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On the 1

2
-Problem of Besicovitch:

quasi-arcs do not contain sharp
saw-teeth

Hany M. Farag

Abstract
In this paper we give an alternative proof of our recent result

that totally unrectifiable 1-sets which satisfy a measure-theoretic flat-
ness condition at almost every point and sufficiently small scales,
satisfy Besicovitch’s 1

2 -Conjecture which states that the lower spher-
ical density for totally unrectifiable 1-sets should be bounded above
by 1

2 at almost every point. This is in contrast to rectifiable 1-sets
which actually possess a density equal to unity at almost every point.
Our present method is simpler and is of independent interest since
it mainly relies on general properties of finite sets of points satisfy-
ing a scale-invariant flatness condition. For instance it shows that a
quasi-arc of small constant cannot contain “sharp saw-teeth”.

1. Introduction

Let us first recall that a set E⊂Rn is called a 1-set if 0 < H1 (E) < ∞, where
H1 is the 1-dimensional Hausdorff measure. Such a set E splits naturally
into two pieces. Namely E = E ′ ∪ E ′′, where H1 (E ′ ∩ E ′′) = 0, and E ′ is a
rectifiable set, that is it can be covered (up to a subset of measure zero) by
a countable number of Lipschitz (or C1) curves. On the other hand, E ′′ is a
totally unrectifiable set, that is H1 (E ′′ ∩ Γ) = 0 for every rectifiable curve
Γ. Among the many contrasting properties between rectifiable and totally
unrectifiable 1-sets are the spherical density properties. For a rectifiable
1-set E in Rn (say), we have

(1.1) Θ1 (E, x) ≡ lim
r→0+

H1 (E ∩ B (x, r))

2r
= 1 ,
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for a.e. x ∈ E, where B(x, r) is the closed ball with center at x, and radius r.
This is originally due to Besicovitch [Be1], and for subsets of a metric space it
is due to Kirchheim [Ki]. Totally unrectifiable 1-sets on the other hand have
remarkably different behavior. In particular (for subsets of Euclidean space),
the density Θ1 (E, x) does not exist for a.e. x ∈ E, as originally proved by
Besicovitch [Be2]. Recall that σ1 (Rn) is defined to be the smallest number
such that, if E is a totally unrectifiable 1-set in Rn, then the lower spherical
density

(1.2) Θ1
∗ (E, x) ≡ lim inf

r→0+

H1 (E ∩ B (x, r))

2r
≤ σ1 (Rn) ,

for a.e. x ∈ E (see e.g. [Pr], [Ma]). In 1928, Besicovitch [Be1] proved that

(1.3) σ1

(
R2

) ≤ 1 − 10−2576 ,

and thus established a characterization of rectifiability via the lower spherical
density. In 1938 [Be2] he showed, by more natural methods, that

(1.4) σ1

(
R2

) ≤ 3

4
.

He also gave examples showing that

(1.5) σ1

(
R2

) ≥ 1

2
,

and conjectured that σ1 (R2) = 1
2
. The upper estimates on σ1 (R2) were

shown to hold for σ1 (Rn) in [Mo], and to metric spaces in [PT]. In principle,
one can hope that the conjecture is true even for subsets of a metric space.
In [PT], the upper bound was slightly improved. Namely it is shown that
for a metric space M ,

(1.6) σ1 (M) ≤ 2 +
√

46

12
≈ 0.732 .

Recently, in [Far2], we proved that 1
2

is the correct upper bound on the
lower spherical density for subsets of a Hilbert space, under the additional
assumption that the set possesses a flatness property at sufficiently small
scales, at almost every point. The present paper deals with the same kind
of result but with a different approach. Both methods however were first
attempts to probe the possibility of finding a systematic approach to at-
tack this problem with no additional assumptions. Below, we will try to
explain that whenever feasible. The reader can find treatments of Besicov-
itch’s results in [Fal], and [Far1]. The present method of proof will quickly
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appear to be of independent nature. Indeed, once we insert the setup of the
problem, and the hypothesis, the proof is then reduced to basically showing
that a quasi-arc of small constant cannot contain sharp “saw-teeth”, that is
(roughly speaking) a finite set of points which lie on the consecutive vertices
of a piecewise linear graph of high slopes.

The rest of the paper is organized as follows:

- Section 2: we provide the appropriate definitions that we need to state
the main results.

- Section 3: we state the main results.

- Section 4: we present a standard reduction of the problem using
compactness results for measures and density properties for the one-
dimensional Hausdorff measure. This gives the most general setup for
the problem.

- Section 5: this is devoted to the proof of the main results.

- Section 6: we give some concluding remarks including the main moti-
vation for our flatness hypothesis which actually came from the search
for a general approach for a systematic attack of the problem.

Acknowledgement. I wish to thank the referee for very useful comments
on this paper.

2. Definitions

First we recall the definition of the scale-invariant beta-numbers (see [Jo]
where quadratic estimates of these numbers are used to characterize rectifi-
ability):

Definition 1 For E ⊂ R2, x ∈ R2, r > 0, the Jones beta-number βE (x, r)
is defined to be the smallest number such that there is a strip S of width
rβE (x, r) , so that

(2.1) E ∩ B (x, r) ⊂ S.

Now we make use of somewhat more general scale invariant quantities:

Definition 2 For E ⊂ R2, x ∈ R2, ε ≥ 0, r > 0, we define γ1
E (x, r, ε) as the

smallest number such that there is a strip S of width rγ1
E (x, r, ε) , so that

(2.2) H1 ((E ∩ B (x, r)) \S) ≤ ε.
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We now define γ∗1
E (x, ε) and γ∗1

E (x) via

(2.3) γ∗1
E (x, ε) ≡ lim sup

r→0+
γ1

E (x, r, ε) ,

and

(2.4) γ∗1
E (x) ≡ sup

ε>0
γ1

E (x, ε) .

Note that for any set E ⊂ R2, all of the above scale-invariant numbers
are bounded above by 2. We will refer to sets E which have small values for
γ∗1

E (x) at almost every point as being essentially flat. It is for this type of
sets that we prove the conjecture to hold. Note that in Rn or even a Banach
space one can have similar definitions by using tubes.

For our purely geometrical results we will need the following definitions:

Definition 3 We call a finite collection of points {x1, y1, x2, . . . , xn, yn} ⊂
R2 saw-teeth with angle ∆ ∈ [0, 90o] if the line segments

[x1, y1] , [y1, x2] , . . . , [xn, yn]

have arguments (with respect to some axis) which alternate in sign and whose
absolute values lie in the interval [90o − ∆, 90o + ∆], where arguments are
measured in the interval (−180o, 180o].

Definition 4 We say that an arc Γ connecting z1, z2 is a quasi-arc of small
constant 0 < δ << 1, if, for every x ∈ Γ, r > 0, βΓ (x, r) ≤ δ.

It is not hard to see (using the Pythagorean Theorem) that for small δ
(for instance δ ≤ 1

8
suffices), our definition agrees with the usual definition

for a quasi-arc up to an adjustment of the constant.

3. The main results

The following are our two main theorems:

Theorem 5 Suppose E ⊂ R2 is a totally unrectifiable 1-set, and γ∗1
E (x) ≤

1
10

for a.e. x ∈ E. Then Θ1
∗ (E, x) ≤ 1

2
for a.e. x ∈ E.

A stronger version of Theorem 5 was achieved in [Far2] using a different
(and much more complicated) method. Both methods also work in Rn.
Also, the bound “ 1

10
” can be improved slightly (to about 1

8
) but our goal

here is to mainly exhibit a different method because of its simplicity and its
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potential applications rather than proving the sharpest possible result using
this method. In fact, as we will discuss in Sections 4 and 6, we intend to
introduce a fundamentally different method in a forthcoming paper [Far3]
which will systematize a general approach to the problem. In order to prove
Theorem 5, we actually prove the following purely geometrical Theorem:

Theorem 6 Suppose Γ is a quasi-arc of small constant 1
10

. Let x ∈ Γ, r > 0,
and S the optimal strip containing Γ ∩ B (x, r) . Then Γ ∩ B (x, r) cannot
contain sharp saw-teeth of angle ∆ ≤ 11.53o, measured with respect to the
center-line of S, and such that z, z′ are the end points of the saw-teeth and
Re{z′ − z} ≥ 0.346 r.

4. A measure-theoretic reduction

4.1. The reduced problem with and without flatness

We here recall a standard reduction of the problem using compactness of
measures. Another elementary approach can be found in [Fal], and [Far1].
The reduction here is similar to that in [Far2] and we only describe it briefly.
The reader can find a closely related approach with details in [PT]. First it
is helpful to recall a few standard facts for the one-dimensional Hausdorff
measure. For references we refer the reader to [Fal], [Fe], and [Ma].

Recall that if E is a 1-set, then the upper convex density D
1

c (E, x) of E
at x ∈ Rn (say) is defined via

(4.1) D
1

c (E, x) ≡ lim sup
r→0+

H1 (E ∩ U)

diam (U)

where the supremum is taken over all convex sets U with x ∈ U, and
diam (U) ≤ r. We now have the following standard density properties for a
1-set E:

Proposition 7 D
1

c (E, x) = 0 for a.e. x �∈ E.

Proposition 8 D
1

c (E, x) = 1 for a.e. x ∈ E.

Proposition 9 Suppose Θ1
∗ (E, x) > σ > 0 on a set of positive measure,

then there exist ε, ρ > 0, and a compact 1-set F ⊂ E, such that

(4.2) H1 (E ∩ B (x, r)) ≥ (σ + ε) 2r , for all x ∈ F, 0 ≤ r ≤ ρ.

Using compactness of measures, the above propositions, and total unrectifi-
ability, we can reduce the assumption that Θ1

∗ (E, x) > 1
2

on a set of positive
measure (for a proof by contradiction) to the following setup which holds
under very general conditions (in fact even for subsets of a metric space):
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Proposition 10 Let E be a totally unrectifiable 1-set such that Θ1
∗ (E, x) >

1
2

on a set of positive measure. Then there exist ε > 0, and a measure
µ, such that F ≡ sptµ = F1 ∪ F2, for some closed sets F1 and F2, with
dist (F1, F2) > 0, attained, and the following properties hold:

(4.3) µ (B (x, r)) ≥ (ε + 1) r,

whenever x ∈ F, r > 0, and

(4.4) µ (U) ≤ diam (U) ,

for any set U.

This is the most general setup that one gets, but now our hypothesis that
γ∗1

E (x) ≤ 1
10

for a.e. x ∈ E translates into a third (geometrical) condition
on F = sptµ. Namely, we get

(4.5) βF (x, r) ≤ 1

10

for x ∈ F, r > 0. In the next section we show that no such measure µ can
satisfy Properties (4.3)-(4.5). In the next subsection we briefly discuss how
one may intuitively try to attack the general problem using only (4.3) and
(4.4). We elaborate further on this in Section 6.

4.2. An overview of a general approach

This subsection is rather brief, and is mainly intended to give some motiva-
tion for our flatness hypothesis. In a forthcoming paper [Far3], we discuss
this approach in greater detail. One of its consequences will be that it will
allow significant generalizations of the results of this paper as far as the goal
of trying to solve the 1

2
-problem is concerned. There is no real overlap in the

methods however and hence our present paper is of independent interest as
we have mentioned.

First we observe that (4.3) and (4.4) are basically all that we have to
work with and therefore we have to expect that the geometry of F (except
for the fact that it has two positively separated pieces) is quite arbitrary
and we have to deal with all possibilities. Let us now imagine that we can
find, in one of the pieces of F, say F1, a finite sequence of points in such
a way that we can place disjoint balls, centered at these points so that the
diameter of the union (intersected with F ) is at most equal to the sum of
the radii. Then clearly (4.3) and (4.4) give a contradiction. In fact, we wish
to find these points with a specific geometric configuration. Namely, we
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wish to find these points as two distinct sequences {xi}n
1 , {yj}m

1 , such that
y1 = x1 ≡ X, and xn = ym ≡ Y , but that otherwise there are no mutual
points among the sequences (see Figure (1)). Furthermore, we wish to have

|X − Y | = diam
(⋃

i {xi} ∪
⋃

j {yj}
)

. In Section 6 we elaborate more on

the geometry we expect for such sequences after the reader had a chance to
see the present method.

x

y1

y2

y

x1

Figure 1

5. Proof of the main theorems

5.1. The idea behind the proof

In this subsection we give a rough idea of how to produce a sequence of
points (which can in fact be viewed as two sequences in a natural way)
using (4.3)-(4.5), and then use this sequence to produce a contradiction.
We will leave the precise estimates to the next subsection. Our sequence is
produced as follows. First we let w′ ∈ F1, w

′′ ∈ F2 be points of minimum
distance. Let us now rescale and set |w′ − w′′| ≡ 1. Now consider the ball
B

(
w′, 1

4

)
. This ball is disjoint from F2, and, by (4.3),

(5.1) µ

(
B

(
w′,

1

4

))
≥ (1 + ε)

1

4
.

Hence, by (4.4), there must exist points z1, w1 ∈ F1 ∩ B
(
w′, 1

4

)
, so that

(5.2) |w1 − z1| = diam

(
F ∩ B

(
w′,

1

4

))
≥ (1 + ε)

1

4
.

See Figure (2).
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w′

1/4

w1 z1w′′

Figure 2

Now we consider the ball B (w1, |z1 − w1|) , where (without loss of gen-
erality) we can assume w1 is closer to w′ than z1 is. Now we repeat the
argument. Namely, (4.3), (4.4) imply that there exist a pair of points
z2, w2 ∈ B (w1, |w1 − z1|) ∩ F1 (with the same choice of labeling) so that

(5.3) |z2 − w2| ≥ (1 + ε) |z1 − w1| .

We can repeat inductively to find zi as long as |zi−1 − wi−1| < 1, otherwise
we pick up points from F1. The sequence {zi}N

1 thus constructed is the
required sequence. Suppose for instance that we were working in R2, then
it is not hard to see from the geometrical picture that

{zi}N
i=1,

i odd
, {zi}N

i=2,
i even

,

has the resemblance (certainly not necessarily the properties) of the two
sequences mentioned in Subsection 4.2.

In the method of this paper we deal with {zi}N
i=1 as one sequence. The

main feature of this sequence is that it is of the sharp saw-teeth type. We
will however have no control on the relative size of the “teeth” (of course
it is trivial that (4.5) would be violated if the teeth were of equal size, as
simple considerations would show). As soon as we construct the sequence
{zi} using (4.3), (4.4), we can actually forget about the 1

2
-problem. The rest

of the proof is established by proving Theorem 6 (in fact slightly more is
proved).
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5.2. The body of the proof

Below, we will denote the bound on βF (x, r) by β, and we will try to do
the manipulations in terms of it whenever possible. Whenever an explicit
computation is required however, we use β = 1

10
. Let us begin by record-

ing some information regarding the sequence {zi}N
i=1 constructed in Sub-

section 5.1. Let S be an infinite strip of width at most β, which contains
B (wN−1, 1) ∩ F1, oriented so that its center-line is parallel to the real-axis.
Let the origin be placed at wN−1. We will also measure arguments to lie
in the interval (−180o, 180o]. This will be the most convenient convention.
Geometric angles such as those inside a triangle will be considered positive
unless declared otherwise. We start with the following lemma:

Lemma 11 Suppose x, y, z ∈ R2 are distinct points such that |z − x| ≤
|x − y| ≤ |z − y| , and so that all three points lie in a strip S of width
β |x − y| . Then sin (x̂yz) ≤ β.

Proof. It suffices to prove this when S is of minimal width. In that case
however it is not hard to see that one of the boundary components of S will
contain z, y. Then by projecting the line segment xy on the orthogonal to
the center-line of S, we can conclude the lemma. �

Lemma 12 There exist sequences Z ≡ {zi}N
1 ,W ≡ {wi}N

1 ⊂ F1, with the
following properties (let ri ≡ |zi − wi|) :

1. For i ∈ {2, . . . , N} , zi, wi ∈ B (wi−1, ri−1) ∩ F1, and

ri = diam (F ∩ B (wi−1, ri−1)) ;

2. zi ∈ (B (wi−1, ri−1) \B (wi−2, ri−2)) ∩ F1;

3. ri > ri−1 (in fact ri ≥ (1+ε) ri−1), also 1
2
≤ ri <1 for i ∈{1, . . . , N−1},

but rN ≥ 1, and r1 ≤ 0.504;

4. |zj − zi| > 0, for all i �= j;

5. |arg (zi+1 − zi)| ∈ [90o − arcsin (2β) , 90o + arcsin (2β)],
with arg (zi+1 − zi) alternating in sign;

6. If i > j, then |arg (zi − zj)| ∈ [0o, 90o + arcsin (2β)];

7. Re(zN) ≥ 0.85;

8. mini Re (zi) ≤ 0.504.
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Proof. See Figure (3).

�
�

�
�

�
�

�
�

Figure 3

Properties (1)-(4) are immediate from the construction in Subsection 5.1 ex-
cept for the upper and lower bounds on r1 which can be proved as follows: we
modify that construction of the sequence by starting the labeling w0, z0, as
soon as we find that r0 < 1

2
, whereas r1 ≥ 1

2
. Now we observe that, by Lemma

11, the worst case estimate occurs when sin
(
ŵ0z0w1

)
= sin

(
ẑ1w0z0

)
= β,

in which case a computation using the law of cosines yields the stated up-
per bound on r1. This also proves Property (8) by definition of w1, z1. To
see Property (5), we observe first that the acute angle that any of the line
segments wizi makes with the horizontal cannot exceed arcsin (2βF (0, 1)) ≤
arcsin (2β) . Since zi+1 ∈ B (wi, ri) , it is not hard to see then that

(5.4) |arg (zi+1 − zi)| ≥ 90o − arcsin (2β) .

Similarly, it is also easy to see that zi ∈ B (wi+1, ri+1) , and hence

(5.5) |arg (zi+1 − zi)| ≤ 90o + arcsin (2β) .

The alternation in sign can be seen from Figure (4).
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The proof of Property (6) is similar. To prove Property (7), we just make
the crude observation that, by Property (5),

(5.6) |zN − zN−1| ≤ β

cos (arcsin (2β))
.

By the triangle inequality,

(5.7) rN−1 ≥ rN − |zN − zN−1| ,

and then, by Property (5), and (22),

(5.8) Re zN ≥ rN−1 cos (arcsin (2β)) − 2β |zN − zN−1| ≥ 0.85.

�
The proof of the main theorems will be completed by proving

Proposition 13 There exists a subsequence {ηi}Ñ
1 of Z, such that

(5.9)
∣∣arg

(
ηÑ − η1

)∣∣ ≥ 30o,

and

(5.10) Re
(
ηÑ − η1

) ≥ 0.226.
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This proposition contradicts that, since Z ⊂ S, the strip of width β, we
must have ∣∣arg

(
ηÑ − η1

)∣∣ ≤ arctan

(
β

0.226

)
≤ 24o.

The next three Lemmas will give a proof of Proposition 13. We start by re-
fining the sequence Z slightly to make it more manageable. For z ∈ C, angles
φ1, φ2 ∈ (−180o, 180o], we let S (z, φ1, φ2) ≡ {ζ ∈ C : φ1 ≤ arg (ζ−z) ≤ φ2}.
Lemma 14 There exists a subsequence Z ′ ≡ {z′i}N ′

1 of Z = {zi}N
1 , with the

following properties:

1. mini Re (z′i) = mini Re (zi) ;

2. arg
(
z′i+1 − z′i

)
, arg

(
z′i+2 − z′i+1

)
are of opposite signs;

3.
∣∣arg

(
z′i+1 − z′i

)∣∣ ∈ [55o, 90o), and z′i+1 has maximum distance from z′i
among the elements of Z ′ which lie in the same sector (S (z′i, 55o, 90o) ,
or S (z′i,−90o,−55o)) as z′i+1.

4. Re (z′N ′) ≥ 0.83

Proof. Let zi1 ∈ Z be the last element such that

(5.12) Re zi1 = min
i

Re zi.

By Property (5) of Lemma 12, and for β = 1
10

, we get that

(5.13) |arg (zi1+1 − zi1)| ∈ [78.4o, 90o).

Set z1 = zi1 . Now let zi2 ∈ Z be the last element in Z ∩ (S(z′1, 55o, 90o)
∪S(z′1,−90o,−55o)) with maximum distance to z′1. Set z′2 = zi2 . We have
thus found two points in our subsequence but we certainly have not satisfied
(4). Now suppose by induction that we have found z′k according to properties
(1)-(3), and that (without loss of generality) z′k ∈ S

(
z′k−1, 55o, 90o

)
. Let z′k =

zik ∈ Z. By Property (5) of Lemma 12, and the maximality of
∣∣z′k − z′k−1

∣∣ ,
we can conclude that

(5.14) Z ∩ S (z′k, 55o, 90o) = φ.

We may also assume

(5.15) Z ∩ S (z′k,−90o,−55o) = φ,

and that Re (z′k) < 0.83 (otherwise we have the induction step). Combining
these facts with Property (5) of Lemma 12, we conclude that

(5.16) zik+1
∈ cl (S (z′k, 90o, 101.6o) ∪ S (z′k,−101.6o,−90o)) .
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Let zl be defined to be the last element in Z ∩S (z′k, 90o, 101.6o) with l ≥ ik,
and maximizing the distance to z′k. Similarly, we let zl′ be the corresponding
element with the same properties for S (z′k,−101.6o,−90o) (see Figure (5)).

�
�

�
��

�
�

���

55o

55o�
�

�

Figure 5

At this point we will not make use of points z′j with j < i, and there will
be no loss of generality in assuming |zl − z′k| ≥ |zl′ − z′k| . We now show
that we have a contradiction to (29), (30), by considering the first element
zm ∈ Z with m ≥ ik, which leaves B (z′k, |z′k − zl|) . Let S ′ be the infinite
strip of width at most 1

10
|zl − z′k| , which contains Z ∩ B (z′k, |z′k − zl|) . We

parametrize the possible positions and orientations of this strip by two pa-
rameters, λ being the positive angle that the center-line of S ′ makes with the
real-axis, and ∆, the distance between z′k and the intersection of the “right”
component of ∂S ′ with the real-axis. First we consider the two worst cases
that can happen if

(5.17) 90o ≤ |arg (zm−1 − z′k)| ≤ 101.6o.

Both cases are identical so assume arg(zm−1 − z′k) > 0o. The worst estimate
then arises when

(5.18) zm−1 = z′k + i |zl − z′k| ,
and

(5.19) arg (zm − zm−1) = −78.4o.
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Let z̃ be the intersection of the half line starting at zm−1 and containing zm

with the half line starting at z′k making angle -55o with the real axis. It is
easy to see that

(5.20) |z′k − zm| ≤ |z′k − z̃| .

On the other hand

(5.21)
|z′k − z̃|
|zl − z′k|

≤ sin (11.6o)

sin (23.4o)
≤ 0.51 ,

which contradicts the definition of zm. Now we consider the case when

(5.22) |arg (zm−1 − z′k)| ≤ 55o.

First we need some estimates on λ and ∆. The estimate on ∆ is easily seen
to satisfy

(5.23) 0 ≤ ∆ ≤ β

sin (λ)
.

The estimate on λ is found by observing that the acute angle between the
center-line of S ′ and the line segment z′kzl cannot exceed arcsin (β) . On the
other hand, we have

(5.24) 90o ≤ arg (zl − z′k) ≤ 101.6o.

Hence, we have

(5.25) 84.2o ≤ λ ≤ 107.4o.

Now consider the triangle which has z′k as one vertex and two of its sides on
the half lines L1 ≡ {ζ : arg (ζ − z′k) = 55o} , L2 ≡ {ζ : arg (ζ − z′k) = −55o} ,
and the third side on the “right” component of ∂S ′. The worst cases can be
easily seen to arise when zm−1 lies on one of the other two vertices of this
triangle and arg (zm − zm−1) = ±78.4o. Let us denote the top one (which
lies on L1) by ζ1, and the bottom one (which lies on L2) by ζ2 (see Figure
(6)).
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Let us first consider the case zm−1 = ζ1, and arg (zm − zm−1) = −78.4o.
The worst estimate for this case is when ∆ is a maximum, and λ = 84.2o.
This makes the distance between ζ1, z

′
k a maximum. This distance is easily

estimated to satisfy

(5.26)
|ζ1 − z′k|
|zl − z′k|

≤ sin (84.2o)

10 sin (84.2o) sin (35 − 5.8o)
≤ 0.21 .

Let ζ̃1 denote the intersection of L1 with the half line{ζ : arg (ζ−ζ1)=−78.4o}
starting at ζ1. Clearly,

(5.27) |zm − z′k| ≤
∣∣∣ζ̃1 − z′k

∣∣∣ .

On the other hand
∣∣∣ζ̃1 − z′k

∣∣∣ satisfies

(5.28)

∣∣∣ζ̃1 − z′k
∣∣∣

|ζ1 − z′k|
≤ sin (35 + 11.6o)

sin (35o − 11.6o)
< 1.83 .

Again this gives a contradiction to the definition of zm. Finally the case
zm−1 = ζ2, and arg (zm − zm−1) = 78.4o is similar but has worse estimates.
Namely,

(5.29)
|ζ2 − z′k|
|z′k − zl| ≤

1

10 sin (35o − 17.4o)
≤ 0.34 .

Also, if ζ̃2 is the corresponding point on L1, then

(5.30)

∣∣∣ζ̃2 − z′k
∣∣∣

|ζ2 − z′k|
≤ sin (35o + 11.6o)

sin (35o − 11.6o)
< 1.83 .
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Combined with the fact that in this case |zm − z′k| ≤
∣∣ζ̃2 − z′k

∣∣, we get a
contradiction to the definition of zm. The induction step is thus established,
unless we have reached a point z′N ′ that lies close to zN (the end of the
sequence Z). The worst case for that is certainly when

(5.31) Re zN ≥ Re zN ′ .

According to our analysis above, this happens when zN coincides with the
point ζ2. A very crude estimate can be obtained from

(5.32) |zl − zN ′ | ≤ β

cos (11.6o)
,

and then, by (5.30),

(5.33) Re (zN − z′k) ≤
0.34β cos (55o)

cos (11.6o)
< 0.02 .

By Property (7) of Lemma 12, we get

(5.34) Re zN ′ ≥ 0.83.

�

The main problem now is to control the behavior of the sequence Z ′. The
fact that the size and the small angles of the “teeth” is allowed to change
makes the situation more complicated as one may have some accumulations
of such segments near each other followed by a sudden change of scale with-
out violating the flatness imposed by the beta-numbers. The next lemma
will produce yet another subsequence Z ′′ such that such behavior will be
eliminated.

Lemma 15 There exists a subsequence Z ′′ ≡ {z′′1 , . . . , z′′N ′′} of Z ′ with the
following properties:

1. arg
(
z′′i − z′′i−1

)
, arg

(
z′′i+1 − z′i

)
are of opposite sign;

2. For all i ∈ {1, . . . , N ′′ − 1} , |arg (zi+1 − zi)| ∈ [45o, 50.6o];

3. Re z′′N ′′ ≥ Re z′N ′ − β ≥ 0.73;

4. mini (Re z′′i ) = minj

(
Re z′j

)
.
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Proof. Set z′′1 = z′1 (this immediately satisfies (4) since Re z′1 is the min-
imum for Z ′), and let z′l ∈ S (z′′1 , 45o, 90o) ∩ Z ′ be the element that max-
imizes the distance from z′′1 . Similarly, let z′l′ be the corresponding ele-
ment for S (z′′1 ,−90o,−45o) ∩ Z ′. Assume (without loss of generality) that
|z′l − z′′1 | ≥ |z′l′ − z′′1 | . In particular, by Lemma 12, we have |z′l − z′′1 | > 0. We
now show that arg (z′l − z′′1 ) ∈ [45o, 50.6o]. Suppose not, then arg (z′l − z′′1 ) ∈
(50.6o, 90o]. We will consider the element z′m ∈ Z ′ defined to be the first el-
ement in Z ′ which leaves the ball B (z′′1 , |z′l − z′′1 |) . By choice of z′l, we must
have

(5.35) |arg (z′m − z′′1 )| ≤ 45o.

Let us first eliminate the possibility that 55o ≤ arg
(
z′m − z′m−1

)
< 90o. This

case is technically easier but it is what dictates the choice of the uncertainty
interval [45o, 50.6o]. To eliminate this case, one merely has to consider the
strip S ′′ of width β |z′′1 − z′l| which contains Z ′ ∩ B (z′′1 , |z′′1 − z′l|) . We cer-
tainly have zm−1 ∈ S ′′. It is easy to see that in this case z′m has to lie in
B (z′l, |zl′ − z′′1 |) . But this cannot happen since arcsin

(
1
10

) ≤ 5.6o which is
the width of the uncertainty window. See Figure (7).

We now consider the case −90o < arg
(
z′m − z′m−1

) ≤ −55o. The same
argument above also eliminates the case z′m ∈ B (z′l, |zl′ − z′′1 |) . Now let
ζ1 ∈ C be the point such that

(5.36) |ζ1 − z′′1 | = |z′l − z′′1 | , and arg (ζ1 − z′′1 ) = 45o .

Let L be the half line arg (ζ − ζ1) = −55o, and its intersection with the half
line arg (ζ − z′′1 ) = −45o be ζ2 (see Figure (8)).

45o

45o�
��

�

�
�

�

45o

45o�
��

�

�
�

�

�
�

10o

35o

�
�

�

Figure 7 Figure 8
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Let T be the triangle with vertices z′′1 , ζ1, ζ2. It is not hard to see now that
z′m must lie in the triangle T , and we will show that this violates the bound(

1
10

)
on the beta-numbers. To wee that we merely observe that, for any

point ζ ∈ T\ (B (z′l, |zl′ − z′′1 |) ∪ B (z′′1 , |z′′1 − z′l|)) , the geometric (positive)

acute angle ẑ′lζz′′1 satisfies

(5.37) ẑ′lζz′′1 ≥ φ ≡ |arg (z′l − ζ2) − arg (z′′1 − ζ2)| .
It thus suffices to show that the angle φ violates the maximum angle allowed
(namely, arcsin (β)) . To do that we first need an estimate on |ζ2 − z′′1 | , which
can be found via (the law of sines)

(5.38)
|ζ2 − z′′1 |
|z′l − z′′1 |

≤ sin (80o)

sin (10o)
< 5.7 .

Hence, by the law of sines again, we have

(5.39)
|z′l − z′′1 |
sin (φ)

=
|z′′1 − ζ2|

sin (135o + φ)
,

which leads to

(5.40) φ > 6.2o.

Thus we conclude that

(5.41) arg (z′l − z′′1 ) ∈ [45o, 50.6o].

Now let z′′2 = z′l, and repeat inductively (now the previous step already
determines which sector will contain the element of maximum distance from
z′′2 etc.). This procedure can continue at least till we reach a z′′N ′′ which is
close to z′N ′ . The worst case estimate can be crudely seen to be better than
when z′N ′ , z′′N ′′ are like the elements ζ1, z

′′
1 in the proof above, which leads to

(5.42) Re z′′N ′′ ≥ Re z′N ′ − β ≥ 0.73 .

�
The next lemma will show that Z ′′ has properties conflicting with flat-

ness.

Lemma 16 Let Z ′′ = {z′′1 , . . . , z′′N ′′} be as in Lemma 14. We have for i ∈
{2, . . . , N ′′} ,

(5.43) |arg (z′′i − z′′1 )| ∈ [30o, 50.6o].
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Proof. For convenience we will change the notation as follows. We set
x1 = z′′1 , y1 = z′′2 , and in general xi = z′′2i−1, and yi = z′′2i etc. If N ′′is odd,
N ′′ = 2n+1, then we define yn+1 ≡ xn+1 = z′′N ′′ . Also, set Li =|xi − yi| ,Mi =
|yi − xi+1| (see Figure(9)),

��

��

Figure 9

and let φi be the acute angle (measured positive only) between the line
segments xiyi, and yixi+1. We first observe that, by construction of Z ′′, we
have

(5.44) 78.8o ≤ φi ≤ 90o.

For each i, it is then easily seen that

(5.45) min (Li,Mi) ≈ β max (Li,Mi) .

Since arg (yi − xi) ∈ [45o, 50.6o], then, by Lemma 15, we can also conclude
that

(5.46) |arg (xi+1 − xi)| ∈ [39.4o, 50.6o].

Let us assume (without loss of generality) that

(5.47) arg (y1 − x1) ∈ [45o, 50.6o].

The statement of the Lemma is certainly true if we replace z′′N ′′ by y1. Sup-
pose now that the lemma is true for a sequence having the properties of
Z ′′ but with m pairs{xi, yi} of points, we will show that we can prove the
induction step. In particular, suppose

(5.48) |arg (xm − x1)| ∈ [30o, 50.6o].

If either Lm+1 < Mm+1, arg (xm − x1) ∈ [−50.6o,−30o], or Lm+1 > Mm+1,
arg (xm − x1) ∈ [30o, 50.6o], then it is easily seen that we’re done (see Figure
(10)).
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A similar argument also takes care of the cases Mm+1 >max (Lm+1, |x1−xm|),
or Lm+1 > max (Mm+1, |x1 − xm|) . See Figure (11).
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Figure 11

It therefore suffices to consider the following two cases: Mm+1 < Lm+1 <
|x1 − xm| , arg (xm − x1) ∈ [−50.6o,−30o] (see Figure (12)), and Lm+1 <
Mm+1 < |x1 − xm| , arg (xm − x1) ∈ [30o, 50.6o] (see Figure (13)).
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Figure 12 Figure 13

Both cases have identical treatments, so we will only discuss the first.
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Certainly arg (xm+1 − x1) < 0o, but of course we wish to show that in
fact it is less than −30o. See Figure (14).
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Figure 14

Let r ∈ {1, . . . ,m} be the largest integer for which

(5.49) arg (xm+1 − xr+1) < 0o.

By the induction hypothesis,

(5.50) arg (xm+1 − xr+1) ∈ [30o, 50.6o].

By choice of r, we must have that |xr+1 − xm+1| ≈ β |xr − xr+1|. Since
βF (xr, |xr − xr+1|) ≤ 1

10
, we conclude that

(5.51) arg (xm+1 − yr) ∈ [−50.6o,−39.4o].

We now have two possibilities to consider. The first is when arg (xr − x1) >
0o. In this case, since we already know that arg (xm+1 − x1) < 0o, we must
have that

(5.52) |x1 − xr| ≈ β |yr − xr+1| .
Now an application of βF (yr, |yr − xr+1|) ≤ 1

10
, gives

(5.53) arg (xm+1 − x1) ∈ [−50.6o,−33.8o].

If arg (xr − x1) < 0o however, then using the induction hypothesis with (68),
gives

(5.54) arg (xm+1 − x1) ∈ [−50.6o,−30o].

In either case we have established the induction hypothesis, and the proof
of the lemma is complete. �

The proof of Proposition 13 is now also complete, and so are Theorems
5 and 6.
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6. Concluding remarks

The reader may have noticed that we did not push the method above to its
limits. That tends to complicate the estimates which, although elementary,
tend to get quite involved. Although it is possible to push the method
a bit more, our goal was more to prove some general properties of finite
sets possessing some flatness condition and then applying the results to the
1
2
-problem. One would also imagine that our method would have other

applications as well. We refer the reader to [Far2] for a method that was
mainly intended for the 1

2
-problem (and does allow a stronger result). We

also wish to remark (this remark is due to the referee), that for sufficiently
small beta, the “saw-teeth” Lemma (Lemma 12) implies the 1

2
-bound as

follows: By flatness, the projection of Qi ≡ F1∩B (zi, |zi − zi+1|) is contained
in an interval Ji of length ε |zi − zi+1| . Since Ji covers

[
1
2
, 3

4

]
say, there is a

disjoint union of some of them of measure at least 1
8
, and we get that the

measure of the union is at least 1
8ε

. This measure however is contained in a
region of bounded diameter, so for ε small enough we have a contradiction.

Projection arguments however fail rather quickly for this problem. The
most promising approach is the one aluded to in Section 4, where we gave
some remarks on the two sequences which we would like to construct. Bet-
ter yet, we would like these sequences to be such that we can place balls
B (xi, ri) , B (yj, sj) , so that B (xi, ri)∩B (xi+1, ri+1) is a singleton, and the
same for the other chain of balls. Also, we require that there is no over-
lap between the two chains except for the first and last balls on each chain
(these are chosen to be common). The picture now should look like a doubly
connected loop (see Figure (1)), i.e. two chains of balls connecting to the
end points without overlap among them except for the beginning and the
end. It is not hard to see now (by the triangle inequality and (4.3)) that a
configuration like that would give

(6.1) µ(union of the balls) ≥ (1 + ε) |X − Y | .

Suppose further that we can even guarantee that

(6.2) diam (F ∩ union of the balls ) = |X − Y | .

Then, we would get a contradiction to (4.4). Why one should be able to
construct any such loop at all is difficult to describe here but let us remark
that the reader can find a construction of this type in [Far1]. In [Far3], we
pursue this idea much further. Note that it is possible to find that F1(say)
contains a loop that “closes at ∞” By that we mean two chains of the type
described above but they start from w′ (say w′ ∈ F1, w

′′ ∈ F2 are points of
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minimum distance) and leave a ball of radius 1
ε2 before coming together. In

such a case (4.4) does not necessarily fail. The idea then is to work in F2.
Suppose that the same situation takes place in F2. Then it is easy to see
that (4.4) fails in B

(
w′, 1

ε2

)
provided that we only use balls of radius strictly

less than dist (F1, F2) (this just guarantees that there is no overlap between
the chains of balls in each piece). In such a case, by (4.3),

(6.3) µ

(
B

(
w′,

1

ε2

))
≥ 2

ε2
(1 − O

(
ε2

)
) (1 + ε) >

2

ε2
,

which contradicts (4.4). If, on the other hand, we find instead a closing loop
in F2, then we have the first type of contradiction described before.

Using the methods of this paper we cannot show that one can get such
loops under reasonable conditions, but interestingly enough we did show
that there are two naturally identified sequences which have to exist within
F1 (say), when we imposed βF (w′, dist (F1, F2)) ≤ 1

10
for example. We could

not guarantee that the sequences have the required properties but instead we
argued directly that βF (x, r) ≤ 1

10
failed at some other point and scale, using

a general property of finite sets possessing a flatness condition like the one we
imposed on F. In fact, flatness goes against the possibility of constructing
such loops, and considering this type of hypothesis was intended to show
whether the loop idea was at all achievable. Thus the fact that flatness
allowed another type of contradiction directly is especially reassuring.

In a forthcoming paper [Far3], we establish the foundation for a new and
fundamentally different and systematic method of attack on the 1

2
-problem.

Besides being a method which should extend quite generally, one of the
immediate by-products of the method is that the results of [Far1], [Far2],
and the present paper will be significantly generalized. More specifically,
the requirement of flatness at almost every point and all sufficiently small
scales will be replaced by a weaker property that is required to hold at only
a countable number of points and one scale (for each such point). Among
the many sets which can then be subjected to such a method will be the
(known) examples of totally unrectifiable 1-sets E which actually achieve
Θ1

∗ (E, x) = 1
2
, at almost every point. Such sets tend to have a certain

structure, and even that structure can be reasonably understood from within
such a method.

Note added in proof : The author has recently succeeded in constructing
the loops described in Section 6 with all but one property built in, without
any assumptions on the geometry. This will appear in the updated version
of [Far3].



40 H. M. Farag

References

[Be1] Besicovitch, A. S., On the fundamental geometrical properties of lin-
early measurable plane sets of points. Math. Ann. 98 (1928), 422–464.

[Be2] Besicovitch, A. S., On the fundamental geometrical properties of lin-
early measurable plane sets of points II, Math. Ann. 115 (1938), 296–329.

[DS] David, G. & Semmes, S. Analysis of, and on, Uniformly Rectifiable Sets,
Surveys and Monographs 38, Amer. Math. Soc., 1993.

[Fal] Falconer, K. J., Geometry of Fractal Sets, Cambridge University Press,
1985.

[Far1] Farag, H. M., Some Affirmative Results Towards The Besicovitch 1
2 -

Conjecture, Thesis, Yale (1997).
[Far2] Farag, H. M., Unrectifiable 1-sets with moderate essential flatness satisfy

Besicovitch’s 1
2 -conjecture, Adv. Math. 149 (2000), 89–129.

[Far3] Farag, H. M., A systematic method for Besicovitch’s 1
2 -problem: a new

fundamental perspective on the geometry of sets and a.e. removal of the
flatness hypothesis, preprint.

[Fe] Federer, H., Geometric Measure Theory, Springer, Berlin, 1969.
[Jo] Jones, P.W., Rectifiable sets and the travelling salesman problem, In-

vent. Math. 102 (1990), 1–15.
[Ki] Kirchheim, B., Thesis, Prague 1988.
[Ma] Mattila, P., Geometry of Sets and Measures in Euclidean Spaces, Cam-

bridge University Press, 1995.
[Mo] Moore, E. F., Density ratios and (φ, 1) rectifiability in n-space, Trans.

Amer. Math. Soc. 69 (1950), 324–334.
[MR] Morse, A. P. & Randolph, J. F., The φ rectifiable subsets of the

plane, Trans. Amer. Math. Soc. 55 (1944), 236–305.
[Pr] Preiss, D., Geometry of measures in Rn: distribution, rectifiability, and

densities, Ann. of Math. 125 (1987), 537–643.
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