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Complex geometrical optics solutions
for Lipschitz conductivities

Lassi Päivärinta, Alexander Panchenko and Gunther Uhlmann

Abstract

We prove the existence of complex geometrical optics solutions
for Lipschitz conductivities. Moreover we show that, in dimensions
n ≥ 3 that one can uniquely recover a W 3/2,∞ conductivity from its
associated Dirichlet-to-Neumann map or voltage to current map.

1. Introduction

Let Ω ⊂ R
n be a bounded domain with Lipschitz boundary. Let γ ∈ L∞(Ω)

be the electrical conductivity of Ω. We assume throughout the paper that
the conductivity is strictly positive on Ω. Given a voltage potential f on ∂Ω,
under the assumption of no sources or sinks of current on Ω, the induced
potential u on Ω satisfies the Dirichlet problem

div(γ∇u) = 0 on Ω(1.1)

u|∂Ω
= f.

The Dirichlet-to-Neumann map (DN), or voltage to current map, is de-
fined by

(1.2) Λγ(f) =
(
γ
∂u

∂ν

)∣∣
∂Ω

,

where u is a solution to (1.1) and ν denotes the unit outer normal to ∂Ω.
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The inverse problem of determining γ from Λγ has been extensively stud-
ied since Calderón’s pioneer paper [4]. The essential tool for the solution is
the construction of complex geometrical optics solutions for the underlying
conductivity equation. See [16] for a recent survey.

Kohn and Vogelius proved that one can uniquely determine piecewise
real-analytic conductivities from the DN map [7]. Sylvester and Uhlmann
proved in dimension n ≥ 3 a global identifiability result for smooth conduc-
tivities [13]. Brown extended this result to conductivities in C3/2+ε(Ω) for
any ε > 0, [2]. In two dimensions Nachman proved a global identifiability
result for conductivities having two derivatives [8]. This was improved to
Lipschitz conductivities in [3]. We point out that the above inverse conduc-
tivity problem makes sense for conductivities that are only in L∞. There
are neither proofs nor counter-examples for this case in any dimension.

As mentioned above a crucial ingredient in the proof of the results in [2],
[3], [8], and [13] is the construction of complex geometrical optics solutions
for the equation (1.1), [13, 12].

Let ρ ∈ C
n with ρ · ρ = 0. Moreover, let γ ∈ C2(Rn), n ≥ 2, with γ = 1

for |x| ≥ R and R sufficiently large. Then for |ρ| sufficiently large there exist
solutions of div(γ∇u) = 0 in Rn of the form

(1.3) u = ex·ργ−1/2 (1 + ψγ(x, ρ)) .

In two dimensions these solutions are constructed for all ρ ∈ C
2 \ {0} with

ρ · ρ = 0, [8].

The function ψγ satisfies

(1.4) (∆ + 2ρ · ∇)ψγ = q(1 + ψγ),

where

(1.5) q =
∆
√

γ√
γ

.

An important property of ψγ is that

ψγ
|ρ|→∞−−−−→ 0

in an appropriate sense so that the solutions of (1.4) behave like ex·ργ−1/2

for large |ρ|.
In this paper we construct complex geometrical optics solutions for con-

ductivities γ ∈ W 1,∞(Rn). We sketch some of the steps in the construction.
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We first rewrite (1.1) in the form

(1.6) ∆u + A · ∇u = 0,

where A = ∇ log γ ∈ L∞(Rn) has compact support. Let Aε = A ∗ Φε where
Φε ∈ C∞

0 (Rn), ε > 0, is an approximation to the δ-function.

We consider instead of (1.6) the Schrödinger equation with a smooth first
order term

(1.7) ∆uε + Aε · ∇uε = 0.

In [9] complex geometrical optics solutions to (1.7) are constructed of the
form

uε = ex·ρe−
ϕε(x)

2 rε(x, ρ),

with rε satisfying appropriate decay conditions as |ρ| → ∞. The functions ϕε

are defined by

(1.8) ϕε = ϕ ∗ Φε.

We remark that in the case that Aε = ∇ log α with α smooth, then

e−
ϕε(x)

2 = α−1/2 .

Our complex geometrical optics solutions are of the form

(1.9) u = ex·ρ(ω0(x, ε) + ω1(x, ε, ρ)),

with

(1.10) ω0(x, ε) = e−
ϕε(x)

2 .

In Section 2 we see that ω0 → γ−1/2 as ε → 0, in appropriate sense. Since
ω0 is smooth we have avoided the problem of taking two derivatives of γ.

Now ω1 solves the equation

(1.11) ((∆ + 2ρ · ∇) + A · (∇ + ρ))ω1 = −((∆ + 2ρ · ∇) + A · (∇ + ρ))ω0.

We show that ω1 → 0 as ε → 0, |ρ| → ∞ in appropriate sense.

In this paper we show the existence of the complex geometrical solutions
for all Lipschitz conductivities and give a global identifiability result for
W 3/2,∞ conductivities in dimension three and higher. This latter result
improves on the result of [2].
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More precisely, we will prove:

Theorem 1.1 Let γ ∈ W 1,∞(Rn), γ strictly positive and γ = 1 outside a
large ball. Let −1 < δ < 0. Then for |ρ| sufficiently large there is a unique
solution of

div(γ∇u) = 0 in R
n

of the form

(1.12) u = ex·ρ(γ−1/2 + ψγ(x, ρ))

with ψγ ∈ L2
δ(R

n).

Moreover, ψγ has the form

(1.13) ψγ(x, ρ) = (ω0(x, ρ) − γ−1/2) + ω1(x, ρ)

where ω0 and ω1 satisfy

(1.14) lim
|ρ|→∞

‖ω0(x, ρ) − γ−1/2‖H1
δ

= 0,

and

(1.15) lim
|ρ|→∞

‖ω1(x, ρ)‖L2
δ

= 0.

Theorem 1.2 Let n ≥ 3. Let γi ∈ W 3/2,∞(Ω), be strictly positive on Ω,
i = 1, 2. Assume Λγ1 = Λγ2. Then γ1 = γ2 on Ω.

Note that if one could replace L2
δ–norm in (1.15) with H1

δ –norm then
Theorem 1.2 would easily follow for any W 1,∞(Ω) conductivity.

In Section 2 we construct solutions as in Theorem 1.1. The key point
of the proof is the observation that the operator on the left-hand side of
(1.11) has an explicit approximative inverse that involves only first order
derivatives of γ (c.f. Theorem 2.1 below).

In Section 3 we prove Theorem 1.2, using a new identity that is satisfied
if the DN maps of two conductivities are the same and plugging the solutions
(1.9) into this identity. The standard identity used in previous results doesn’t
seem to give the desired result.

As for the case of W 2,∞(Ω) conductivities, we expect that the methods
of this paper will lead to stability estimates and a reconstruction method.
The case of C2/3+ε(Ω), ε > 0, first order perturbations of the Laplacian was
considered in [15].
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2. Construction of the complex geometrical optics so-
lutions

In this section we construct ω0 and ω1 as in Theorem 1.1 and we derive their
asymptotic properties as |ρ| → ∞.

We denote by Φε(x) = ε−nΦ (x/ε), ε > 0, an approximation to the
δ-function. More specifically we assume

Φ(x) =
n∏

j=1

Φ0(xj)

with Φ0 ∈ C∞
0 (R), Φ0 ≥ 0, Φ0 = 1 near 0 and

∫
Φ0(x)dx = 1.

We define the weighted L2-space, L2
α, by

L2
α(Rn) =

{
f :

∫
(1 + |x|2)α/2|f(x)|2dx < ∞

}
,

with norm given by

‖f‖2
L2

α
=

∫
(1 + |x|2)α|f(x)|2dx.

We denote by Hs
α(Rn) the corresponding Sobolev space defined by interpo-

lation for non integer s.

Throughout this section we assume that γ ∈ W 1,∞(Rn), with γ = 1
outside a large ball. Let

ϕε = Φε ∗ log γ ,(2.1)

A = ∇ log γ ,(2.2)

Aε = Φε ∗ A .(2.3)

Clearly

(2.4) ρ · ∇ϕε = ρ · Aε.

Next we define

(2.5) ω0(x, ε) = e−ϕε(x)/2.
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The proof of the following proposition is standard.

Proposition 2.1 If A ∈ W 1/2,∞(Ω) we have as ε → 0

||Aε − A||L2 = ε1/2o(ε)

and
||∂xj

Aε||L2 = ε−1/2o(ε) .

From the above proposition we conclude

Lemma 2.1 Let ω0 be as in (2.5). Then for any δ > 0

lim
ε→0

‖ω0 − γ−1/2‖H1
δ

= 0 .

Let ρ ∈ C
n with ρ · ρ = 0. We define the operators

(2.6) ∆ρu = e−x·ρ∆(ex·ρu) = ∆u + 2ρ · ∇u,

(2.7) ∇ρv = e−x·ρ∇(ex·ρu) = ∇v + ρ · v.

Let f ∈ C∞
0 (Rn). We define

(2.8) ∆−1
ρ f =

1

(2π)n

∫
eix·ξ f̂(ξ)

−|ξ|2 + 2iρ · ξ dξ

and recall

Proposition 2.2 ([13, 12]). Let n ≥ 2. Let −1 < δ < 0 and s ≥ 0. Then
∆−1

ρ extends to a bounded operator

∆−1
ρ : Hs

δ+1(R
n) → Hs

δ (R
n)

with

(2.9) ‖∆−1
ρ ‖Hs

δ+1→Hs
δ
≤ C(s, δ, n)

|ρ| ,

for some C > 0. Moreover

∆−1
ρ : L2

δ+1(R
n) → Hk

δ (Rn), k = 1, 2

is bounded and

(2.10) ‖∆−1
ρ ‖L2

δ+1→Hk
δ
≤ C(δ, k, n)|ρ|k−1, k = 1, 2,

for some C > 0.
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Next we construct ω1. To have a solution of the form (1.9), ω1 must satisfy

(2.11) (∆ρ + A · ∇ρ)ω1 = −(∆ρ + A · ∇ρ)ω0 =: −fε.

We write
ω1 = ∆−1

ρ ω̃,

then ω̃ must satisfy

(2.12) (I + A · ∇ρ∆
−1
ρ )ω̃ = −fε.

A straightforward calculation gives that

(2.13) fε = −e−
ϕε
2

(
−1

2
∆ϕε +

1

4
(∇ϕε)

2 − 1

2
A · ∇ϕε − ρ · ∇ϕε + ρ · A

)
.

Since ρ · ∇ϕε = ρ · Aε, we get

(2.14) fε = −e−
ϕε
2

(
−1

2
∆ϕε+

1

4
(∇ϕε)

2− 1

2
A · ∇ϕε + (A − Aε) · ρ

)
.

In order to solve (2.12) we define the operators Tρ(γ) and Sρ(γ) by

(2.15) Tρ(γ) := (I + A · ∇ρ∆
−1
ρ )

and

(2.16) Sρ(γ) := γ−1/2(I − A · ∇ρ∆
−1
ρ )γ1/2.

Note that

(2.17) Sρ(γ) = γ−1/2Tρ(γ
−1)γ1/2.

The main result of this section is that Tρ(γ) and Sρ(γ) are approximate
inverses to each other. This result is used to prove that (2.12) has a unique
solution in an appropriate space.

Theorem 2.1 Let −1 < δ < 0 and γ ∈ W 1,∞(Rn) with γ strictly positive
and γ = 1 outside a large ball. Then the operator

(2.18) Tρ(γ) : L2
δ+1(R

n) → L2
δ+1(R

n),

is bounded and it has a bounded inverse T−1
ρ for |ρ| large. Moreover

(2.19) ‖T−1
ρ (γ) − Sρ(γ)‖L2

δ+1→L2
δ+1

→ 0 as |ρ| → ∞.
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We first prove a stronger version of (2.19) for C2–conductivities. More
precisely we show

Lemma 2.2 Let γ ∈ C2(R2), γ = 1 outside a large ball and strictly positive.
Then for |ρ| large we have the estimate

(2.20) ‖T−1
ρ (γ) − Sρ(γ)‖L2

δ+1→L2
δ+1

≤ C‖γ‖C2

|ρ| ,

for some C > 0 .

Proof. We have the following identity which was implicitly used in [13, 12]
to reduce the construction complex geometrical optics solutions for the con-
ductivity equation to the construction of complex geometrical optics solu-
tions for the Schrödinger equation. The identity was explicitly stated in [5]
and used to construct complex geometrical optics solutions for Maxwell’s
equations.

(2.21) (∆ρ + A · ∇ρ)γ
−1/2 = γ−1/2(∆ρ − q),

with q =
∆
√

γ√
γ

. Then

(∆ρ + A · ∇ρ)∆
−1
ρ = γ−1/2(∆ρ − q)γ1/2∆−1

ρ

and therefore

(2.22) I + (A · ∇ρ)∆
−1
ρ = γ−1/2∆ργ

1/2∆−1
ρ − q∆−1

ρ .

By Proposition 2.2

‖q∆−1
ρ ‖L2

δ+1→L2
δ+1

≤ C‖q‖∞
|ρ| ,

for some C > 0. Therefore

(
I + (A · ∇ρ)∆

−1
ρ

)−1
=

(
γ−1/2∆ργ

1/2∆−1
ρ

)−1
+ Bρ,

for |ρ| large with

‖Bρ‖L2
δ+1→L2

δ+1
≤ C‖q‖∞

|ρ| .

Since (
γ−1/2∆ργ

1/2∆−1
ρ

)−1
= ∆ργ

−1/2∆−1
ρ γ1/2,

we conclude that

(2.23) ‖ (
I + (A · ∇ρ)∆

−1
ρ

)−1 − ∆ργ
−1/2∆−1

ρ γ1/2‖L2
δ+1→L2

δ+1
≤ C‖γ‖C2

|ρ| .
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Now we use formula (2.22) again by changing γ to 1/γ, to conclude

(2.24) ∆ργ
−1/2∆−1

ρ γ1/2 = γ1/2
(
I − (A · ∇ρ)∆

−1
ρ

)
γ−1/2+γ1/2∆(γ−1/2)∆−1

ρ .

From (2.23) and (2.24) we conclude the proof of the Lemma since by Propo-
sition 2.2 again

‖γ1/2∆(γ−1/2)∆−1
ρ ‖L2

δ+1→L2
δ+1

≤ C‖γ‖C2

|ρ| .

�

Lemma 2.3 Let γ ∈ W 1,∞, γ strictly positive and γ = 1 outside a large
ball. Let γε = γ ∗ Φε. Then

(2.25) ‖Tρ(γε) − Tρ(γ)‖L2
δ+1→L2

δ+1

ε→0−→ 0.

Proof. We have that

Tρ(γε) − Tρ(γ) = I + (∇ log γε −∇ log γ) · ∇ρ∆
−1
ρ .

Using Proposition 2.2 we conclude that

‖∇ρ∆
−1
ρ ‖L2

δ+1→L2
δ+1

≤ C,

for some C > 0 independent of |ρ|. Therefore

‖Tρ(γε) − Tρ(γ)‖L2
δ→L2

δ+1
≤ C‖∇ log γε −∇ log γ‖L∞(Rn)

proving the Lemma. �

Proof of Theorem 2.1. Theorem 2.1 follows directly from Lemma 2.2
and Lemma 2.3 by standard approximation procedure. Namely, for γ ∈
W 1,∞(Rn) as before we have

SρTρ − I = (Sρ(γε)Tρ(γε) − I)

−(Sρ(γε) − Sρ(γ))Tρ(γε) − Sρ(γ)(Tρ(γε) − Tρ(γ)).(2.26)

Since ||γε||C2 = O(ε−2) we obtain from Lemma 2.2

(2.27) ‖Sρ(γε)Tρ(γε) − I‖L2
δ+1→L2

δ+1
≤ C||γε||C2

|ρ| = O

(
1

|ρ|ε2

)
.
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Now by Proposition 2.2

‖Sρ(γ̃)‖L2
δ+1→L2

δ+1
+ ‖Tρ(γ̃)‖L2

δ+1→L2
δ+1

≤ C‖∇ log γ̃‖L∞(Rn)

holds for any conductivity γ̃ ∈ W 1,∞(Rn). Therefore by taking ε = |ρ|−1/4

and |ρ| large we obtain from Lemma 2.3 and (2.27) the desired conclusion
(2.19). �

Next we study the behavior of ω1 as ε → 0 and |ρ| → ∞. By Theorem 2.1
and (2.12) we can define

(2.28) ω1(x, ε, ρ) = −∆−1
ρ Sρfε + hρ

where

(2.29) hρ = ∆−1
ρ Cρfε

with Cρ = T−1
ρ − Sρ.

Lemma 2.4
lim

|ρ|→∞
‖hρ‖H1

δ (Rn) = 0

Proof. By Theorem 2.1 we have that

‖T−1
ρ ‖L2

δ+1→L2
δ+1

≤ C

with C independent of ρ. By definition

(2.30) Tρ∆ρω1 = −fε,

and
∆ρω1 = −Sρfε + Cρfε.

Therefore by Theorem 2.1

‖∆ρω1 + Sρfε‖L2
δ+1→L2

δ+1
→ 0 as ρ → ∞.

This implies that

(2.31) A := ‖∇ω1 + ∆−1
ρ ∇Sρfε‖L2

δ→L2
δ
→ 0 as |ρ| → ∞

since

A = ||∇∆−1
ρ (∆ρω1 + Sρfε)||L2

δ→L2
δ
≤ C||∆ρω1 − Sρfε||L2

δ+1→L2
δ+1

�
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Proof of Theorem 1.1. The choice ω0(x, ρ) = ω0(x, ε) and ω1(x, ρ) =
ω1(x, ε, ρ), with say ε = |ρ|−α for any 0 < α ≤ 1 will lead to the desired
result. Indeed, by Proposition 2.2 and by (2.16)

||fε|| ≤ C(ε−1 + |ρ|)o(ε).
On the other hand by Lemma 2.3

||ω1||L2
δ
≤ ||∆−1

ρ Sρfε||L2
δ
+ ||∆ρhρ||L2

δ
≤ C

|ρ| ||fε||

which proves that

||ω1||L2
δ

|ρ|→∞−→ 0.

This together with Lemma 2.1 prove Theorem 1.1. �

3. The uniqueness proof

In this section we prove Theorem 1.2. We shall use the following identity

Lemma 3.1 Let γ ∈ W 1,∞(Ω), γ strictly positive on Ω and a =
√

γ. Let
u ∈ H1(Ω) be a solution of div(γ∇u) = 0. Let v ∈ H1(Ω). Then

(3.1)

∫
Ω

(∇a · ∇(uv) −∇(au) · ∇v)dx = −
∫

∂Ω

av
∂u

∂ν
dS,

where dS denotes surface measure on ∂Ω.

Proof. By the divergence theorem we have

(3.2)

∫
Ω

a−1div(a2∇u)vdx = −
∫

Ω

a2∇u · ∇
(v

a

)
dx −

∫
∂Ω

a
∂u

∂ν
vdS.

Therefore

(3.3)

∫
Ω

a2∇u · ∇
(v

a

)
dx = −

∫
∂Ω

a
∂u

∂ν
vdS.

Now setting w = au and using that ∇a−1 = −a−2∇a we obtain∫
Ω

a2∇(a−1w) · ∇(a−1v)dx

=

∫
Ω

(∇w · ∇v −∇a · (w∇(a−1v) + v∇(a−1w)
))

dx

=

∫
Ω

∇w · ∇v −∇a · ∇(a−1wv)dx

=

∫
Ω

∇(au) · ∇v −∇a · ∇(uv)dx,

proving the Lemma. �
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The right-hand side of (3.1) is determined by the DN map if we know v|∂Ω
.

This is a consequence of the following two Lemmas.

Lemma 3.2 [1, 6, 14] Let γi ∈ W 1,∞(Ω) conductivities i = 1, 2 with Λγ1 =
Λγ2. Then

γ1|∂Ω
= γ2|∂Ω

and

(
∂γ1

∂ν

) ∣∣
∂Ω

=

(
∂γ2

∂ν

) ∣∣
∂Ω

.

Lemma 3.3 [13] Assume γi ∈ W 1,∞(Ω) conductivities i = 1, 2 with Λγ1 =
Λγ2. Extend γi ∈ W 1,∞(Rn) with γ1 = γ2 in Ωc and γi = 1 outside a large
ball. Let ui, i = 1, 2 be the complex geometrical solutions as in Theorem 1.1.
Then

u1 = u2 in Ωc.

We include the proof here for the sake of completeness.

Proof. Let z ∈ H1(Ω) be the solution of

div(γ1∇z) = 0 on Ω

z|∂Ω
= u2|∂Ω

.

By the assumption Λγ1 = Λγ2 , we have

(3.4)

(
γ1

∂z

∂ν

) ∣∣
∂Ω

=

(
γ2

∂u2

∂ν

) ∣∣
∂Ω

,

and therefore, since γ1 equals γ2 on the boundary,(
∂z

∂ν

) ∣∣
∂Ω

=

(
∂u2

∂ν

) ∣∣
∂Ω

.

Then z solves div(γ1∇z) = 0 in R
n if we extend z = u2 on Ωc. Since z

has the same asymptotic behavior as u1 we have from the uniqueness of the
solutions in Theorem 1.1 that z = u1 and therefore u1 = u2 in Ωc. �

Combining Lemmas 3.1–3.3 we arrive at the following:

Proposition 3.1 Let γi ∈ W 1,∞(Ω) conductivities with Λγ1 = Λγ2 and let

ai = γ
1/2
i . Then∫

Ω

(∇a1 · ∇(u1v) − ∇a2 · ∇(u2v)) dx

−
∫

Ω

(∇(a1u1) · ∇v −∇(a2u2) · ∇v) dx = 0,(3.5)

for any v ∈ H1(Ω) and ui ∈ H1(Ω) solution of div(γi∇ui) = 0 on Ω, i = 1, 2.
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The next lemma is the only place where the assumption γ ∈ W 3/2,∞(Ω)
is needed.

Lemma 3.4 Let γ ∈ W 3/2,∞(Rn), γ strictly positive and equal to one out-
side a large ball. Then for ω1(x, ρ) = ω1(x, ε, ρ), as in (2.28), ε = |ρ|−1 we
have

(3.6)

∫
eix·ξ∇γ1/2 · ∇ω1 dx

|ρ|→∞−→ 0.

Proof. The statement (3.6) is equivalent to

(3.7)

∫
eix·ξγ1/2A · ∇ω1 dx

|ρ|→∞−→ 0.

Using (2.12), (2.16) and (2.19), (3.7) follows if we show

(3.8)

∫
eix·ξγ−1/2A · ∇∆−1

ρ fε dx
|ρ|→∞−→ 0.

and

(3.9)

∫
eix·ξγ−1/2A · ∇∆−1

ρ γ−1/2A · ∇ρ∆
−1
ρ γ1/2fε dx

|ρ|→∞−→ 0.

We know from Lemma 2.1 that e
ϕε
2 → γ1/2 in H1

δ so that it can be easily
estimated. The first two terms of fε involve ∆ϕε and ∇ϕε. Recall from
Proposition 2. that ∇ϕε = Aε and therefore ∆ϕε = divAε. Below we will see
that the choice ε � |ρ|−1 is the only possibility to obtain (3.6). Accordingly
in (2.14) the terms ∇ ·Aε = ∆ϕε and (A−Aε) · ρ behave both as ε−1/2o(ε).
The other two terms are bounded and cause no trouble. We will give detailed
estimates for the term involving (A−Aε) · ρ. The same reasoning works for
the other terms, as well. To this end we notice that for (3.9) we need to
show

Cε,ρ :=

∫
eix·ξγ−1/2(A−Aε) ·∇∆−1

ρ γ−1/2A ·∇ρ∆
−1
ρ γ1/2(A−Aε) ·ρ dx

|ρ|→∞−→ 0.

and

Dε,ρ :=

∫
eix·ξγ−1/2Aε · ∇∆−1

ρ γ−1/2A · ∇ρ∆
−1
ρ γ1/2(A − Aε) · ρ dx

|ρ|→∞−→ 0.

Since ∇∆−1
ρ and ∇ρ∆

−1
ρ are both bounded operators from L2

δ+1 −→ L2
δ we

have by choosing ε = |ρ|−1

Cε,ρ = ε o(ε) |ρ| |ρ|→∞−→ 0.
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On the other hand, since

||∇(eix·ξγ−1/2Aε)||L2 = ε−1/2o(ε)

the integration by parts gives

Dε,ρ = ε−1/2ε1/2o(ε)
|ρ|→∞−→ 0.

proving (3.9) concerning this term. The proof of (3.8) is similar but easier.
�

Note that the above proof uses the result of Theorem 2.1. The proof of
this theorem uses the choice ε = |ρ|−1/4 but the statement of the theorem is
independent of ε.

Proof of Theorem 1.2. We now extend γi ∈ W 3/2,∞(Rn) with γ1 = γ2

on Ωc, γi = 1 outside a large ball i = 1, 2 and γi strictly positive.

Let ξ ∈ R
n. We choose ρ1 ∈ C

n, ρ1 · ρ1 = 0, |ρ1| large enough and
ρ2 ∈ C

n, ρ2 · ρ2 = 0 so that ρ1 + ρ2 = iξ. Let

(3.10) ui = ex·ρ1

(
ω

(i)
0 + ω

(i)
1

)
, i = 1, 2,

as in Theorem 1.1 with γ replaced by γi, i = 1, 2. Let

(3.11) v = ex·ρ2 .

Now we substitute (3.10) and (3.11) in (3.5). We note that by Lemmas
3.2 and 3.3 we can replace the integration over Ω on (3.5) by integration
over R

n.

By taking the limit as |ρ| → ∞ and ε → 0 we can replace by Lemmas

2.1 and 3.3 u1 by ex·ρ1γ
−1/2
1 and u2 by ex·ρ2γ

−1/2
2 in (3.5). We obtain

(3.12)

∫
Rn

(
∇γ

1/2
1 · ∇(eix·ξγ−1/2

1 ) −∇γ
1/2
2 · ∇(eix·ξγ−1/2

2 )
)

dx = 0.

This leads to

i

2
ξ ·

∫
eix·ξ(∇ log γ1 −∇ log γ2)dx(3.13)

−1

4

∫
eix·ξ((∇ log γ1)

2 − (∇ log γ2)
2)dx = 0.

Then by using the Fourier inversion formula we obtain in the sense of dis-
tributions

(3.14) ∆(log γ1 − log γ2) +
1

2
(∇ log γ1 + ∇ log γ2) · ∇(log γ1 − log γ2) = 0.

Since γ1|∂Ω
= γ2|∂Ω

, by the uniqueness of the solutions of the Dirichlet prob-
lem we conclude that γ1 = γ2 ending the proof of Theorem 1.2. �
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