Emma D'Aniello,* Dipartimento di Matematica e Fisica, Scuola Politecnica e delle Scienze di Base, Seconda Università degli Studi di Napoli, Viale Lincoln n.5, 81100 Caserta, ITALIA. email: emma.daniello@unina2.it

T. H. Steele, Department of Mathematics, Weber State University, Ogden, UT 84408-2517, USA. email: thsteele@weber.edu

A NON SELF-SIMILAR SET

Abstract

For each $s \in (0,1]$, we give an example of a nowhere dense perfect set E contained in the unit interval with $\dim_{\mathcal{H}}(E) = s$, which is not an attractor for any iterated function system composed of weak contractions. This answers a problem posed by Zoltán Buczolich at the Summer Symposium in Real Analysis XXXIX (June 8-13, 2015, St. Olaf College, Northfield, MN).

1 Introduction

Let X be a complete metric space with $S = \{S_1, \ldots, S_N\}$ a finite set of contraction maps from X to itself. Call a non-empty compact subset E of X an attractor for the iterated function system (IFS) S if $E = \bigcup_{i=1}^{N} S_i(E) = S(E)$ ([5], [4]). Since S is a contraction on the compact metric space $(\mathcal{H}, \mathcal{K}(X))$ comprised of the non-empty compact subsets of X endowed with the Hausdorff metric, there exists a unique compact set $E \subseteq X$ such that E = S(E). Take $\mathcal{T} = \{E \in \mathcal{K}(X) : E = S(E); S$ a finite collection of contraction maps S to be the set of attractors for contractive systems defined on S. From [2] and [3] one sees that S is always an S subset of S subset of S and, in the case that S is of the first category. In particular, there is a set S

Mathematical Reviews subject classification: Primary: 26A18, 28A78; Secondary: 28A80 Key words: iterated function system, attractor, self-similar set, Cantor set Received by the editors July 23, 2015

Communicated by: Zoltán Buczolich

^{*}This research has been partially supported by the Gruppo Nazionale per l'Analisi Matematica, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

certain nowhere dense perfect sets contained in the irrationals which is residual in $\mathcal{K}([0,1])$ and has the property that $\mathcal{K}^{\star\star} \cap \mathcal{T} = \emptyset$.

In this brief note, for each $s \in (0,1]$ we give a simple construction of a nowhere dense perfect set E contained in the unit interval with $\dim_{\mathcal{H}}(E) = s$, which is not invariant with respect to any iterated function system comprised of weak contractions. That is, $E \neq \mathcal{S}(E)$ whenever $\mathcal{S} = \{S_1, \ldots, S_N\}$, and $d(S_i(x), S_i(y)) < d(x, y)$ for $i = 1, 2, \ldots, N$.

This example answers a problem posed by Zoltán Buczolich at the Summer Symposium in Real Analysis XXXIX (June 8-13, 2015, St. Olaf College, Northfield, MN). Its construction exploits ideas found in [6] and [1].

2 Notations

Let (X, d) be a metric space. A map $f: X \to X$ is a contraction if there exists a constant $M \in (0, 1)$ such that, for each x, y in X,

$$d(f(x), f(y)) \le Md(x, y).$$

A map $f: X \to X$ is a weak contraction if, for each x, y in $X, x \neq y$,

$$d(f(x), f(y)) < d(x, y).$$

Let A and B be subsets of X. Set $d(A, B) = \inf\{d(x, y) : x \in A, y \in B\}$. By |A| we denote the diameter of A.

3 Main result

Theorem 1. For each $s \in (0,1]$, there exists a subset E of [0,1], nowhere dense and perfect, with $\dim_{\mathcal{H}} E = s$, that is not the attractor for any iterated function system composed of weak contractions.

Proof.

1. Construction of E.

Fix $s \in (0,1]$. The set E is defined as

$$E = \{0\} \cup \Big\{ \bigcup_{n=1}^{\infty} E_n \Big\},\,$$

where the sets E_n are taken so that, for each n:

(a)
$$|E_n| = \frac{1}{5} \frac{1}{2^n}$$
,

- (b) $s_n = \dim_{\mathcal{H}} E_n = s \frac{s}{n+1}$; hence, $\{s_n\}$ is an increasing sequence with $\lim_n s_n = \sup_n s_n = s$,
- (c) $\min E_n = \frac{1}{2^n}$, and
- (d) $0 < \mathcal{H}^{s_n}(E_n) < 1$.

One notes immediately that

- 2. $d(E_n, E \setminus E_n) > |E_n|$,
- 3. $\dim_{\mathcal{H}} E = s$ and $\mathcal{H}^s(E) = 0$, and
- 4. if m > n, then $\mathcal{H}^{s_m}(f(E_n) \cap E_m) = 0$, for any Lipschitz map f.
- 5. We will be interested in two types of behavior inherent to weak contractions defined on E.

Let $f: E \to E$ be a weak contraction.

(a) Suppose $f: E \to E$, and f(0) = 0. We first show that, for any $n, f(E_n) \subset E \setminus \bigcup_{i=1}^n E_i$. In fact, there exists $x \in E_n$ such that $d(0,x) = d(0,E_n)$. Therefore, $d(0,f(x)) < d(0,x) = d(0,E_n)$. Hence $f(x) \in E \setminus \bigcup_{i=1}^n E_i$. The conclusion follows from the observation that

$$|f(E_n)| < |E_n| < d(E_n, E \setminus E_n).$$

- (b) Suppose $f: E \to E$, and $f(0) \neq 0$. We show that there exists $M \in \mathbb{N}$ such that $\mathcal{H}^{s_m}(f(E) \cap E_m) = 0$ whenever m > M. Then $f(0) = x \in E_n$, for some n. Now, f continuous implies the existence of some $N \in \mathbb{N}$ such that $f(E_m) \subseteq E_n$ whenever m > N. Consider $L = \bigcup_{i=1}^N E_i$. Then $\mathcal{H}^{s_m}(f(L) \cap E_m) = 0$ for any m > N, and $\mathcal{H}^{s_m}(f(E) \cap E_m) = 0$ for any $m > M = \max\{N, n\}$.
- 6. Consider $S = \{S_1, \ldots, S_t\}$ where each S_i is a weak contraction from [0, 1] to itself. Consider two subsets of S, A and B, so defined. Let $S_i \in A$ if $S_i(0) = 0$ and $S_i \in B$ if $S_i(0) \neq 0$. If $S_i \in B$, then there exists N_i such that $\mathcal{H}^{s_m}(S_i(E) \cap E_m) = 0$ for any $m > N_i$. Let $N^* = \max\{N_i : S_i \in B\}$. Fix E_k , $k > N^*$. If $S_i \in B$, then $\mathcal{H}^{s_k}(S_i(E) \cap E_k) = 0$. If $S_i \in A$, then $S_i^{-1}(E_k) \subseteq \bigcup_{j=1}^{k-1} E_j$. Thus, $\mathcal{H}^{s_k}(S_i(E) \cap E_k) = 0$. We conclude that $\sum_{i=1}^t \mathcal{H}^{s_k}(S_i(E) \cap E_k) = 0$ and consequently $E_k \not\subseteq S(E)$.

References

- [1] Z. Buczolich, Cantor type sets of positive measure and Lipschitz mappings, Real Anal. Exchange, 17(2) (1991/92), 702–705.
- [2] E. D'Aniello and T.H. Steele, Attractors for iterated function systems, J. Fractal Geom., to appear.
- [3] E. D'Aniello and T.H. Steele, Attractors for iterated function schemes on $[0,1]^N$ are exceptional, J. Math. Anal. Appl., **424** (2015), 537–541.
- [4] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, Chichester, 1990.
- [5] J. E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J., 30 (1981), 713–747.
- [6] M. Nowak, Topological classification of scattered IFS-attractors, Topology Appl., 160 (2013), 1889–1901.