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Multipliers and weighted
∂-estimates

Joaquim Ortega-Cerdà

Abstract

We study estimates for the solution of the equation ∂u = f
in one variable. The new ingredient is the use of holomorphic

functions with precise growth restrictions in the construction of

explicit solutions to the equation.

1. Introduction.

In the present paper we will consider the equation ∂u = f in one
dimension. This equation plays a key role in the study of many problems
in complex analysis and, for this reason has been extensively studied. It is
of particular interest to have good estimates of the size of u in terms of the
size of f (see [Ber94] for a survey on the state of the art of this problem).
The purpose of this note is to show how a construction of holomorphic
functions with very precise growth restrictions can yield estimates for the
solutions to the ∂-equation. With this tool we have been able to obtain
new proofs of some well-known results and some new estimates as well.

The most basic estimate is given by Hörmander’s theorem (see [Hör90,
p. 92]):

Theorem (Hörmander). Let φ be a subharmonic function defined in a
domain Ω ⊆ C such that ∆φ ≥ ε for some ε > 0. Then there is a solution
u to the equation ∂u = f such that

‖u e−φ‖2 � ‖fe−φ‖2 .
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Remark. We write f � g if there is a constant K such that f ≤ Kg, and
f � g if both f � g and g � f .

We will focus our attention on the case in which Ω is either the disk
or the whole plane. When Ω = C, M. Christ has proved that the solution
operator that solves the ∂ equation with minimal weighted L2 norm is also
bounded on weighted Lp norms, where 1 ≤ p ≤ ∞ if we assume some
regularity on the weight (see [Chr91]). His theorem is as follows:

Theorem 1 (Christ). Let φ be a subharmonic function in C such that
there is a radius r > 0 such that ∆φ(D) ≥ 1 for any disk D of radius
r. Moreover we assume that ∆φ is a doubling measure. Then there is a
solution u to the equation ∂u = f such that

‖u e−φ‖p � ‖fe−φ‖p ,

for all p ∈ [1,∞].

As M. Christ mentions, the doubling hypothesis on ∆φ is not of an
essential nature. It can be relaxed, but nevertheless one has to assume
some regularity on φ apart from the strict subharmonicity if one wants
to obtain L∞ estimates for instance. This is clearly seen in the following
example, due to Berndtsson:

Example. Take

φ(z) =
∑
n≥3

1
n2

log
∣∣∣z − 1

n

∣∣∣ .

This is a subharmonic function in D that is bounded (above and below)
in 1/2 < |z| < 1 and moreover φ(1/n) = −∞. Choose any smooth datum
f with support in a small disk lying inside the annulus 1/2 < |z| < 1 and
such that

∫
D

f(z) dm(z) �= 0.
If there is a solution u to the equation ∂u = f in D with ‖u e−φ‖∞ �

‖fe−φ‖∞, then u(1/n) = 0 since the right-hand side is finite. In addition u
is holomorphic outside the support of f . That means that u is identically
0 in a neighborhood of ∂ D. This cannot be so, because 0 =

∫
∂D

u dz =∫
D

∂u dm(z) �= 0.
There are more sophisticated examples due to Fornæss and Sibony

[FS91] that show that it is also impossible to have weighted Lp estimates as
in Hörmander’s theorem for any p > 2 if we do not assume some regularity
on the weight.
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In another direction, it is possible to extend Hörmander’s basic theo-
rem to a larger class of weights including some non-subharmonic functions.
This was done initially by Donnelly and Fefferman in [DF83] and many
others afterwards (see [BC99] and the references therein). A variant of
their theorem (in a particular case of a weight in the disk) is the following:

Theorem. Let φ be a subharmonic function in the unit disk D such that
its (1 − |z|2)2 ∆φ > ε for some ε > 0. Then there is a solution u to the
equation ∂u = f with∫

D

|u(z)|2
1 − |z|2 e−φ dm(z) �

∫
D

|f(z)|2 e−φ(1 − |z|2) dm(z) .

For a simple proof of this case see [BOC95].
If we assume some regularity on the weight, we can extend this result

to Lp norms. We require the Laplacian of the weight to be locally doubling
(see Section 2 for the precise definition). We will prove the following:

Theorem 2. Let φ be a subharmonic function in the unit disk D such
that ∆φ(D(z, r)) > 1 for some r > 0 where D(z, r) is any hyperbolic
disk with center z ∈ D and radius r. Moreover we assume that ∆φ is a
locally doubling measure with respect to hyperbolic distance. Then there is
a solution u to the equation ∂u = f with∫

D

|u(z)|p
1 − |z|2 e−φ dm(z) �

∫
D

|f(z) (1 − |z|2)|p
1 − |z|2 e−φ dm(z) ,

for any p ∈ [1, +∞) and

sup |u| e−φ � sup |f(ζ) (1 − |ζ|)| e−φ(ζ) .

Remark. Observe that in the case p ∈ [1, +∞) we could have rewritten
the statement of the theorem if we absorb the factor 1/(1 − |z|) in the
weight φ. In this way it will look formally more similar to Hörmander’s
theorem, but we are allowing weights such that (1 − |z|2)2∆φ > (−1 + ε).
In particular, it includes functions φ which are not subharmonic.

This is our main theorem, although the emphasis should be on the
method of proof rather than the new estimates. For instance, it is also
possible to show with the same type of proof that Theorem 1 holds when
the measure ∆φ is locally doubling instead of doubling.
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Our main tool (the multiplier) is a holomorphic function with very
precise growth restrictions. It is constructed in Section 3 and it may exist
under a less restrictive hypothesis, as in [LM99]. Our construction yields
a more precise result that it is needed when we want to obtain estimates
for the ∂ equation.

With the same technique we can deal with some degenerate cases
when the weight φ is harmonic in large parts of the domain. In such a case
one has to impose extra conditions on the data of the equation, as in the
following theorem which may be of interest in the study of the so-called
weighted Paley-Wiener spaces.

Definition. A positive Borel measure µ in C is a two-sided Carleson
measure whenever there is a constant C > 0 such that µ(D(x, r)) ≤ C r
for all disks of center x ∈ R and any positive radius r.

Theorem 3. Let φ be a subharmonic function in C such that the measure
∆φ is a locally doubling measure supported in the real line and ∆φ(I(x, r))
> 1 for some r > 0 where I(x, r) is the interval in R of center x and
radius r. Consider the equation ∂u = µ, where µ is a compactly supported
measure such that e−φ d|µ| is a two-sided Carleson measure. Then there
is a solution u with

lim sup
z→∞

|u(z)| e−φ(z) = 0 and |u(x)| e−φ(x) ≤ C
(
1 +

∫
|z−x|<1

d|µ|(z)
|x − z|

)
,

for any x ∈ R, where C does not depend on the support of µ.

The solution u to the equation f that we present is fairly explicit. It
is not the canonical solution (i.e. the minimal L2 weighted solution). For
instance in the case of Theorem 1 our solution u is given by an integral
kernel

(1) u(z) =
∫

C

eφ(z)−φ(ζ) k(z, ζ) f(ζ) dm(ζ) ,

which behaves differently from the canonical one. The kernel for the canon-
ical solution can sometimes be estimated. If the weight φ is of the form
φ(z) = b(x) and 0 < c−1 < b′′(x) < c, then the kernel k′ of the canonical
solution has at most an exponential decay, i.e. there is a constant A such
that lim supz→∞ |k′(z, 0)| exp (A |z|) = ∞ ([Chr91, Proposition 1.18]). The
kernel of our solution has a much faster decay, namely
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Proposition 1. Under the hypothesis of Theorem 1 there is a kernel
k(z, ζ) such that the function u given by (1) is a solution to the equation
∂u = f and for some ε > 0,

|k(z, ζ)| � e−ε|z−ζ|2

|z − ζ| .

However, there are some instances in which the canonical kernel has
a faster decay than our solution (when ∆φ is very large).

The structure of the paper is the following. In Section 2 we will
prove some basic results on locally doubling measures which will be needed
later. In Section 3 we will construct our main technical tool, the so-called
multiplier. We will do so in the disk and in the whole plane. The proof
follows the same lines in both cases. Finally in Section 4 we will show how
we can use the multipliers to prove Theorem 2 and a new proof of Theorem
1 in which the doubling condition on ∆φ is replaced by the locally doubling
condition. We will also sketch how the same ideas can be used to prove
Theorem 3 and Proposition 1.

2. Locally doubling measures.

In this section we compile some basic facts we need on locally doubling
measures. There are some intersections with the analysis of [Chr91]. Recall
that we always work in a domain Ω which is either the plane or the disk.
When the domain is C the natural distance is Euclidean; in the case of D

we will work with hyperbolic distance.

Definition. A measure µ in Ω is called a locally doubling measure when-
ever there is a constant C > 1 such that µ(B) ≤ C µ(B′), for all balls
B ⊂ Ω of radius smaller than 1, where B is the ball with the same center
as B′ and twice its radius.

Example. There are many locally doubling measures that are not dou-
bling. They can grow faster, for instance dµ(z) = e|z| dm(z) is a locally
doubling measure in C equipped with Euclidean distance, while any dou-
bling measure has at most polynomial growth. Moreover they do not
need to satisfy any strong symmetric condition, for instance the measure
(Im z)3 dm(z) for Im z > 0 and (Im z)2 dm(z) for Im z < 0 is locally dou-
bling and it is not doubling.
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We start with an elementary lemma which is in fact an alternative
description of locally doubling measures.

Lemma 1. Let µ be a locally doubling measure in Ω. Then there is
a γ > 0 such that for any balls B′ ⊂ B of radius r(B′) and r(B) < 1
respectively, we have

( µ(B)
µ(B′)

)γ

� r(B)
r(B′)

�
( µ(B)

µ(B′)

)1/γ

.

Proof. The left inequality is essentially [Chr91, Lemma 2.1] and the right
inequality follows directly from the definition. The converse is also true. If
a measure satisfies the inequalities with B = 2B′ then it is locally doubling.

As a consequence of this lemma any locally doubling measure has no
atoms. But it is possible to prove more:

Lemma 2. Given any segment I ⊂ Ω and any locally doubling measure µ
in Ω, then µ(I) = 0.

Proof. Assume that this is not the case. Then there is a subinterval
I ′ ⊂ I such that µ(I ′) > 0 and such that the square of side length |I ′| that
is bisected by I ′ is inside Ω (see Figure 1). We define a doubling measure
ν in the interval J which is the base of the square that contains I ′. The
measure ν(A) of any set A ⊂ J is defined as ν(A) = µ(RA), where RA is
the set in the square that projects orthogonally onto A. Since µ is locally
doubling, then ν is doubling, therefore it has no atoms. This implies that
µ(I ′) = 0.
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Figure 1.
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Let us introduce some notations. Let µ be a locally doubling measure
in Ω with µ(Ω) = +∞.

Definition. For any z ∈ Ω, denote by ρ(z) the radius such that

µ(B(z, ρ(z)) = 1 .

This is always well defined since for any locally doubling measure in
Ω, the measure of any sphere is 0 (with the same proof as in Lemma 2).
Thus the function r −→ µ(B(z, r)) is continuous and strictly increasing.

Since the measures that we consider (in Theorems 1, 2 and 3) are all
measures such that µ(B(z, r)) ≥ 1 for some r uniformly in z, then ρ(z) has
an upper bound, but it can be very small.

The following claim is an immediate consequence of Lemma 1.

Claim 1. Let µ be a locally doubling measure such that ρ(z) has an upper
bound. Then for any K > 0 there is a CK such that 1/CK < ρ(z)/ρ(w) <
CK whenever

d(z, w) ≤ K max {ρ(z), ρ(w)} .

Thus the radius of balls of measure one do not change very abruptly.
The following estimate is basic in our analysis:

Lemma 3. If µ is a locally doubling measure in Ω, then there is an m ∈ N

such that for any δ > 0 ,

sup
w∈Ω

∫
δρ(w)≤d(z,w)<1

( ρ(z)
d(z, w)

)m

dµ(z) < Cδ < +∞ .

Proof. We split the integral into two. In the first we integrate over the
region δρ(w) < d(z, w) < ρ(w). In this region ρ(z) � ρ(w), therefore the
integral is bounded by C ′

δµ(B(w, ρ(w)). In the second we integrate over
the region ρ(w) ≤ d(z, w) ≤ 1. We split this into rings of doubling size
and we may estimate it by

k∑
n=0

∫
2n<d(z,w)/ρ(w)<2n+1

( ρ(z)
2nρ(w)

)m

dµ(z) ,

where k is such that 1 < 2kρ(w) ≤ 2.
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Consider now the ball B′ of center z and radius ρ(z) and the ball B of
center w and radius C d(z, w) � 2nρ(w). The constant C is chosen in such
a way that C d(z, w) ≥ ρ(z) + d(z, w). This is always possible, since ρ(z)
and ρ(w) are equivalent whenever z is close to w. Therefore B′ ⊂ B, the
radius of B is smaller than 1 and we may apply Lemma 1. We estimate
ρ(z)/(2nρ(w)) by (C/µ(B(w, 2nρ(w)))γ , and the integral is bounded by a
constant times

k∑
n≥0

1
(µ(B(w, 2nρ(w)))mγ−1

=
k∑

n≥0

µ(B(w, ρ(w)))mγ−1

(µ(B(w, 2nρ(w)))mγ−1
.

We apply Lemma 1 to this expression and compare the quotient of mea-
sures by the quotient of radii (we consider 1 = µ(B′) = µ(B(w, ρ(w)) as
the numerator) and obtain

C

k∑
n=0

( ρ(w)
2nρ(w)

)(mγ−1)/γ

< +∞

provided that we choose m so that mγ > 1.

3. The multipliers.

The main tool used to prove these results is the construction of the
so-called multipliers. These are holomorphic functions that have very pre-
cise growth control. They have been used to solve some interpolation and
sampling problems in several function spaces (see [OCS98], [LS94]) and
also the zero sets as in the Beurling-Malliavin theorem (see also [Sei95]).
They all boil down to an approximation of subharmonic functions by the
logarithm of entire functions outside an exceptional set. The most general
result of this type is due to Lyubarskĭı and Malinnikova, [LM99], where
they do not assume any regularity condition on the Laplacian of the sub-
harmonic function. However we need a more precise description than theirs
on the exceptional set in which the approximation need not hold.

The following theorem is a result by Lyubarskĭı and Sodin which will
serve as a model (see [LS94] for a proof).

Theorem (Lyubarskĭı-Sodin). Let φ be a subharmonic function in C such
that its Laplacian satisfies ∆φ � 1. Then there exists an entire function f
with a uniformly separated zero set Z(f) (i.e. infa,b∈Z(f),a�=b d(a, b) > 0)
such that

|f(z)| � eφ(z) ,

when |z − a| ≥ ε for all a ∈ Z(f).
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In the case of the disk the following theorem from Seip, [Sei95] is the
analogue to the multiplier lemma of Lyubarskĭı and Sodin,

Theorem (Seip). Let ψ be a subharmonic function in D such that its
Laplacian verifies (1 − |z|2)2∆ψ � 1. Then there is a function g ∈ H(D),
with a uniformly separated zero set Z(g), and

|g(z)| � eψ(z) ,

when |z − a|/|1 − a z| ≥ ε for all a ∈ Z(g).

We will need an analogous theorem for locally doubling measures in
C and in D.

Theorem 4. Let ψ be a subharmonic function in Ω such that its Laplacian
∆ψ is a locally doubling measure, with the property ∆ψ(D(z, R)) > 1 for
all disks of some large radius R > 0. Then there is a holomorphic function
h with zero set Z(h) = Λ such that

d(z, Λ)
ρ(z)

� |h(z)| e−ψ(z) �
(d(z, Λ)

ρ(z)

)M

,

for some fixed M ∈ N, where d(z, Λ) is the distance (in the appropriate
metric) from z to Λ.

Remark. It will follow from the construction of h that d(z, Λ) � ρ(z),
thus |h| � eψ outside a set Eh composed of small disks around the zeros
of h: Eh = ∪λ∈ΛD(λ, ερ(λ)).

With a slight refinement of the construction it is possible to prove
that the zero set Λ can be chosen in such a way that

d(λi, λj) ≥ εmax {ρ(λi), ρ(λj)} ,

for some ε > 0 and M can be chosen to be 1, but we won’t need this here.

We will simultaneously prove Theorem 4 on the multipliers in the disk
and in the plane, since we have to follow the same steps. To begin with,
we need a partition of the domain into rectangles that is well adapted to
the measure and the metric.

Lemma 4. Assume that µ is a locally doubling measure in Ω with
µ(D(z, R)) > 1. Given any N ∈ N there is a partition of Ω into rectangles
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{Ri}i∈I such that µ(Ri) = N and if we denote by Li the length of the
longer side of Ri and li the length of the smaller side, then supi∈I Li/li =
L(N) < +∞.

Remark. When Ω is a disk, one has to understand that by “rectangles”
we mean rectangles in polar coordinates. This lemma is basically the
partition theorem from [Yul85], but we include a proof, since the doubling
assumption (which is not needed) makes it particularly easy.

Proof. We start by assuming that N = 1, the general case follows if we use
the same construction with the measure σ = µ/N instead of the measure
µ. We will first find a partition into rectangles {R̃i}i∈I in such a way that
µ(R̃i) ∈ N, 1 ≤ µ(R̃i) ≤ C and with the ratio of side-lengths bounded and
C is the doubling constant. Later on, we will refine this partition in order
to obtain rectangles of mass one.

Recall that there is some R > 0 such that µ(D(z, R)) > 1 for all z ∈ Ω.
Let us partition the plane (see next paragraph for the disk) into parallel
strips of width R. Then, we slice each strip in rectangles of mass a natural
number (the sides of the rectangle have no mass because of Lemma 2).
The length of any piece will be between R and 2R. Since any square of
size R×R has mass at least 1, it is possible to slice the strip in such a way
that the resulting rectangles have the ratio between the sides bounded by
2. We have no upper bound of the mass of these rectangles; we only know
that it is a natural number.

In the case of the domain being the disk, one has to replace the strips
by annuli centered at the origin of width between R and 2R and in such
a way that they all have mass which is a natural number. Now we split
each annulus in rectangles of integer mass. The length of the sides will be
between R and 2R, except possibly the last one which closes the circle and
which has to been taken of side-length between R and 3R. In any case,
the resulting rectangles have the ratio of lengths of sides bounded by 3 and
again without control on the upper bound of the mass.

From now on the procedure in the disk and in the plane will be the
same. We will divide each rectangle in two. All the resulting rectangles
will still have integer mass and the ratio of the sides will always remain
bounded by 3. We will bisect each rectangle until the mass is smaller than
the doubling constant C of the measure.

The bisection is done as follows: denote the original rectangle by
R = [a, a + w] × [b, b + l] where l ≤ w ≤ 3 l. Consider a smaller auxiliary
rectangle R′ ⊂ R of the form R′ = [a+w/2−h/2, a+w/2+h/2]× [b, b+ l]
with an auxiliary h ≤ w so that µ(R′) = 1. The length h of R′ cannot
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be very large. If h > w/3, then R ⊂ 2R′ and µ(R) is already smaller
than the doubling constant C, thus we do not need to bisect R. Since
µ(R′) = 1, there must be a 0 < t < h such that µ(R1) ∈ N, where
R1 = [a, a + w/2 − h/2 + t] × [b, b + l]. We denote by R2 = R \ R1. It
also verifies µ(R2) ∈ N. Finally it is easily checked that l/3 ≤ w/3 ≤
w/2 − h/2 + t ≤ w ≤ 3 l, therefore the quotients of the sides-length of R1

are bounded by 3 and similarly with R2.
Thus far, the rectangles are not very deformed and all have a mass

between 1 and C. In order to obtain rectangles of mass 1, we divide each
of them into rectangles of mass one by cutting along the direction of the
longest side. The local doubling condition ensures that all of them will
be essentially of the same proportion (we use Lemma 1). At most we are
dividing each rectangle in C pieces, therefore the resulting rectangles have
a bounded ratio of side-lengths as desired.

The family of rectangles that we have just constructed looks very much
like squares, since the excentricity is bounded, but moreover the size of the
rectangles changes very slowly, along with ρ(z):

Claim 2. The family of rectangles {Ri} constructed in Lemma 4 has the
following two properties :

• The ratio between the diameter of R and ρ(z) for any z ∈ R is
bounded above and below by two constants independent of R and z ∈ R.

• For any K > 0 there is a constant CK > 0 such that whenever
KRi ∩ KRj �= ∅ the ratio between the diameters of Ri and Rj is bounded
by CK .

Proof. The first assertion follows since R has bounded excentricity and
constant mass. The second one is an immediate consequence of Claim 1.

In order to construct the multiplier, we first select its zeros. We take a
very large N = mk (the same m as given by Lemma 3 and k ∈ N that will
be chosen in Lemma 5). We partition Ω in rectangles {Ri}i∈I of mass N
as in 4. For any i ∈ I, we will choose N points {λi

1, . . . , λ
i
N} which lie near

Ri and such that the moments of order 0, 1, 2, . . . m−1 of the measure ∆φ
restricted to Ri coincide with the corresponding moments of the measure∑N

j=1 δλi
j
. The following lemma addresses this point.

Lemma 5. Let R be a rectangle with ratio of side-lengths bounded by K.
Given any m ∈ N and any C > 1 there is a k ∈ N such that for any
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measure µ in a rectangle R ⊂ C of total mass N = mk, there are two
sets of N points Λ(R) = {λ1, . . . , λN} inside R and κ(R) = {κ1, . . . , κN}
inside 4CKR \ CR satisfying∫

R

zj dµ(z) = λj
1 + · · · + λj

N = κj
1 + · · · + κj

N , j = 0, . . . , m − 1 .

Proof. We want that ∫
R

p(z) dµ(z) =
N∑

i=1

p(λi) ,

for all polynomials of degree less than or equal to m − 1. We may take
any Chebyshev quadrature formula with k nodes in R that is exact for
polynomials of degree m− 1. This can be done, eventually taking k much
larger than m (see [Gau76] or [Kor94], for a survey on quadrature formulas
with equal weights). These are the points that will be used in the con-
struction of the multiplier; they will be in fact the zeros of it. Note that all
the points λj appear with a multiplicity m since there are N = km points
with equal weights. For later use, it is convenient to have an alternative set
of zeros κ1, . . . , κN at our disposal which are separated from the original
ones (outside CR) and still have the same moments. This is easily done.
It can be checked immediately that mp(λj) =

∑m−1
l=0 p(λj + τel2πi/m), for

any τ ∈ C and any polynomial of degree m− 1. Thus, we could take as an
alternative set κj,l = λj + τel2πi/m, j = 1, . . . , k, l = 0, . . . , m− 1, where τ
is chosen so that all κj are outside CR and inside 4CKR.

Now we take a holomorphic function h that vanishes at all the points
{λi

j}i∈I,j=1,...,N , where {λi
j} ⊂ Ri (the rectangles defined in Lemma 4).

This function is defined up to a factor of the form eg, with g ∈ H(Ω). We
choose this g in such a way that

log |h| = ψ − 1
2π

∫
C

log |z − ζ|
(
∆ψ −

∑
δλi

j

)
,

in the case of Ω = C and

log |h| = ψ − 1
2π

∫
D

log
∣∣∣ z − ζ

1 − ζz

∣∣∣(∆ψ −
∑

δλi
j

)
in the case of Ω = D. In both cases ψ is the subharmonic function in the
statement of Theorem 3. Thus the problem has been reduced to show that

(2) M log
d(z, Λ)
ρ(z)

+ C ≤
∫

C

log |z − ζ|
(
∆ψ −

∑
δλi

j

)
≤ log

d(z, Λ)
ρ(z)

+ C ,
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in the case of Ω = C, and when Ω = D, we have to obtain

(3) M log
d(z, Λ)
ρ(z)

+ C ≤
∫

D

log
∣∣∣ z − ζ

1 − ζz

∣∣∣(∆ψ −
∑

δλi
j

)
≤ log

d(z, Λ)
ρ(z)

.

The integral (2) is split as

∑
i∈I

∫
C

log |z − ζ|
(
χ

Ri
(ζ)∆ψ(ζ) −

N∑
j=1

δλi
j
(ζ)

)
.

In any of these integrals we can subtract any polynomial of degree m − 1
to the logarithm since the moments up to order m−1 of χ

Ri
(ζ)∆ψ(ζ) and∑N

j=1 δλi
j
(ζ) are the same. For any Ri far from z (we exclude the rectangle

Rj to which z belongs and its immediate neighbors) we take a polynomial
p of degree m− 1, which is the Taylor expansion of log |z − ζ| about some
point λi

0 ∈ Ri.
The difference between | log |z − ζ| − p(ζ)| is bounded by

C

|z − w|m |ζ − λi
0|m ,

where w is some point in Ri. Since z does not belong to Ri or any of
its immediate neighbors and ζ ∈ Ri, it follows that |z − w| � |z − ζ| and
|ζ − λi

0| � ρ(ζ) by Claim 2. Thus the integral is bounded by a constant
times ∫

Ri

ρ(ζ)m

|z − ζ|m ∆ψ(ζ) + N
ρ(λi

0)
m

|z − λi
0|m

.

Both the integral and the sum are comparable since ρ(ζ) � ρ(λi
0), |z−ζ| �

|z−λi
0| and the mass of the rectangle is N . This estimate is true for all Ri

except the one that contains z and its neighbors. There is a δ > 0 (uniform
in z because of Claim 1), such that the sum over all such rectangles is
bounded by ∫

|z−ζ|≥δρ(z)

ρ(ζ)m

|z − ζ|m ∆ψ(ζ) .

Call M = 2 supz ρ(z). If we integrate in the region δρ(z) ≤ |z− ζ| ≤ M we
may apply Lemma 3. If we integrate in the region |z − ζ| ≥ M , we may
estimate the integral by

∫
|z−ζ|≥M

K
ρ(ζ)2

|z − ζ|3 ∆ψ(ζ) .
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We use that ρ(ζ)2 � ∫
|ζ−w|≤ρ(ζ)

dm(w) and then Fubini’s theorem to ob-
tain ∫

|z−w|≥M/2

K
1

|z − w|3 dm(w) < +∞ .

There are at most a finite number of immediate neighboring rectangles
(uniformly in z ∈ C) to the rectangle that contains z because all of them
have size comparable to ρ(z). In each of them the integral is bounded by

∫
Ri

log
|z − ζ|
ρ(z)

∆ψ(ζ) +
N∑

j=1

log
|λj − z|

ρ(z)
.

The integral is bounded whenever ∆ψ is locally doubling. This is [Chr91,
Lemma 2.3] which is in turn a direct consequence of Lemma 1. The sum
accounts for the term (d(z, Λ)

ρ(z)

)M

in the statement of the theorem.
We will to estimate now the integral (3), which can be expressed as

∑
i∈I

∫
D

log
|z − ζ|
|1 − ζz|

(
χ

Ri
(ζ)∆ψ(ζ) −

N∑
j=1

δλi
j
(ζ)

)
.

As before we can subtract a Taylor polynomial of degree m − 1 at a
point λi

0 ∈ Ri. Now, since
∣∣∣∇m

ζ log
|z − ζ|
|1 − ζz|

∣∣∣ � 1 − |z|2
|1 − ζz| |z − ζ|m ,

the integral is bounded by

(4)

C

∫
ζ /∈δD(z,ρ(z))

(1 − |z|2) (1 − |ζ|2)mρ(ζ)m

|1 − ζz| |z − ζ|m ∆ψ(ζ)

+
∑

log
|z − λi|

ρ(z) |1 − λiz|
,

where the sum is over all λi that are in the rectangle Ri which contains z
and its immediate neighbors.

We split the integral in two pieces. In the first we integrate over the
domain Ω1 = {ζ ∈ D, d(z, ζ) < 1, ζ /∈ δD(z, ρ(z))}, and we use Lemma 3
to obtain ∫

Ω1

ρ(ζ)m

d(z, ζ)m
∆ψ(ζ) < ∞ .
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In Ω2 we have that d(z, ζ) > 1, and (4) is bounded by

∫
Ω2

(1 − |z|2) (1 − |ζ|2)2ρ(ζ)2

|1 − ζz|3 ∆ψ(ζ) .

We may think of (1− |ζ|2)2ρ(ζ)2 as
∫

d(w,ζ)<ρ(ζ)
dm(w) and apply Fubini’s

theorem to obtain
∫

Ω2

(1 − |z|2) (1 − |ζ|2)2ρ(ζ)2

|1 − ζz|3 ∆ψ(ζ) ≤
∫

D

(1 − |z|2)
|1 − z w|3 dm(w) < +∞ .

Theorem 4 is not yet what we need for the estimates to the ∂-equation be-
cause the exceptional set of the multiplier introduces a technical difficulty.
We need to approximate the weight by a holomorphic function everywhere.
This obstruction can be avoided using several multipliers simultaneously
as described in the next proposition:

Proposition 2. Given ψ as in the statement of Theorem 4 there is a
collection of multipliers h1, . . . , hn satisfying the conclusion of Theorem
4. Moreover their exceptional sets (see the remark after Theorem 4) are
disjoint ; i.e. Eh1 ∩ · · · ∩ Ehn

= ∅.

Proof. Take the partition of Ω in rectangles given by Lemma 4. We
distribute the rectangles in a finite number of families of rectangles Ω =
∪n

l=1(∪i∈Il
Rl

i) with the property that any two rectangles of the same family
Rl

i, Rl
j are very far apart (i.e. MRl

i ∩ MRl
j = ∅, for some large constant

M). This is possible with the Besicovitch covering lemma. Now for each
family {Rl

i}i∈Il
we can construct a multiplier hl in such a way that it has

no zeros in any of the rectangles of the family Rl
i nor in their immediate

neighbors. The way to proceed to construct hl is the following: For any
rectangle R that is neither from the family {Rl

i}i∈Il
nor one of its imme-

diate neighbors we take the set of points λ(R) given by Lemma 5. For
the rectangles R from the family or its adjacent rectangles we use the al-
ternative set of points κ(R) also defined in Lemma 5. We build as before
a multiplier hl with zeros at the selected points. It has the right growth
and the additional property that it has no zeros in the rectangles from the
family {Rl

i}i∈Il
and its adjacents. This is clear because we can choose a

constant C in Lemma 5 in such a way that the points κ(R) are neither in
R nor in its immediate neighbors. Moreover they are not so far apart from
R that they reach another rectangle from the family (this can be prevented
by choosing a very large M in the splitting of the rectangles into families).
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Thus the exceptional set for hl does not include any rectangle from the
family {Rl

i}i∈Il
.

4. The ∂-estimates.

This section contains three parts. In the first one, we will see how the
weights that we consider can be regularized without losing generality. In
the second subsection we prove the Lp weighted ∂-estimates in the plane
and the disk. Finally in the last part we indicate how Theorem 3 can be
proved.

4.1. The regularization of φ.

In the hypothesis of the theorem we assume that for some large radius
r > 0, ∆φ(D(z, r)) > 1 at any point z ∈ Ω. This is a condition that ensures
that φ is “strictly subharmonic”. It will be more convenient for us to
assume that ∆φ > εdm(z). This means that the measure is more regular
since there are no “holes” with zero measure. The following proposition
allows us to do so:

Lemma 6. If the measure ∆φ is a locally doubling measure in Ω and
∆φ(D(z, r)) > 1 for some large radius r > 0 and any point z ∈ Ω then there
is a subharmonic weight ψ equivalent to the original, i.e. supΩ |φ − ψ| <
+∞, such that ∆ψ is a locally doubling measure and moreover ∆ψ >
εdm(z) for some ε > 0.

Proof. We will split ∆φ in two measures µ1+µ2. To describe the measure
µ1, let us tile the plane into squares Qj of diameter R > 0 (dyadic squares
in the case of the disk) in such a way that ∆φ(Qj) > 2 for all Qj . This
is feasible because of the hypothesis on the measure. The measure µ1 is
defined as

µ1|Qj
=

1
∆φ(Qj)

∆φ .

The measure µ2 is µ − µ1. It follows from the definition that
1
2

∆φ ≤ µ2 ≤ ∆φ ,

therefore µ2 is a locally doubling measure. It is also true that µ1 is locally
doubling because ∆φ(Qj) does not change abruptly in neighboring squares
and moreover µ1(Qj) = 1.
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We will regularize the measure µ1 by taking the convolution (the in-
variant convolution when Ω is a disk) of it with the normalized character-
istic function of a very large disk

µ̃1 = µ1 �
χ

D(0,2R)

|D(0, 2R)| .

The measure µ̃1 in the plane satisfies ε dm(z) < µ̃1 < Kdm(z) (when
Ω = D, it satisfies ε < (1 − |z|2)2 µ̃1 < K).

It is clear from their definition that µ1(D(0, r)) � r2 in C and
µ1(D(0, r)) � (1 − r)−2 in the disk. The same is true for µ̃1. We intro-
duce integral operators K[µ1] and K[µ̃1] that solve the Poisson equation
∆K[ν] = ν. The operator may be defined as

K[µ] =
∫

Ω

k(z, ζ) dν(ζ) .

In the case of Ω = C we choose

k(z, ζ) =
1
4π

log |z − ζ|2 − 1
2π

(1 − χ
D(0,1)

(ζ))Re
(

ln |ζ| − z

ζ
+

1
2

z2

ζ2

)
,

which makes the integrals defining K[µ1] and K[µ̃1] convergent. In the
case of the disk, set

k(z, ζ) =
1
4π

(
log

∣∣∣ z − ζ

1 − ζ z

∣∣∣2 + (1 − |ζ|2)
( 1

(1 − z ζ)
+

1
(1 − z ζ)

− 1
))

.

Andersson [And85] and Pascuas [Pas88] estimate

|k(z, ζ)| �
( 1 − |ζ|2
|1 − ζ z|

)2(
1 + log

∣∣∣1 − ζ z

z − ζ

∣∣∣) ,

therefore the integrals defining K[µ1] and K[µ̃1] are convergent.
We take as ψ = φ + K[µ̃1] − K[µ1]. The Laplacian of ψ is µ̃1 + µ2

which has the desired properties. Moreover

|φ − ψ| = |K[µ1] − K[µ̃1]| =
∣∣∣K[µ1] − K[µ1] �

χ
D(0,2R)

|D(0, 2R)|
∣∣∣ .

This difference is bounded by∫
D(z,2R)

log
2R

d(z, ζ)
dµ1(ζ) .
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This integral is bounded by a constant times µ1(D(z, 2R)), whenever µ1 a
locally doubling measure. This is [Chr91, Lemma 2.3]. The disk D(z, 2R) is
covered by a bounded number of cubes Qj , therefore the difference between
ψ and φ is bounded as claimed.

4.2. Proofs of Theorems 1 and 2.

Let us start with Theorem 2. There are some weights that are particu-
larly simple. These are the standard radial weights φ(z) = α log 1/(1−|z|2).
The following lemma deals with this situation.

Lemma 7. For any α ∈ (0, 1) and p ∈ [1, +∞), the solution

u(z) =
1
π

∫
D

1 − |ζ|2
1 − ζz

f(ζ)
z − ζ

dm(ζ)

to the equation ∂u = f in D satisfies the estimate∫
D

|u(z)|p (1 − |z|)α−1 dm(z) �
∫

D

|f(z) (1 − |z|)|p (1 − |z|)α−1 dm(z) .

Moreover,

sup
D

|u(z)| (1 − |z|)α � sup
D

|f(z)| (1 − |z|)1+α .

Proof. This is an immediate consequence of Hölder’s inequality.

We take an arbitrary weight φ under the hypothesis of Theorem 2, that
is (1 − |z|2)2∆φ > ε and ∆φ is a locally doubling measure with respect
to the hyperbolic measure. Consider the auxiliary subharmonic function
ψ = φ−(ε/2) log(1−|z|2). By hypothesis (1−|z|2)2∆ψ > ε/2 and still ∆ψ
is locally doubling. Using Theorem 4, we can construct a a holomorphic
function g such that

d(z, Z(g))
ρ(z)

� |g| e−ψ � d(z, Z(g))M

ρ(z)M
.

To begin, let us assume that the support of f is far from the zero set of
the multiplier g. That is, there is some δ > 0 such that

d(z, Z(g))
ρ(z)

≥ δ .
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Instead of solving the equation ∂u = f , we consider the auxiliary equation
∂v = f/g. We take as a solution v the function provided by Lemma 7 (we
take α = ε/2). Then, since ∂g = 0, the function u = v g is a solution to
∂u = f . Moreover, because of Lemma 7, we know that for any 1 ≤ p < ∞

∫
D

|u(z)/g(z)|p
(1 − |z|) (1 − |z|)ε/2 dm(z)

�
∫

D

|f(z)/g(z) (1 − |z|)|p
(1 − |z|) (1 − |z|)ε/2 dm(z) .

We always have that |g| � eψ, thus

∫
D

|u(z)|p
(1 − |z|) e−φ(z) dm(z) �

∫
D

|u(z)/g(z)|p
(1 − |z|) (1 − |z|)ε/2 dm(z) ,

and since the support of f is far from the zero sets of g, then
∫

D

|f(z)/g(z) (1 − |z|)|p
(1 − |z|) (1 − |z|)ε/2 dm(z)

�
∫

D

|f(z) (1 − |z|)|p
(1 − |z|) e−φ(z) dm(z) .

The case p = ∞ follows with the same scheme.
Now, we must overcome the restriction on the support of f . We denote

as above ψ = φ − ε/2 log(1 − |z|2). For this subharmonic function we
take the set of multipliers hi given by Proposition 2 and its corresponding
exceptional sets Ehi

.
We split the domain into disjoint pieces

Ω =
(
Ω \ Eh1

) ∪ (
Eh1 \ Eh2

) ∪ (
(Eh1 ∩ Eh2) \ Eh3

) ∪ · · ·
∪ (

(Eh1 ∩ · · · ∩ Ehn−1) \ Ehn

)
.

For the sake of simplicity we denote this partition by Ω = Ω1∪· · ·∪Ωn. In
each Ωi the multiplier |hi| � eψ. We can take as a solution to the equation
∂u = f the function

u(z) =
∫

D

( n∑
i=1

hi(z)χ
Ωi(ζ)

hi(ζ)

) 1
π

1 − |ζ|2
1 − ζz

f(ζ)
z − ζ

dm(ζ)

=
∫

D

κ(z, ζ) f(ζ) dm(ζ) .
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Thus,

|κ(z, ζ)| � (1 − |ζ|2)
|1 − ζz| |ζ − z|

(1 − |ζ|)ε/2 eφ(z)

(1 − |z|)ε/2 eφ(ζ)
.

From this estimate the Lp boundedness of the solution follows. This proves
Theorem 2.

The same construction proves Theorem 1. We replace Lemma 7 by
the following one which is also a direct consequence of Hölder’s inequality:

Lemma 8. For any α > 0 and p ∈ [1, +∞], the solution

u(z) =
1
π

∫
C

e2α(ζz−|ζ|2)

z − ζ
f(ζ) dm(ζ)

to the equation ∂u = f in C satisfies the estimate ‖u(z) e−α|z|2‖p �
‖f(ζ) e−α|ζ|2‖p for any p ∈ [1,∞].

In this case the auxiliary subharmonic function ψ is φ − ε/2|z|2. We
take as a solution to the ∂ equation the function

∫
C

( n∑
i=1

hi(z)χ
Ωi(ζ)

hi(ζ)

) 1
π

e2ε(ζz−|ζ|2)

z − ζ
f(ζ) dm(ζ) =

∫
C

κ′(z, ζ) f(ζ) dm(ζ) .

Therefore,

|κ′(z, ζ)| � eφ(z) e−ε|z−ζ|2

eφ(ζ) |z − ζ| .

This estimate proves Proposition 1 and Theorem 1.

4.3. The degenerate weight.

We can prove this ∂ estimate along the same lines. We need two
ingredients, a multiplier theorem and some ∂ estimates when the weight φ
is of the form α |Im z| for some α > 0. This is the multiplier theorem that
we need:

Theorem 5. Let φ be a subharmonic function in C such that the measure
∆φ is a locally doubling measure supported in the real line and ∆φ(I(x, r))
> 1 for some r > 0 where I(x, r) is the interval in R of center x and radius
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r. There is a holomorphic function f with zero set Λ contained in R such
that for any ε > 0, |f(z)| � eφ(z), for all z such that |z −λn| ≥ ε ρ(λn) for
all λn ∈ Z(f).

Proof. The proof of this theorem is the same as in Theorem 4 when
Ω = C, except that at some points it is easier. For instance, it is trivial to
split the real line into intervals all of mass N .

On the other hand the ∂-estimate that we need in the flat case, i.e.
when φ = α |Im z|, is not as easy as in the disk or the plane; we need the
following theorem, a proof of which can be found in [OCS99]:

Theorem. Consider the equation ∂u = µ, where µ is a compactly sup-
ported measure such that e−α|Im z| d|µ| is a two-sided Carleson measure for
some α > 0. Then there is a solution u with

lim sup
z→∞

|u(z)| e−α|Im z| = 0 and |u(x)| ≤ C
(
1 +

∫
|z−x|<1

d|µ|(z)
|x − z|

)
,

for any x ∈ R, where C only depends on the Carleson constant of

e−α|Im z| d|µ| .

These two ingredients together prove Theorem 3 in the same way as
we proved Theorem 1 and Theorem 2.

Added in proof. Richard Rochberg has informed me of un unpublished
manuscript of Tom Wolff from 1988 where some of the ideas concerning
the multiplier (Theorem 3) are already present.



376 J. Ortega-Cerdà
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