F the
following statements are equivalent:

(1) M is infinitesimally modular,

(2) The evaluation map ev|M from vertical vector fields over M to vector
fields of the special fiber is surjective: ev|M : T 0(X/S)|M −→ T 0(X0),

(3) M is Artinian modular.

Proof: (1) ⇒ (2) This implication follows by a careful analysis of the
following long exact sequence —the so called Kodaira-Spencer sequence—
of the family F and its evaluation at the special fiber, cf. [P2]:

0 → T 0(X/S) −→ T 0(F ) −→ T 0(S)
θF−→ T 1(X/S) → · · ·

ev ↓ λ ↓ ↓ ↓
0 → T 0(X0) −→ T 0(F,X0) −→ T 0(S, C)

θ0−→ T 1(X0) → · · ·

For a miniversal deformation T 0(S, C) is the tangent space of S and the
map θ0 is bijective, hence the image of λ lies in T 0(X0). Assuming the
injectivity of θF |M the image of ev|M is equal to that of λ. Hence, (2) holds
if λ is surjective. But, this is always fulfilled for a miniversal family F by
similar arguments as in [P2, 1.8].
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Take a vector field δ ∈ T 0(X0). We want to find a pair of vector fields
(δ′, η) ∈ T 0(F ), i.e. δ′ is a lift of η along F , and δ′ induces δ at the special
fibre. Now δ gives an automorphism aδ of X0 × I over I := Spec C[ε],
which is the identity at the special fibre. Consider the deformation F̃ :=
F × idI : X × I −→ S × I. Let F̃1 be the restriction of F̃ to the subspace
T := {0} × I ∪ S × {0}. If ϕ1 : T −→ S denotes the obvious map, then
F̃1 = ϕ∗

1(F ). Consider the automorphism ãδ of the deformation F̃1 induced
by aδ over the first component of T and by the identity over the second.
Clearly F̃ ′

1 := F̃1 · ãδ is versal itself and the composition ã′
δ of ãδ with the

projection to X induces the equivalence of the deformations F̃ ′
1 and ϕ∗

1(F ).
By versality F̃ is induced from F̃ ′

1 by a map ψ : S × I −→ T. Then
ψ1 := ϕ1 · ψ is an extension of ϕ1 and an extension ã1 of ã′

δ to a morphism
of deformations exists:

ã1 : X × I −→ XT

ã′
δ−→ X

↓ F̃ ↓ F̃ ′
1 ↓ F

ψ1 : S × I
ψ−→ T

ϕ1−→ S

The corresponding homomorphism ψ∗
1 : OS → OS[ε] induces the vector field

η by ψ∗
1(a) = a + εη(a). Similarly, ã∗

1 gives the vector field δ′.
(2) ⇒ (3) Any Artinian subgerm A ⊂ M is obtained by a finite number

of infinitesimally small extensions of the corresponding algebras from C to
A := OA. We may consider by induction the previous extension η : 0 →
K → A → A0 → 0, such that K = (ε) and A0 is modular. In order to show
that F is modular over A, we need an obstruction calculus for lifting the
modularity infinitesimally. First we describe the obstruction element and
check its vanishing under assumption (2):

Take any section s∗0 : A0 → A. Then FA restricted to A ×s0 {0} ∼= I
is an infinitesimal deformation f̃η. Its class cl(f̃ηε) ∈ T 1(X0) ⊗ K does not
depend on s0. We associate to this class the obstruction element oF,η ∈
Hom(T 0(X0), T

1(X0)) ⊗ K, induced by the Lie bracket of the tangent co-
homology of X0, [−,−] : T 0 × T 1 −→ T 1, by δ �→ [δ, cl(f̃η)].

In explicit terms the obstruction element oF,η is obtained as follows:
Take an embedding of the miniversal family F : X ⊂ Cn × S −→ S. We
denote a basis of the defining ideal of X by F ∈ Oq

Cn×S, too, and by f ∈
Oq

Cn the equations of X0. Any vector field δ ∈ T 0(X0) is represented by
δ̃ ∈ Der(OCn), such that δ̃(f) = hf , where h ∈ Mat(q, q;OCn). If A0 ⊂ S
is modular a lift δA0 ∈ T 0(XA0 ,A0) of δ exists. It is represented by some
δ̃A0 , such that δ̃A0(FA0) = HA0FA0 , FA0 ∈ Oq

Cn×A0
being the class of F

modulo the defining ideal of A0, HA0 ∈ Mat(q, q;OCn×A0) being a lift of h.
Choosing a section s0 we may write A = A0[ε], ε2 = 0, FA = FA0 + εf̃ ,
f̃ ∈ Oq

Cn representing the class cl(f̃ηε) in T 1(X0) ⊗ K.
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Take any representations δ̃A and H̃A over A of δ̃A0 and HA0 . One easily
checks that δ̃A(FA) − H̃AFA and (δ̃(f̃) − hf̃)ε represent the same class in
T 1(X0)⊗K, being the Lie bracket [δ, cl(f̃)]ε. Particularly, it is independent
of the choices of representations and the section.

By assumption (2) we may choose a lift δ̃A ∈ T 0(XA,A) of δ̃A0 un-
der ev, hence [δ, cl(f̃)]ε and the obstruction element oF,η vanish. By the
next Lemma follows that F is modular over A. �

In the following we use the description of the obstruction element oF,η

from above, which holds for any small extension η : 0 → K → A → A0 → 0,
(mAK = 0), of the algebra A0 of a modular subgerm. Nevertheless, we may
assume that all small extensions are infinitesimal.

Lemma 5 Let F : X → S be a miniversal deformation of X0, which is
modular over an Artinian subgerm A0 ⊂ S. Let η : 0 → K → A → A0 → 0
be a small extension of the associated Artinian algebra A0 inside OS. Then
F is modular over A iff oF,η = 0.

Proof: Take any derivation δ∈T 0(X0) and a representation δ̃∈DerA0(OCn

⊗A0). It defines an infinitesimal family of automorphisms aδ ∈ Aut I(C
n × I)

by Xi �→ Xi + εδ̃(Xi). Apply aδ × idA to XA × I and get an isomorphic
deformation X′:

XA × I
aδ−→ X′

↓ ↓
A × I = A × I
pr ↓ ϕ ↓
A = A

Assume that F is modular over A. Then X′ is induced from FA by a unique
morphism ϕ : A × I → A, such that the above diagram is commutative.
Hence, aδ is an isomorphism over A and X′ is trivial as deformation of
XA→A over I. We obtain [δ, cl(f̃η)]=0, which implies the vanishing of oF,η.

If A is not modular we may assume that a sub-deformation Y⊂ XA → A
exists, which has a second and different inducing morphism ψ together with
an isomorphism of deformations a0:

Y
a0−→ Y

F|Y ↓ ↓ ψ

A S

Because A0 is modular ψ coincides with F over A0 and we may assume
that a0 is the identity over A0. As isomorphism of embedded deformations
a0 is given by Xi �→ Xi + εδ̃(Xi), δ̃ ∈ Der(OCn) representing a vector field
δ ∈ T 0(X0) and ε given by A = A0[ε]. Because the image of ψ is not
contained in A we have [δ0, cl(f̃η)] 
= 0 and oF,η does not vanish. �
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Note that the statements of Proposition 4 remain valid in the category of
complete germs and using formal equivalence of deformations as well. The
equivalence of modularity and infinitesimal modularity for deformations of
complete varieties or analytic polyhedrons, cf. [P1], [P3], is expected to
hold in the local case, too. We only show the open implication under an
additional assumption. Obviously, an analytic subgerm of the base space of
a miniversal deformation, which is formally modular (completions are taken
with respect to a section) is modular. We prove the other implication under
the following restrictions:

Proposition 6 Let X0 be an ICIS. An analytic subgerm M of the base
space of a miniversal deformation F of X0, such that any nearby fiber Xt,
t ∈ M, has exactly one singular point, is modular iff it is formally modular.

Proof: By the assumption about the critical locus F has a unique section
over M, whose image is the critical locus. We may write XM as embedded
deformation of X0 with (zero) section: OXM

= OM{X}/(FM). Because X0

is an ICIS OXM
is simultaneously finitely determined over OM along the

section. Hence two deformations of X0, such that one is induced from M,
are both deformations with section. They are analytically isomorphic iff
they are formally isomorphic along the section. �

An example —already discussed in [M2]— shows that infinitesimally
modular families exist, which admit a splitting critical locus. Consider
the following curve singularity, whose equation has a degenerate quasi-
homogeneous leading form: X0 defined by f0 = (x − y3)2(x + 2y3) + y11

with Tjurina number τ = 16 and Milnor number µ = 18. Its deformation
X → T defined by f(x, y, t) = ft := f0 + t2y9 + 2ty10 over T = C1 has
τ(ft) = 15 and µ(ft) = 16 for t 
= 0. Using Singular, cf. [S], one checks
that its relative Tjurina algebra T (ft) := C[t]{x, y}/(ft, ∂xft, ∂yft) is flat
over C[t]. Hence the family is infinitesimally modular.

We find two interesting observations: The family T 1(X/T) is not coher-
ent over T, because it is flat, but not free. Moreover, ft has another critical
value for t 
= 0 at (−t3,−t), hence its global Tjurina number is constant and
the critical locus splits. This does not occur for a µ-constant deformation.

Remark 1 The assumption on the critical locus can be interpreted as a kind
of finiteness condition: It implies the coherence of T 1(X/S)|M, Note, that
we lose coherence of the tangent cohomology in a strictly local context. This
is avoided in the category of multi-germs. But when doing computations we
strictly need the category of analytic or complete local algebras.
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2. Flatness of the Tjurina module

The condition of infinitesimal modularity was characterised as a flatness
condition of the relative Tjurina module of the deformation for isolated
complete intersection singularities, cf. [M2]. This was the main step to apply
algorithmic methods for determining modular strata of these singularities. It
is not clear at all, whether the statement holds in general or under the slightly
weaker assumption as T 2(X0) = 0, which implies that X0 is unobstructed
and S is smooth. Here we extend the flatness property to the class of reduced
space curve singularities, which are not complete intersections.

Let q be the minimal number of generators of the ideal of X0 ⊂ C
n:

I0 = (f1, . . . , fq) ⊂ C{X}. The miniversal family F may be chosen as
embedded deformation. Hence the total deformation space is defined by an
ideal IX = (F1, . . . , Fq) ⊂ OS{X}. Denote by J(F ) the relative Jacobian
matrix of F over S modulo IX and its cokernel by T̃X := Oq

X/J(F ).

Proposition 7 A subgerm M of the base S of a miniversal deformation F
is infinitesimally modular iff T̃X ⊗OM is flat over OM.

Proof: We have the following commutative diagram with exact rows:

0 → T 0(X/S) −→ On
X

J(F )−→ Oq
X −→ Oq

X/J(F ) → 0

ev ↓ ↓ ↓ ↓
0 → T 0(X0) −→ On

X0

J(f)−→ Oq
X0

−→ Oq
X0

/J(f) → 0.

The matrix J(F ) is a representation of T̃X = Oq
X/J(F ) as OX-module lifting

the representation of T̃X0 = Oq
X0

/J(f). The module of vertical vector fields
T 0(X/S) can be considered as syzygies of the columns of the representation
matrices. By Proposition 4 infinitesimal modularity is equivalent to the
lifting property of vector fields. The surjectivity of ev over M means that
any syzygy over the special fiber lifts to a syzygy over M. This is exactly a
characterisation of flatness, cf. [E, 6.]. �

We remark that T̃X coincides with T 1(X/S) if X0 is an ICIS.

In the case of space curves singularities, which are unobstructed, we have
many informations from its structure as determinantal variety.

Proposition 8 Let X ⊂ C
3 × S → S be a deformation of a reduced space

curve singularity X0 over a smooth germ S, such that the defining ideal
I0 ⊂ O3

C
is minimally generated by q > 2 equations. We have:

(1) A matrix A ∈ Mat(q, q− 1;O) exists, such that 0 → Oq−1 A−→ Oq ∆−→
OX → 0 is exact, O := OS{x, y, z} and ∆ := (∆1, . . . ,∆q) are the
(q − 1)-minors of A.
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(2) The relative normal bundle of the deformation NX := NX,C3×S|S is
represented as OX-module by a matrix C ∈ Mat(q, q2−q;OX) of (q−2)-
minors of A.

Proof: We obtain (1) because X is Cohen-Macaulay at codimension two,
cf. [St]. The relative normal bundle is represented by the syzygies of the
transposed matrix syz(Āt) modulo IX = (∆), cf. [M1]. Define the matrix C
as follows: The columns of C are indexed by the elements of A. The entry
of C in the k-th row and (i, j)-th column is (up to an alternating sign) the
(q − 2)-minor of A obtained by deleting the k-th and i-th row and the j-th
column, if k 
= i, or 0 otherwise. Let ci,j ∈ Oq denote a column of C. By
Laplace developing we obtain At · ci,j = ∆i · ej, hence At · C ≡ 0 in OX.

It remains to show that any syzygy h of At modulo IX is contained
in the module generated by the columns of C: Over O we have At · h =∑

i,j Hij∆iej , hence At · (h − ∑
i,j Hijci,j) = 0. But, At · y = 0 implies that

y is a multiple of ∆ over the quotient field of O. We obtain relatively prime
elements f, g ∈ O, such that fy = g∆. This implies that V (f) is contained
in X. Because X is a curve f has to be a unit and y ≡ 0 modulo IX. �

Corollary 9 The quotient module Oq
X/NX is flat over OS.

Proof: The quotient module is represented as OX-module by the matrix At.
At the special point 0 ∈ S the module Oq

X0
/NX0 is represented by the matrix

At
0 := At modulo mS. Their syzygies are generated by the columns of the

matrices C resp. C0 given by minors of A resp. A0 in the same way. Hence
any syzygy of A0 may be lifted. �

Proposition 10 Let F : X → S be a miniversal deformation of a reduced
space curve singularity. Then M ⊂ S is infinitesimally modular iff T 1(X/S)|M
is flat as OM-module.

Proof: By Proposition 7 we have to show that T̃X⊗OM is flat iff T 1(X/S)|M
is flat. But, T 1(X/S) is the cokernel of

ΘC3×S ⊗OX
J(F )−→ NX,

cf. [M1, 3.1]. The statement follows from the short exact sequence

0 → T 1(X/S) → T̃X → Oq
X/NX → 0

by Corollary 9. �
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