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Quasiconformal mappings of Y-pieces

Christopher J. Bishop

Abstract

In this paper we construct quasiconformal mappings between Y-pieces
so that the corresponding Beltrami coefficient has exponential decay
away from the boundary. These maps are used in a companion paper
to construct quasiFuchsian groups whose limit sets are non-rectifiable
curves of dimension 1.

1. Introduction

The purpose of this note is to record an explicit way of deforming a Riemann
surface so as to shorten a given closed geodesic, with a careful estimate of
the complex dilatation µ of the corresponding map. In particular, we will
do this so that µ has the optimal L∞ norm (up to a bounded factor) and
|µ| decays exponentially fast away from γ. This estimate is used in the
companion paper [3] to construct quasiFuchisan groups whose limit sets are
nonrectifiable curves of dimension 1.

A generalized Y -piece is a Riemann surface (with boundary) which is
bounded by three closed geodesics (or punctures) and which is homeomor-
phic to a 2-sphere minus three disks (or points). It is called L bounded if
each of the boundary components has length ≤ L (punctures count as length
zero). Every finite area Riemann surface can be written as a finite union of
such pieces and even general Riemann surfaces can be written as a union of
Y -pieces, funnels and half-planes, [1].
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Theorem 1.1. Suppose Y1 is an L bounded Y -piece with boundary compo-
nents γa, γb and γc with lengths (a1, b1, c1) respectively. Suppose Y2 is another
L-bounded generalized Y-piece with boundary lengths (a2, b1, c1) respectively.
Assume that ε = | log a1/a2| ≤ 2. Then there is a C = C(L) and a quasicon-
formal map f : Y1 → Y2 with constant K ≤ 1 + Cε which is affine on each
of the boundary components (i.e. is isometric on γb and γc and multiplies
length by a2/a1 on γa). Moreover, the Beltrami coefficient µ of f satisfies

|µ(z)| ≤ Cε exp(−2 dist(z, γa)).

Thus the Beltrami coefficient µ has L∞ norm which is comparable to the
optimal quasiconformal map from Y1 to Y2, but has rapid decay away from
boundary curve which is being shrunk. This is important for our applications
in [3] where we wish to estimate integrals involving µ.

An X-piece is the union of two (not necessarily distinct) Y -pieces which
share a common boundary geodesic γ, which is called the central curve of
X. As above an X-piece is called L-bounded if its boundary components
and central curve all have length bounded by L. The following is an obvious
consequence of the theorem and is the precise result used in [3].

Corollary 1.2. Given an L-bounded X-piece X1, its central curve γ and any
0 < ε < 1/2, there is an X-piece X2 and a quasiconformal map f : X1 → X2

so that f(γ) is the central geodesic for X2 and has length 1− ε times that of
γ. Moreover, f is an isometry on the boundary of X1 and the corresponding
Beltrami coefficient µγ,ε satisfies ‖µγ,ε‖∞ < Cε and

|µγ,ε(z)| ≤ Cε exp(−2dist(z, γ)).(1.1)

Using this we can construct a deformation of Riemann surface R by
choosing an X-piece X1 in R and replacing it by another X-piece X2, to get
a surface S. We then define a map R → S by taking the identity off X1 and
the map from the corollary on X1. The deformations constructed in [3] are
obtained by applying this idea simultaneously to certain infinite (disjoint)
collections of X-pieces in R.

Other applications of our estimate are given in [6] and [7]. Let T denote
the set of Riemann surfaces which can be written as a countable union of
Y -pieces with the property that for any ε > 0, all but finitely many of the
pieces are ε bounded. In [7] our estimate used to show that Fuchsian groups
corresponding to surfaces in T are δ-stable, i.e., for any quasiconformal
deformation of the group δ = dim(Λ), i.e. the critical exponent equals the
Hausdorff dimension of the limit set. In [6], another application is given
related to Ruelle’s property. See [4] and [6].
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Next we describe the structure of the rest of the paper.

Section 2: We review some hyperbolic trigonometry.

Section 3: We show that two hyperbolic triangles are quasiconformally
equivalent with constant close to 1 if the ratio of their side lengths
is close to 1.

Section 4: We construct quasiconformal maps between certain hyperbolic
quadrilaterals.

Section 5: We show that certain hyperbolic hexagons can be written as a
union of a bounded piece and at most three quadrilaterals.

Section 6: We prove Theorem 1.1.

I thank Michel Zinsmeister for his comments and questions on [5] which led
me to consider the questions dealt with here. I also thank the two referees
whose careful reading and numerous suggestions were greatly appreciated.

If A,B are quantities that depend on some parameter we write A � B if
the ratio B/A is bounded uniformly independent of the parameter. We will
also sometimes write this as A = O(B). Similarly for �. We write A � B if
both A � B and A � B hold and say A and B are comparable.

2. Some hyperbolic trigonometry

In this section we record a few formulas of hyperbolic trigonometry which
we will need later.

Recall the sine and cosine rules for hyperbolic geometry (e.g., see page
148 of Beardon’s book [2]). Let T denote a hyperbolic triangle with angles
α, β, γ and opposite side lengths denoted by a, b, c. See Figure 1.

a

b

c

α

β

γ

av

bv

cv
Figure 1: Definitions of a, b, c and α, β, γ
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Then we have the Sin Rule,

sinh a

sin α
=

sinh b

sin β
=

sinh c

sin γ
(2.1)

the First Cosine Rule,

cosh c = cosh a cosh b − sinh a sinh b cos γ(2.2)

and the Second Cosine Rule

cosh c =
cos α cosβ + cos γ

sin α sin β
(2.3)

Lemma 2.1. If γ = π/2 then

sinh b = sinh c sin β,(2.4)

tanh b = sinh a tan β,(2.5)

tanh a = tanh c cos β.(2.6)

Proof. The first of these is immediate by taking γ = π/2 in (2.1). To prove
(2.5), note that

tanh b =
sinh b

cosh b
=

sin β

sin α

sinh a

cosh b

=
sin β

sin α

sinh a cosh a

cosh c

=
sin β

sin α
sinh a cosh a

sin α sin β

cos α cosβ

= tan β sinh a
[
cosh a

sin β

cos α

]
= tan β sinh a.

where the second, third and fourth equalities hold by (2.1), (2.2) and (2.3)
respectively and the last equality holds by (2.3) (with the roles of a and c
reversed). To prove (2.6), note that

tanh a =
sinh a

cosh a
=

sinh a cosh b

cosh c

=
tanh b cosβ cosh b

sin β cosh c

= tanh c cosβ
[ sinh b

sinh c sin β

]
= tanh c cosβ,

where the second, third and last equalities hold by (2.2), (2.5) and (2.1)
respectively. �
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Formula (2.3) makes it clear that the side lengths of a hyperbolic triangle
are determined by its angles. It is also easy to see that if all three angles
are bounded below by some θ > 0, then there is a finite upper bound on
the side lengths which only depends on θ. By (2.3), if all three angles of a
hyperbolic triangle are less than δ the the diameter of the triangle is ≥ M(δ)
where M → ∞ as δ → 0.

By (2.1), if the three sides of a hyperbolic triangle have comparable
lengths then the sin of the angles are also comparable. Since at most one of
the angles can be close to π we see that if all the angles are bounded away
from π then they must all be comparable in size.

3. Quasiconformal mappings of hyperbolic triangles

In this section we record a calculation which we will need later. It sim-
ply says that two hyperbolic triangles whose side lengths are pairwise close
are quasiconformally equivalent with constant close to 1. This seems fairly
obvious, but I have been unable to locate the result in the literature, so it
seems worth recording here. Our strategy will be to divide the triangles
into small triangles which are approximately Euclidean and then apply the
analogous result for Eucidean trangles (which is easy).

Lemma 3.1. Suppose T1, T2 ⊂ D are two triangles in the hyperbolic disk with
angles (α1, β1, γ1) and (α2, β2, γ2) respectively and opposite sides (a1, b1, c1)
and (a2, b2, c2) respectively. Suppose that all these angles are strictly positive,
say all ≥ θ > 0 and let

ε = max(| log
a1

a2

|, | log
b1

b2

|, | log
c1

c2

|)

Suppose ε ≤ A. Then there is a constant C1 = C1(θ,A) and a 1+C1ε quasi-
conformal map from T1 to T2 which maps each vertex to the corresponding
vertex and which is affine on each edge of T1 (i.e., it multiplies hyperbolic
arclength on each edge by the appropriate factor a2/a1, b2/b1 or c2/c1).

Proof. The angle bisectors of each of the three angles of T1 meet at a single
point ζ1 in the interior of T1 by Theorem 7.14.1 of [2]. See Figure 2.
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Figure 2: Angle bisectors meet at a point
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This point is equidistant from each of there three sides of T1. Let R1

denote this distance and let w1
a, w

1
b , w

1
c denote the closest point to ζ1 on each

of the sides a1, b1, c1 respectively. Divide each edge of T1 into 2n equal length
segments and connect the endpoints of these segments by geodesics segments
to ζ1. This divides T1 into 3 · 2n sub-triangles {T1,k}. See Figure 3.

•
•

av

bv

cv

•

•

Figure 3: The triangles Tk’s

Assume ζ1 = 0 and for each k = 1, . . . , 3·2n let T̃1,k be the Euclidean triangle
which has the same vertices as T1,k (since ζ1 = 0, two sides of T̃1,k will agree
exactly with two sides of T1,n but the third side opposite ζ1 will not). Let
ζ2, R2, {T2,k} and {T̃2,k} be the corresponding objects for T2 and assume
ζ2 = 0 as well.

We claim that there is a C = C(θ) < ∞ so that each T̃1,k can be mapped
to T̃2,k by a 1 + Cε quasiconformal map which is affine in the Euclidean
sense. If so, then adjacent triangles have matching boundary values so we
get a 1 + Cε quasiconformal from ∪kT̃1,k to ∪kT̃2,k. Then taking n → ∞ we
obtain in the limit a 1+Cε quasiconformal map from T1 to T2. By definition
this map is affine restricted to the vertices of E ∩ ∪kT̃1,k for each edge E of
T1, and so by continuity is affine on each edge, as desired. Thus it suffices
to verify the claim.

Let L1 denote an edge of T̃1,k which connects ζ1 to an edge E1 of T1. Let
θ1 be the angle formed by L1 and E1 and let F1 be the edge of T̃1,k which
is opposite ζ1. It is clear that θ1 is minimized when L1 is one of the angle
bisectors of T1 and hence 1

2
θ ≤ θ1 ≤ 1

2
π (where θ is assumed the lower bound

on the angles of T1). Let L2, E2, F2 and θ2 be the corresponding quantities
in T2. It is enough to check that the Euclidean lengths of these edges satisfy

|L1|/|L2| = 1 + O(ε),(3.1)

|F1|/|F2| = 1 + O(ε),(3.2)

θ1/θ2 = 1 + O(ε).(3.3)

(It is easy to check that Euclidean triangles satisfying these conditions are
1 + O(ε) quasiconformally equivalent via an affine map.)
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We start by showing R1/R2 = 1 + O(ε). Let xi = ρ(wi
a, v

i
c) and yi =

ρ(wi
a, v

i
b) so that xi + yi = ai (see Figure 4).

θ
t

R
L

ζ

wavc bv

Figure 4: Definition of Li and Ri

Using (2.5) we see that

tanh Ri = sinh xi tan(αi/2) = sinh yi tan(βi/2).

Since
x1 + y1

x2 + y2

= 1 + O(ε)

we must have either x1/x2 ≥ 1 − O(ε) or y1/y2 ≥ 1 − O(ε). Without loss of
generality assume the first holds. Then

tanh R1

tanh R2

=
sinh x1 tan(α1/2)

sinh x2 tan(α2/2)
≥ 1 − O(ε).

Since Ri, xi are uniformly bounded (in terms of θ) and αi is bounded away
from π (depending only on θ), this implies that R1/R2 ≥ 1 − O(ε) where
the constant depends only on θ. Reversing the roles of R1 and R2 shows
R1/R2 = 1 + O(ε), as desired.

Next we prove (3.1). Suppose Li connects ζi to the edge ai of Ti and
consider the hyperbolic triangle with edge Li and third vertex wi

a. See
Figure 4. Let ti be the signed hyperbolic distance from wi

a to the endpoint
of Li on the edge ai. Note that |t1 − t2| = O(εa1). Then by (2.2), with
γ = π/2,

cosh Li = cosh ti cosh Ri.

Now for 0 ≤ s ≤ 1 let t(s) = t1(1 − s) + t2s, R(s) = R1(1 − s) + R2s and
cosh L(s) = cosh t(s) cosh R(s). Then clearly

|t′(s)| = O(εa1), |R′(s)| = O(εa1),



634 C. J. Bishop

and

|L′(s)| ≤ 1

sinh L(s)
[sinh t(s)t′(s) cosh R(s) + cosh t(s) sinh R(s)R′(s)]

= O(εa1).

Thus |L1 − L2| = O(εa1) = O(εL1). Thus |L1|/|L2| = 1 + O(ε), as desired.

Now we prove (3.2). The segments F1, F2 have hyperbolic diameters
which are comparable by a factor of 1 + O(ε), since by definition they have
hyperbolic length 2−na1 and 2−na2 and a1/a2 = 1 + O(ε) by assumption.
Moreover, their hyperbolic distances from the origin are L1 and L2 which
are comparable by the previous paragraph. Since |dz| = (1 − |z|2)|dρ| this
implies their Euclidean lengths are also comparable by a factor of 1 + O(ε).

Finally we prove (3.3). By (2.6),

cos θi tanh Li = tanh ti,

and hence making a parameterized family as above we see

sin θ(s)θ′(s) tanh L(s) + cos θ(s)sech2L(s)L′(s) = sech2t(s)t′(s),

and since θ(s) is bounded away from zero in terms of θ, and |t′(s)|, |L′(s)| =
O(εa), we get

|θ′(s)| = O(1)
1

tanh L(s)
|sech2t(s) − cos θsech2L(s)|O(εa) = O(ε).

Thus |θ1 − θ2| = O(ε) and since these numbers are bounded by θ, we get
θ1/θ2 = 1 + O(ε), with constant depending only on θ. This ends the proof
of Lemma 3.1. �

The preceding lemma can be used to construct quasiconformal maps
between polygons by triangulating the polygon and applying the lemma to
each piece. Since the maps are affine on the edges, they must agree on the
common boundary of any two triangles which share an edge. The following
corollaries describe two specific situations where we will use this.

Corollary 3.2. Suppose Q is a hyperbolic quadrilateral with sides a1, a2, a3

and a4 (in clockwise direction) all bounded by L < ∞. Suppose the two angles
adjacent to edge a1 are right angles and the other two angles are bounded
below by θ > 0 and above by π − θ. Suppose Q′ is another quadrilateral
with side lengths b1, b2, b3, b4 whose angles satisfy the same condition. Let
ε = maxi | log bi/ai| and assume ε < A < ∞. Then there is a 1+C(L, θ,A)ε
quasiconformal map from Q to Q′ which is affine on each of the boundary
edges.
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Proof. Connect two opposite corners of Q forming two triangles with edge
lengths a1, a2, c and a3, a4, c. See Figure 5.

c

a1

2a

3a

4a

Figure 5

By (2.2),

cosh c = cosh a1 cosh a2.(3.4)

Do the same for Q′, obtaining triangles of side length b1, b2, d and b3, b4, d.
Now consider a parameterized family of right triangles on [0, 1] with adjacent
sides sa1+(1−s)b1 and sa2+(1−s)b2 and opposite side c(s). Differentiating
(3.4) we get

sinh c
dc

ds
= sinh a1

da1

ds
cosh a2 + cosh a1 sinh a2

da2

ds
.

Since c is comparable to a1 and a2 we get that dc
da

= O(εa1). The argument
shows c/d = 1 + O(ε). Thus we can apply Lemma 3.1 once we know the
angles of the triangles are bounded below uniformly.

However, one angle of the a1, a2, c triangle is π/2 and the side lengths
are comparable. Thus by (2.1) all three angles are comparable (and hence
are uniformly bounded below). A similar argument holds for the a3, a4, c
triangle since one angle (the one between a3 and a4) is assumed to be bigger
than θ and less than π − θ. �

Corollary 3.3. Suppose H is a hyperbolic hexagon such that all the edge
lengths a1, . . . , a6 (in clockwise direction) are ≤ B and are comparable with
constant B. Also assume three alternating angles are π/2 and the remaining
angles are bounded below by θ > 0 and above by π − θ. Then there is a
C = C(θ,B) so that the following holds. If H ′ is another such hexagon with
edge lengths b1, . . . , b6 and ε = maxi | log ai/bi| ≤ 2, then there is a 1 + Cε
quasiconformal map from H to H ′ which is affine on each of the edges of H.
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Proof. Triangulate H by adding edges [v2v4], [v4v6] and [v6v2], as in Fig-
ure 6.

a1

2a 3a

4a

a5a6
•

•

•

•

•

•

v
1

v2

v3

v4

v5

v6

Figure 6

As in the previous corollary the new edges have length comparable to the
edges of H and if the edges of H change by a factor of 1+ ε then the lengths
of the new edges change by at most 1 + O(ε). Each of the three triangles
which share edges with H has a right angle, and hence all their angles are
bounded away from zero (since their edges are all comparable).

Thus we need only show the central triangle has angles bounded away
from zero. However, all of its angles are smaller than π − θ (since this is
true for the hexagon) and since the sides are comparable, so are the angles.
Finally, not all three angles can be close to 0 since this would imply the
triangle has large diameter (which is impossible since it is contained in H
which has diameter bounded by 6B). �

4. Quasiconformal mappings of Lambert quadrilaterals

In this section we use the result about triangles from the previous section to
prove a result about mappings of certain special quadrilaterals. In Section
6 on mappings of Y -pieces these quadrilaterals will correspond to neighbor-
hoods of very short geodesic boundaries and the estimate we prove here will
give the exponential decay we want.

A hyperbolic quadrilateral is called a Lambert quadrilateral if it has three
right angles (after J.H. Lambert, 1728-1777, see page 156 of [2]). We denote
the fourth angle φ and the four sides (going clockwise, starting at φ) will be
labeled b, x, a, y as in Figure 7.

a b

φ

x 

y

Figure 7: A Lambert quadrilateral
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Given such a quadrilateral Q, we will sometimes let the letter a denote the
edge of Q and sometimes let it denote the length of the edge. The usage
will generally be clear from context (e.g. it is a length in sinh a but the side
itself in ρ(z, a)), but we will write “a-side” when necessary. Similarly for the
other sides of Q.

The quadrilateral is determined by any two side lengths or one side length
and the angle φ, as is evident from the following two relations (Theorem
7.17.1 of [2])

sinh a sinh x = cos φ(4.1)

cosh a = cosh b sin φ(4.2)

We claim these imply

cosh b sinh x = sinh y.(4.3)

To prove this use (4.1) and (4.2) to get

sin φ cosh b = cosh a = (1 + sinh2 a)1/2

=
(
1 +

cos2 φ

sinh2 x

)1/2

=
(cosh2 x − 1 + cos2 φ

sinh2 x

)1/2

=
(cosh2 y sin2 φ − sin2 φ

sinh2 x

)1/2

=
sin φ sinh y

sinh x
,

which proves (4.3). We will think of b as fixed, but allow a to vary and
consider φ, x and y as functions of a.

Lemma 4.1. Suppose Q is a Lambert quadrilateral, labeled as above. If b is
fixed and a ≤ b/2 is allowed to vary then

b

a
� sinh x(4.4)

dφ

da
= O(a)(4.5)

dx

da
=

−1

sinh a
+ O(a)(4.6)

dy

da
=

−1

sinh a
+ O(a)(4.7)

The constants depend only on an upper bound for b.
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Proof. We recall an estimate which we will use frequently. Note that if
x > 0,

1 + e−2x ≤ cosh x

sinh x
≤ 1 + e−2x

1 − e−2x
,(4.8)

and hence (cosh x)/(sinh x) = 1+O(e−2x) with a constant that depends only
on a lower bound for x.

First we prove (4.4). By (4.1) and (4.2),

sinh2 x =
cos2 φ

sinh2 a
=

1 − sin2 φ

sinh2 a

=
cosh2 b − cosh2 a

sinh2 a cosh2 b

� b2

a2
,

where we have used a ≤ b/2 to deduce 1
C
b2 ≤ cosh2 b − cosh2 a ≤ Cb2.

Next we prove (4.5). By (4.2)

sin φ =
cosh a

cosh b
≤ cosh b/2

cosh b
< 1,(4.9)

with a bound depending only on b. Differentiating the equality gives

dφ

da
=

sinh a

cos φ cosh b
= O(a).(4.10)

Also note for later use that if t < s ≤ b/2 then

φ(s) − φ(t) =

∫ t

s

O(a)da = O(|s2 − t2|).(4.11)

To prove (4.6), note that by (4.1) we have

sinh x =
cos φ

sinh a
,

and so differentiating and using (4.1) and (4.10),

dx

da
= − 1

cosh x

− sin φdφ
da

sinh a − cosφ cosh a

sinh2 a

= − 1

cosh x

− sin φ sinh2 a/(cos φ cosh b) − sinh a sinh x cosh a

sinh2 a

= − 1

sinh a

[ − sin φ sinh a

cos φ cosh b cosh x
+ cosh a

sinh x

cosh x

]
=

−1

sinh a
[O(a2) + (1 + O(a2))(1 + O(e−2x))]

=
−1

sinh a
(1 + O(a2)),
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where the fourth equality uses the fact (4.9) that cosφ is bounded away from
zero (depending only on b), that cosh x � 1/a and the fact that (4.4) implies

1

C
a ≤ e−x ≤ Ca(4.12)

if a ≤ b/2 (for some C depending on b). Also note that

∣∣∣1
a
− 1

sinh a

∣∣∣ = O(a).

Integrating we get

|x(s) − x(t)| =

∫ t

s

1

a
+ O(a)da =

∣∣ log
t

s

∣∣ + O(|s2 − t2|).(4.13)

Finally, we prove (4.7). If we differentiate (4.3) with respect to x we get

cosh b cosh x = cosh y
dy

dx
.

Now divide by cosh y and use (4.2) to get

dy

dx
= cosh a = 1 + O(a2).

The chain rule then gives

dy

da
=

dy

dx

dx

da
=

−1

sinh a
(1 + O(a2))(1 + O(a2)) =

−1

sinh a
+ O(a),

as desired. �

Next we wish to prove the main estimate of this section:

Lemma 4.2. Assume b < 1/2. Suppose Qs, Qt are Lambert quadrilaterals
with a-sides of length s and t respectively and have equal length opposite
sides b in both cases. Assume s/10 ≤ t ≤ s ≤ b/2. Let ε = (s − t)/s. There
is a C < ∞ depending only on b so that the following holds. There is a
quasiconformal mapping f : Qs → Qt which is affine on the edges a and b
and whose dilatation satisfies

K(x) ≤
{

1 + Cε ρ(x, a) ≤ 1

1 + Cε exp(−2ρ(x, a)), ρ(x, a) ≥ 1.
.
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Proof. We know from (4.4) that x = x(s) is bounded away from zero
uniformly (in terms of b). If x ≤ 1, then the lemma follows from Corollary
3.2. Thus we may assume x > 1.

Choose points x0, . . . xn along the x-side of Qs inductively as follows. The
point x0 is the corner of Qs where the x and b sides meet. The point y0 is the
other endpoint of the b-side. The point x1 is the point on the x-side which
is distance b from x0. Consider the geodesic segment which is perpendicular
to the x-side at x1 and let y1 be the point where it hits the y-side of Qs and
let d1 be its length. Let x2 be the point on the x-side of Qs which is distance
d1 from x1 (and so that x1 separates x2 and x0). In general, given xn−1,
consider the geodesic segment perpendicular to x through xn−1, let yn−1 be
the point of intersection of this geodesic with the y-side of Qs and let dn−1

be the distance from xn−1 and yn−1. Then let xn be the point on the x-side
of Qs which is distance dn−1 from xn−1 and which is separated from x0 by
xn−1. See Figure 8.

• •

• •
xn n-1x

yn

dn-1dn

yn-1

dn-1

Figure 8: Definition of Sn−1

Continue until the first time that the distance from xn to the a-side of Qs is
< 1. Let N denote the index when this occurs. For n = 1, . . . N , let Sn ⊂ Qs

denote the quadrilateral with corners xn−1, xn, yn, yn−1. Let T = Qs \∪N
1 Qn.

See Figure 9.

T∼

T
1S

nS S2

2S∼Sn
∼ S1

∼

Figure 9: Decomposing Qs and Qt

Now divide the quadrilateral Qt in a similar way. Choose points x̃n on its x-
side so that x̃0 is the corner of its b and x sides and ρ(x̃n, x̃0) = ρ(xn, x0) for
n = 1, . . . N . Take the perpendiculars to the x-side of Qt though these points
and let ỹn be the points of intersection with the y-side of Qt and d̃ be their
lengths. Let S̃n be the corresponding quadrilaterals and let T̃ = Qt \ ∪N

1 S̃n.
See Figure 9.
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By Lemma 4.1 we know |φ(s) − φ(t)| ≤ C(s2 − t2) = O(s(s − t)). The
segment dn meets the y edges of Qs and Qt at angles between φ and π/2.
Thus (4.1), (4.12) and (4.4) imply

dn − d̃n ≤ Cs(s − t)eρ(xn,x0) = C(1 − t

s
)e−2xeρ(xn,x0) = Cεe−x−ρ(xn,a).

See Figure 10 (in this figure, the vertex of φ is at the origin and the b-sides
for the two quadrilaterals coincide).

b

x0

nxyn

dn

∼yn
dn
∼

Figure 10: Estimating dn − d̃n

Using (4.4) and the fact that dn is the b-side of a Lambert quadrilateral
itself, we see

dn ≥ Ca sinh ρ(xn, a) ≥ Ce−xeρ(xn,a) = Ce−ρ(xn,x0).

Thus
dn/d̃n = 1 + O(εe−2ρ(xn,a)).

Thus by Corollary 3.2 there is a 1+O(εe−2ρ(xn,a))-quasiconformal map from
Sn to S̃n. This gives the lemma on the Sn’s.

Subdivide T (which by our choice of N has x-side of length between 1/2
and 1) into subquadrilaterials with equal length x-sides � a. The corre-
sponding side of T̃ is only longer by a factor of log s

t
+O(a(s− t)) = O(s− t)

by (4.13) and so we can apply Corollary 3.2 and get maps on each sub-
quadrilateral with quasiconformal constant 1 + O(ε). �

The estimate in the previous lemma for the case ρ(x, a) ≥ 1 did not
use the hypothesis that t ≥ s/10, so that estimate is true in general. For
t ≤ s/10 the estimate for ρ(x, a) < 1 becomes K(x) ≤ Cs/t. To prove this,
note that because T and T̃ are both Lambert quadrilateral themselves, we
may place them in the hyperbolic upper half-plane so that the a-sides lie on
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the imaginary axis, the x-side lies on the circle |z| = 1 and the y-sides line
on circles of the form |z| = r for r = es and r = et. The remaining b sides
lie on circles centered on the real axis. See Figure 11. Apply logarithims to
conformally map to horizontal strips.

Figure 11: T and T̃

We now map T to T̃ in a series of steps as illustrated in Figure 12.

Figure 12: The map from T to T̃

First we map T to W1 ⊂ P1 with the b side going to a radial line segment
and hyperbolic arclength on this edge being mapped affinely onto arclength
of the image. This can be done with quasiconformal constant C1 bounded
only depending on b. Next we map W1 → W2 ⊂ T̃ by the map reiθ →
rs/tei( p

i
2−a(π

2
−θ)) where a is chosen so that ∂W1 ∩ {|z| = 1} is mapped onto

the a2 edge of Pλ. Since this edge of W1 has (Euclidean) length uniformly
bounded below, and the (Euclidean) length of the image is at most π/2, we
see that a is uniformly bounded. Thus this map has quasiconformal constant
≤ C2

s
t
, where C2 is absolute. Finally we map W2 to Pλ by mapping the radial

edge onto the b edge of T̃ with arclength mapping affinely. As above, this
can be done with constant C1 which depends only on b. Composing these
steps gives the desired map with a quasiconformal constant of C2

1C2
s
t
. This

finishes the proof of the estimate.

If t > s, then it is easy to formulate and prove the corresponding esti-
mates by considering the inverse of the map constructed above.



Quasiconformal mappings of Y-pieces 643

5. Decomposing a L-bounded hexagon

Let H be a hyperbolic hexagon with all right angles and suppose the sides
have lengths a1, b3, a2, b1, a3, b2, ordered counter-clockwise around the bound-
ary (so aj is opposite bj). See Figure 13.

a1

2a

3a
1b

2b

3b

Figure 13: Labeling sides of a hexagon

The following two relations are Theorems 7.19.1 and 7.19.2 of [2],

sinh a1

sinh b1

=
sinh a2

sinh b2

=
sinh a3

sinh b3

,(5.1)

cosh b1 sinh a2 sinh a3 = cosh a1 + cosh a2 cosh a3.(5.2)

Note that this easily implies that right hexagon is determined by the lengths
of three alternating sides.

Throughout this section we will assume that the three sides a1, a2, a3 are
all bounded by some L < ∞. Such a hexagon will be called L-bounded.
However, if any of these sides is very short then some of the remaining b-
edges will be long. In this section we want to show that any L-bounded
hexagon H can be divided into a central hexagon H0, all of whose edges
are bounded and bounded away from zero in terms of L, and at most three
Lambert quadrilaterals.

To accomplish this, suppose we have two numbers a, b (to be chosen
later) with a ≤ 1

2
b < 1/4. If aj ≤ a, j = 1, 2, 3, then form a Lambert

quadrilateral, Qj, with aj as one side, two other sides lying along the edges
bj−1 and bj+1 (here and below indices are taken mod 3 in {1, 2, 3}) and the
fourth edge has length b and makes a right angle with bj−1. See Figure 14.

a1

2a 3a

2b
3b

b b

1x y1

y
3

2x

1b

Q
2

H0

Q3

Figure 14: A hexagon with two short sides
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The unique non-right angle in Qj will be denotes φj . Let xj−1 be the length
of the edge of Qj which lies in bj−1 and let yj+1 be the length of the edge
of Qj which lies on bj+1. We shall see below that Qj is a subset of H if a
and b are chosen correctly. If aj > a then we set Qj = ∅ and xj = yj = 0.
Let H0 = H \∪3

j=1Qj. The six sides of H0 are in an obvious correspondence
with those of H and will say “the side of H0 in position aj (or bj)”.

Lemma 5.1. There is a choice of a, b so that H0 ⊂ H and the side lengths
of H0 are bounded and bounded away from zero depending only on L, a, b.

Proof. Since the sides of H0 in positions a1, a2, a3 are all ≤ L and by
construction have length ≥ a, we only have to check the sides in positions
b1, b2, b3. Without loss of generality it suffices to consider just b1. There are
four cases depending on whether a2 > a and a3 > a.

Case 1: First suppose both a2, a3 > a, so that the b1-edge of H0 is the
same as the corresponding edge of H, i.e.,has length b1. By (5.2),

cosh b1 =
cosh a1 + cosh a2 cosh a3

sinh a2 sinh a3

≤ 2eL + 2e2L

a2
,

and so b1 is bounded above depending only on a and L. On the other hand,
by (5.2) and (4.8)

cosh b1 =
cosh a1 + cosh a2 cosh a3

sinh a2 sinh a3

≥ e−2L + (1 + e−2a2)(1 + e−2a3)

≥ 1 + 2e−2a,

which implies b1 is bounded below depending only on a.

Case 2: Next suppose a2 ≤ a and a3 > a. Then the side of H0 in
position b1 has length b1 − x1. By (4.1)

sinh x1 =
cos φ2

sinh a2

,

and by (5.2),

cosh b1 =
1

sinh a2

cosh a1 + cosh a2 cosh a3

sinh a3

(5.3)

≥ 1

sinh a2

cosh a3

sinh a3

≥ 1

sinh a2

.

This implies

2eb1 ≥ eb1 + e−b1 = 2 cosh b1 ≥
2

sinh a2

≥ 2C

a2
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for some C = C(b) since a2 ≤ a < b. Hence

b1 ≥ log
1

a2

+ log C(b) ≥ log
1

b
+ log C(b),(5.4)

independent of a or L. By (4.2)

sin φ2 =
cosh a2

cosh b
≥ 1

cosh b
,

so if b is small enough then φ2 is a close as we wish to π/2 (independent of
a). Assume we have fixed b so small that cosφ2 ≤ 1

2
and b1 ≥ 1 (using (5.4).

By (4.1) and (5.3)

sinh x1 =
cos φ2

sinh a2

≤ 1/2

sinh a2

≤ 1

2
cosh b1,(5.5)

and since b1 ≥ 1 this implies b1 − x1 ≥ C1 for some absolute C1 which does
not depend on a, b or L (as long as b satisfies the choices made above).

To prove the upper bound, note that if a1, a2 ≤ L and a3 ≥ a, then

cosh b1 =
1

sinh a2

cosh a1 + cosh a2 cosh a3

sinh a3

(5.6)

≤ 1

sinh a2

( cosh a1

sinh a3

+ cosh a2
cosh a3

sinh a3

)

≤ 1

sinh a2

( eL

a
+ eL(1 + e−2a)

)
≤ A(a, L)

sinh a2

.

Thus

sinh x1 =
cos φ2

sinh a2

≥ cosφ2

A(a, L)
cosh b1,

which implies b1 −x1 ≤ C2 for some absolute C2 which depends on a and L.
This proves that b1 − x1 is bounded above and below in terms of a, b and L.

Case 3: Next assume a2 > a, but a3 ≤ a. Since a2 and a3 play symmetric
roles in (5.2), the argument above shows that b1 − x2 is bounded above and
below uniformly. We shall now show that x2 − y1 is small, and hence that
b1 − y1 is also bounded above and below. By (4.2)

cosh y1 sin φ3 = cosh x2.

Since sin φ3 < 1, this implies

y1 > x2.(5.7)
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Thus b1 − y1 is bounded above since b1 − x2 is. On the other hand,

sin φ3 =
cosh x2

cosh y1

=
ex2 + e−x2

ey1 + e−y1
= ex2−y1

1 + e−2x2

1 + e−2y1
,

and hence

y1 = x2 + log
1

sin φ3

+ log(1 + e−2x2) − log(1 + e−2y1)

≤ x2 + log
1

sin φ3

+ log(1 + e−2x2)

≤ x2 + C,

where C may be as small as we wish if b is small enough. Taking it to be
less than 1

2
C1 (which did not depend on b) we get

b1 − y1 ≥
1

2
C1(5.8)

as our lower bound if b is small enough (independent of L).

Note that the proof of the previous two cases shows that xj ≤ bj and
yj ≤ bj and hence the quadrilaterals Qj are really subsets of H, as claimed
in the lemma.

Case 4: Finally assume both a2, a3 ≤ a. By (5.2),

cosh b1 =
cosh a1 + cosh a1 cosh a3

sinh a2 sinh a3

≥ 2

sinh a2 sinh a3

,

whereas by the middle of (5.5),

sinh x1 ≤
1

2

1

sinh a2

,

sinh x2 ≤
1

2

1

sinh a3

.

Thus

sinh x1 sinh x2 ≤
1

8
cosh b1,

and because b1 ≥ 1 this implies b1 − (x1 + x2) ≥ C3, with C3 independent of
b. Choose b so small that |x2 − y1| ≤ C3/2 and this gives the desired lower
bound.

On the other hand, by (5.2),

cosh b1 =
cosh a1 + cosh a2 cosh a3

sinh a2 sinh a3

≤ eL + e2a

sinh a2 sinh a3

,
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which implies by (5.5),

sinh x1 sinh x2 ≥
1

A(L, a, b)
cosh b1,

which implies b1 − (x1 + x2) is bounded above, depending only on L, a, b.
Since y1 ≥ x2, this gives the desired upper bound.

Note that this shows the quadrilaterals Q1, Q2 and Q3 are disjoint. This
completes all the cases and hence finishes the proof of the lemma. �

Next we record a calculation which we will need later. We will think of
the a1 and a3 sides of our right hexagon as having fixed length, but as a2

as varying and we wish to compute the rate of change of the b-sides. Since
b1 and b3 play symmetric roles we need only compute the derivatives for b1

and b2.

Lemma 5.2. With notation as above

db1

da2

=
−1

sinh a2

(1 + O(e−2b3)),(5.9)

db2

da2

= O(a2),(5.10)

where the constants depend only on L, the upper bound for a1, a2, a3.

Proof. If we think of (5.2) as giving b1 as a function of a2 with a1 and a3

fixed, and differentiate, we get

db1

da2

=
sinh2 a2 cosh a3 − (cosh a1 + cosh a2 cosh a3) cosh a2

sinh b1 sinh2 a2 sinh a3

=
1

sinh a2

sinh a2
2 cosh a3 − cosh a1 cosh a2 − cosh2 a2 cosh a3

sinh b1 sinh a2 sinh a3

=
1

sinh a2

(sinh a2
2 − cosh a2

2) cosh a3 − cosh a1 cosh a2

sinh b1 sinh a2 sinh a3

=
− cosh a3 − cosh a1 cosh a2

sinh a2 sinh b1 sinh a2 sinh a3

=
− cosh b3 sinh a1 sinh a2

sinh a2 sinh b1 sinh a2 sinh a3

=
− cosh b3 sinh a1

sinh a2 sinh b1 sinh a3

=
− cosh b3 sinh a3

sinh a2 sinh b3 sinh a3

=
− cosh b3

sinh a2 sinh b3

=
−1

sinh a2

(1 + O(e−2b3)).
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where the fifth equality holds by (5.2) and the seventh holds by (5.1) and
the constant in the last line only depends on a lower bound for b3. We know
by (5.2) that

cosh b3 =
cosh a1 + cosh a2 cosh a3

sinh a2 sinh a3

≥ 1

sinh a2 sinh a3

+
(cosh a2

sinh a2

cosh a3

sinh a3

)
≥ e−2L + 1,

since a2, a3 ≤ L. Thus b3 is bounded away from zero depending only on L
and so our estimate of the derivative above depends only on L.

To see what happens to the side corresponding to b2 think of (5.2) as
giving b2 as a function of a2 with a1, a3 fixed. Differentiating, we get

db2

da2

=
sinh a2

sinh b2 sinh a1 sinh a3

.

By Theorem 17.18.1 of [2],

cosh t = sinh b2 sinh a3,

where t is the length of the common orthogonal between sides a1 and b1.
See Figure 15.

a1

2a

3a
1b

2b

3b

t

u
v

Figure 15: Definition of t

Let u + v = a1 be the lengths of the subintervals of a1 on either side of t as
in Figure 15. On page 161 of [2] it is shown that

sinh a1 sinh t ≥ sinh u sinh t = cosh a2 ≥ 1,

and hence

db2

da2

=
sinh a2

cosh t sinh a1

≤ sinh a2 = O(a2).(5.11)

�
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Lemma 5.3. Given L < ∞, there is a C = C(L) < ∞ so that the following
holds. Suppose H1 is right, hyperbolic hexagon and alternate side lengths
a1, a2 = s, a3 and suppose s ≤ L. Suppose H2 is another right hexagon with
alternate side lengths a1, a2 = t, a3. Assume s and t are both less than a.
Then the central hexagons H0,1 H0,2 of H1 and H2 as described above have
corresponding sides and angles which differ by less than C|s2 − t2|.

Proof. Five of the angles in H0,1 agree exactly with the corresponding
angles in H0,2. The only one that may disagree is the angle between the
sides in the a2 and b3 positions. This angle is complementary to φ2. So
by (4.11) this angle in the two hexagons differs by less than O(|s2 − t2|) as
desired.

The sides of H0,1 and H0,2 which correspond to positions a1, a2, a3 are the
same length. Thus we need only consider the other three sides b1, b2, b3 (and
since b1 and b3 play symmetric roles, it is enough to consider only b1 and b2).
By Lemma 5.2, db2

da2
= O(a2). Moreover, the side lengths of the quadrilaterals

Q1 and Q3 (if they occur) don’t depend ona2 and hence, integrating as in
(4.11), we see that the side lengths of the central hexagons for H1 and H2

in position b2 differ by at most O(|s2 − t2|).
Next we consider the sides in position b1. By the proof of Lemma 5.1 we

know b3 ≥ y3 ≥ x1. Thus by (4.12) we get

e−2b3 ≤ e−2x1 ≤ a2
2.

Hence, from (4.6) and (5.9) we deduce

dx1

da2

− db1

da2

=
−1

sinh a2

(1 + O(a2
2)) −

−1

sinh a2

(1 + O(a2
2)) = O(a2).

Since y1 does not depend on a2, this implies the sides of the central hexagons
of H1 and H2 corresponding to b1 differ by O(|s2 − t2|).

Finally we have to consider the sides in position b3. By (4.7),

dy3

da2

=
dy3

dx1

dx1

da2

=
1

sinh a2

(1 + O(a2
2)),

with constant depending only on b. Since the roles of b1 and b3 are symmet-
ric, we also have

db3

da2

=
1

sinh a2

(1 − O(a2
2))

and so we can complete the proof just as in the previous case. �



650 C. J. Bishop

Lemma 5.4. Suppose H1 and H2 are two L-bounded right hexagons with
a-sides (a1

1, a
1
2, a

1
3) and (a2

1, a
2
2, a

2
3) respectively. Assume a1

1 = a2
1, a1

3 = a2
3

and a2
2 = (1 − ε)a1

2 ≤ a1
2. Then there is a quasiconformal map f : H1 → H2

which is affine on the a-sides, is isometric on the boundary quadrilaterals
associated to a1

1 and a1
3 and has dilatation satisfying

Kf(z) ≤ 1 + Cε exp(−2ρ(z, a1
1)).

Proof. Since the quadrilaterals corresponding to sides a1 and a3 are iden-
tical for both hexagons, we may clearly take the map to be isometric in
them. If a1

1 ≥ a (where a is as in Lemma 5.1) then apply Lemma 3.3 to
H1 \ (Q1 ∪Q3) using the estimates of Lemma 5.3. This gives the desired es-
timate since this region has bounded diameter. If a1

1 < a then apply Lemma
3.3 to H1 \ (Q1 ∪ Q2 ∪ Q3) to get the estimate in the central hexagon and
apply Lemma 4.2 to the quadrilateral Q1. �

6. Quasiconformal mappings of Y-pieces

A Y-piece is a bordered Riemann surface which is topologically a sphere with
three disks removed and in which each of the three boundary components
is a hyperbolic geodesic. A generalized Y-piece is similarly defined, except
that we also allow boundaries of length zero, i.e., instead of removing a disk
we may remove a point.

A Y -piece can always be realized as a hyperbolic octagon with three side
pairings. Moreover, there is a line of symmetry which divides the octagon
into two isometric right hexagons. The alternate sides of these hexagons are
given by a1 = a/2, a2 = b/2 and a3 = c/3. See Figure 16.

a

b c

a/2

b/2 c/2

Figure 16: Parameterizing a Y-piece

As noted following (5.2), a right hexagon is determined by three alternating
sides, and so we see that a Y piece is uniquely determined by its three side
lengths.

The part of Y corresponding to the central hexagons will be called the
central piece of Y . Note that the diameter of the central part is bounded
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depending only on L. The parts of Y corresponding to the quadrilaterals
Qj will be called the boundary pieces of Y . Given ε > 0, the thin part of R
consists of the points where the injectivity radius of is ≤ ε and the thick part
is where the injectivity radius is > ε. The following is easy and its proof is
left to the reader.

Lemma 6.1. Given L < ∞, there is an ε > 0 in the definition of the thick
and thin parts of R and a C < ∞, so that for any L-bounded Y -piece, the
ε-thin part of R∩Y is contained in the boundary pieces of Y and the ε-thick
part of R ∩ Y is contained in a C-neighborhood of the central piece.

We will think of two Y-pieces as being close to each other if their bound-
ary lengths are close, i.e., we define

d(Y1, Y2) = max(| log
a1

a2

|, (| log
b1

b2

|, (| log
c1

c2

|).

For generalized Y-pieces we interpret | log a1

a2
| as zero if a1 = a2 = 0 and as

+∞ if one is zero and the other is not. Similarly for the b and c terms.

Lemma 6.2. Suppose Y1 and Y2 are two L-bounded generalized Y-pieces
with boundary lengths (a1, b1, c1) and (a2, b1, c1) respectively. Assume that
d(Y1, Y2) = ε = | log a1/a2| ≤ 2. Then there is a C = C(L) and a quasicon-
formal map f : Y1 → Y2 with constant K = 1 + Cε which is affine on each
of the boundary components. Moreover, the Beltrami coefficient µ of f is
supported on the boundary piece associated to the a1 boundary component γ
and the central part of Y1 and it satisfies

|µ(z)| ≤ Cε exp(−2dist(z, γ))

In other words, if a is small, the corresponding dilatation decays exponen-
tially fast away from the boundary and is zero in the thin parts (if they exist)
corresponding to the two other boundary pieces.

Proof. For Y -pieces with three non-degenerate boundary components, the
proof is immediate from the results of the previous sections (write it as
a union of two symmetric hexagons, apply the previous results and use
symmetry to show the map is continuous on the Y -piece). If there are one or
more punctures on the boundary, then we obtain the result by taking limits
over a sequence of non-degenerate Y -pieces that approach the generalized
Y -piece. �
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The following is an easy consequence which is used in the paper [6]

Lemma 6.3. Suppose Y1 and Y2 are two L-bounded generalized Y-pieces and
let D = d(Y1, Y2). Then there is a quasiconformal map f : Y1 → Y2 with
constant K = K(L,D) which is affine on each of the boundary components.
Moreover, the dilatation Kf of f satisfies

|Kf(z)| ≤ 1 + C(L,D) exp(−2dist(z, ∂Y ))
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