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ON SCOTTISH BOOK PROBLEM 157

Abstract

This paper descibes our hunt for the solver of Problem 157 in the
Scottish Book, a problem originally posed by A. J. (Gus) Ward in 1937.
We first make the observation that a theorem of Richard O’Malley from
1975 yields an immediate positive solution. A further look at O’Malley’s
references revealed a 1970 paper by Donald Ornstein that we now believe
contains the first solution of SB 157. We isolate the common elements in
the machinery used by both Ornstein and O’Malley and discuss several
consequences. We also examine an example function given by Ornstein.
There are some difficulties with this function but we provide a fix, and
show moreover that functions of that kind are typical in the sense of the
Baire category theorem.

1 The solution in brief

On March 23rd, 1937 A.J. Ward asked the following problem which is recorded
as Problem 157 in the famous Scottish Book.1

Scottish Book Problem 157. Suppose f is approximately continuous and
at each point x0 the quantity

lim sup
h→0+

f(x0 + h)− f(x)

h
,

Mathematical Reviews subject classification: Primary: 26A24; Secondary: 26A48
Key words: Scottish book, 157, approximate derivate, approximate continuity, monotone
Received by the editors April 12, 2015
Communicated by: Richard O’Malley

1The prize for the solution to this problem is lunch at the “The Dorothy” in Cambridge
which the authors now offer to purchase for Richard O’Malley and Donald Ornstein; trans-
portation costs are another matter!
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neglecting any set of h that have zero density at h = 0, is positive. Is f(x)
monotone increasing?

We became aware of this problem only recently when one of us2 was dis-
cussing the upcoming new edition of the Scottish Book with its editor, Dan
Mauldin. Problem 157 was one of the problems marked as unresolved. Upon
returning to campus, the authors decided to have a look at Scottish Book
Problem 157 and a natural approach to its resolution soon brought them
to Richard O’Malley’s paper on approximate maxima, [4]. In that paper,
O’Malley proves [4, Theorem 1] from which the following result is an immedi-
ate corollary.

O’Malley’s Theorem 1∗. Let f : [0, 1] → R be approximately continuous
but not strictly increasing. Then f attains an approximate maximum at some
point x0 ∈ [0, 1).

A follow up conversation with O’Malley then led us to the following theo-
rem by Donald Ornstein, [6].

Ornstein’s Theorem. Let f(x) be a real–valued function of a real variable
satisfying the following:

(a) f(x) is approximately continuous,

(b) For each x0, let E be the set of x, such that f(x)− f(x0) ≥ 0. Then

lim sup
h→0+

λ (E ∩ (x0, x0 + h)) /h 6= 0.

Then f is monotone increasing and continuous.

This is clearly the solution to Scottish Book 157, and as far as we see is
the first. There is a certain commonality to the machinery used in the proofs of
O’Malley and Ornstein, and we’ll try to isolate that common thread in the next
section. Our proofs (largely reformulating those of O’Malley and Ornstein)
will provide the slightly stronger result that the function under consideration
is in fact strictly increasing (rather than just monotonically increasing). We’ll
also list some elementary consequences and state all the relevant background.

In Section 4, we’ll examine an example given in [6]. We will show that
this example needs amending and supply that amendment. Finally, we will
also show in that section that functions satisfying the properties of Ornstein’s
example are typical in the sense of the Baire category theorem.

2Humke
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But for those familiar with the definitions, here is the solution to Scottish
Book 157 which we have drawn from O’Malley’s work and which is a trivial
consequence of Theorem 1∗.

Theorem 1. Suppose that f : [0, 1] → R is approximately continuous and
that, for each x0 ∈ [0, 1) and each set of h values E ⊂ R having zero density
at 0, the quantity

lim sup
h→0+,h/∈E

f(x0 + h)− f(x0)

h
> 0.

Then f is strictly increasing.

Proof. Given any points 0 ≤ x1 < x2 ≤ 1, if f(x1) ≥ f(x2), then apply-
ing O’Malley’s Theorem to the function f restricted to [x1, x2], we obtain
that f attains an approximate maximum (relative to [x1, x2]) at some point
x0 ∈ [x1, x2). That is, there is some set of h values E0 ⊂ R having zero
density at 0 such that, on some neighborhood of x0 in [x1, x2] \ E0, f attains
its absolute maximum at x0.

We conclude therefore that

lim sup
h→0+,h/∈E0

f(x0 + h)− f(x0)

h
≤ 0.

This contradicts the assumption made on f . We conclude that f(x1) < f(x2),
and that therefore f is strictly increasing on [0, 1].

2 The rest of the story

All sets and functions considered here will be assumed to be measurable with
respect to λ, Lebesgue measure on R. Suppose E ⊂ R and I ⊂ R is an
interval. Then the density of E in I is defined as ∆(E, I) = λ(E ∩ I)/λ(I).
Now, if x ∈ R, then the upper density of E at x is defined as ∆(E, x) =
lim supr→0 ∆(E, (x − r, x + r)). The lower density at x, ∆(E, x) is defined
similarly where lim inf replaces lim sup and if these two are equal at x, their
common value is called the density of E at x and is denoted ∆(E, x).

Now suppose a function f : R → R is given. Then f is approximately
continuous at x0 if there is a set E with zero density at x0, so that the limit
of f as x→ x0 on R \E is f(x0). A function f has an approximate maximum
at x0 if ∆(Hf(x0), x0) = 0 where we define Hy ≡ Hy(f) = {x : f(x) > y}.

For the purpose of exposition, we isolate the following remarks concerning
density and approximately continuous functions.
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Remark 2. Although the definitions above of upper and lower density at a
point x are given in terms of intervals which are symmetric around x only,
it is easy to show that if E and F are sets having density zero and one at x
respectively, then for any ε > 0 there is a δ > 0 small enough so that if I is
any interval containing x in its closure with λ(I) < δ, then ∆(E, I) < ε and
∆(F, I) > 1− ε.

Remark 3. Suppose y ∈ R, f is approximately continuous at x and {In} is a
nested sequence of closed intervals so that that {x} =

⋂
n In and ∆(Hy, In) >

η > 0 for all n ∈ N. Then ∆(Hy, x) > η/2.

Remark 4. If f is approximately continuous at x, z < y and ∆(Hy, x) > 0
then f(x) > y and ∆(Hz, x) = 1.

An important first step is to see that there is an approximately continuous
function with no relative extrema. This is, perhaps, not particularly surprising,
but the fact that this function can be a derivative is a good introduction into
the real nature of derivatives. This example can be found in Andy Bruckner’s
classic introduction, [1].

Bruckner’s Theorem 3.1. There is a bounded approximately continuous
derivative which achieves no local maximum and no local minimum.

To visit O’Malley’s machinery, consider a measurable set H and an interval
I so that λ(H ∩ I) > 0 and let ε > 0 be given. We define

J (H, I, ε) = {J : J ⊂ I is an open interval with ∆(H,J) > ε}

and we let Gε(H, I) =
⋃
J (H, I, ε). O’Malley proves the following lemma, [4,

Lemma 1] concerning components of Gε(H, I).

Lemma 5. Suppose H ⊂ [0, 1] is measurable and fix (a0, b0) ⊂ (0, 1) with
λ(H∩(a0, b0)) > 0 and let ε > 0. Let (a1, b1) be a component of Gε(H, (a0, b0)).
Then

1. ∆(H, (a1, b1)) > ε/2, and

2. If I ⊂ (a0, b0) is an open interval with I∩{a1, b1} 6= ∅ then ∆(H, I) 6 ε.

In particular, λ(Gε(H, (a0, b0))) 6 2λ(H ∩ (a0, b0))/ε.

The first item holds since each component is comprised of intervals with
density at least ε. The second part of the lemma follows from the definition
of Gε(H, (a0, b0)). If I ⊂ (a0, b0) is an interval that either contains or overlaps



On Scottish Book Problem 157 335

a component of Gε(H, (a0, b0)) then, by definition, I 6∈ J(H, (a0, b0), ε) and so
∆(H, I) 6 ε.

The next lemma has been extracted from the proof of Theorem 1∗ in [4]
and is the main workhorse of the proof our main result. We postpone the
proof to Section 3.

O’Malley’s Lemma. Suppose f : [a, b] → R is approximately continuous
satisfying λ(f−1(y)) = 0 for all y ∈ R. Let [a0, b0] ⊂ [a, b] be such that
s0 := sup f [a0, b0] > max{f(a0), f(b0)}. Then for each ε > 0 and y0 < s0
there is a y1 ∈ (y0, s0) and a component (a1, b1) of Gε(Hy1 , (a0, b0)) satisfying:

1. [a1, b1] ⊂ (a0, b0)

2. (b1 − a1) < 1/2(b0 − a0)

3. max{f(a0), f(b0), y0} < y1

4. max{f(a1), f(b1)} 6 y1

5. ∆(Hy0 , (a1, b1)) > 1/2

6. If I ⊂ (a0, b0) is an open interval with I∩{a1, b1} 6= ∅, then ∆(Hy1 , I) 6
ε.

Using the above we give the proof of O’Malley’s Theorem 1∗.

Proof of O’Malley’s Theorem 1∗. We first note that if the condition
λ(f−1(y)) = 0 found in the statement of O’Malley’s Lemma fails for some
y ∈ R, then the set f−1(y) will have a density point x0 ∈ [0, 1). It is easy
to see that f will achieve an approximate maximum at x0, and we are done.
Therefore we assume that λ(f−1(y)) = 0 for all y ∈ R. Note also that as
f is not strictly increasing, there is a b ∈ (0, 1] so that f(b) 6= sup f [0, b].
Therefore without loss of generality we assume that f(1) 6= sup f [0, 1]. If
f(0) = sup f [0, 1] we are done, setting x0 = 0. Therefore we assume further
that sup f [0, 1] > max{f(0), f(1)}. Define [a0, b0] = [0, 1], s0 = sup f [0, 1],
and let y0 < s0 be chosen arbitrarily. We apply O’Malley’s Lemma iteratively
with ε = 1/k at the kth stage to obtain a strictly increasing sequence of real
numbers {yk} and a strictly nested sequence of intervals {(ak, bk)} such that
for each k ∈ N, (ak+1, bk+1) is a component of Gε(Hyk+1

, (ak, bk)) and the
following items hold.

(i) [ak+1, bk+1] ⊂ (ak, bk)

(ii) (bk+1 − ak+1) < 1/2(bk − ak)
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(iii) max{f(ak), f(bk), yk} < yk+1

(iv) max{f(ak+1), f(bk+1)} 6 yk+1

(v) ∆(Hyk , (ak+1, bk+1)) > 1/2

(vi) If I ⊂ (ak, bk) is an open interval with I ∩ {ak+1, bk+1} 6= ∅, then
∆(Hyk+1

, I) 6 1/k.

In order to justify this recursive construction (i.e. to ensure that at the kth

stage the function f and the interval (ak, bk) satisfies the assumption made
on f and (a0, b0) in the statement of the O’Malley’s Lemma), observe that
since (ak+1, bk+1) is a component of Gε(Hyk+1

, (ak, bk)), Hyk+1
∩ (ak, bk) 6= ∅.

Therefore setting sk = sup f [ak, bk], we have sk > yk+1 > max{f(ak), f(bk)}.
Items (i) and (ii) above yield that the intersection of the intervals so ob-

tained consists of a single point, {x0} =
⋂∞
k=0(ak, bk). We have two claims:

f(x0) > yn for each n ∈ N and ∆(Hf(x0), x0) = 0. This final claim yields that
f has an approximate maximum at x0 ∈ [0, 1), as desired.

Fix some positive integer n. Then for each positive integer k, yn < yn+k.
Using this inequality and item (v) above

∆(Hyn , (an+k+1, bn+k+1)) > ∆(Hyn+k
, (an+k+1, bn+k+1)) > 1/2.

Using Remark 3, ∆(Hyn , x0) > 1/4 and so, by Remark 4, f(x0) > yn.
It remains to observe that ∆(Hf(x0), x0) = 0. Suppose by way of contra-

diction that ∆(Hf(x0), x0) = η > 0. Choose some m ∈ N with 1/m < η/2.

Since ∆(Hf(x0), x0) = η, we can find some r > 0 small enough so that the
interval I = (x0 − r, x0 + r) satisfies

I ⊂ (am, bm), and ∆(Hf(x0), I) > η/2.

Choose k > 0 to be the smallest positive integer such that I 6⊂ (am+k+1, bm+k+1).
Then

I ⊂ (am+k, bm+k), and I ∩ {am+k+1, bm+k+1} 6= ∅,

so we obtain the contradiction

η

2
< ∆(Hf(x0), I) 6 ∆(Hym+k

, I) <
1

m+ k
≤ 1

m
<
η

2
,

where the second inequality follows from the fact that f(x0) > ym+k, and the
third inequality above follows from item (vi). This contradicts the choice of
r.
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Several old standards can be immediately generalized to approximately
continuous functions using the theorem above. For example.

Rolle’s Theorem AP. Let f : [0, 1] → R be approximately continuous and
approximately differentiable on (0, 1) with f(0) = f(1). Then there is a point
x0 ∈ (0, 1) at which f ′ap(x0) = 0.

And hence, also its immediate consequence:

The Mean Value Theorem AP. Let f : [a, b] → R be approximately
continuous and approximately differentiable on (a, b). Then there is a point

x0 ∈ (0, 1) at which f ′ap(x0) = f(b)−f(a)
b−a .

Mean Value Theorems for the approximate derivative are well known and
in much greater generality; in fact, O’Malley showed in [5] that x0 can be

chosen so that f ′(x0) = f(b)−f(a)
b−a .

3 Proof of O’Malley’s Lemma

We need the following easy remark.

Remark 6. Suppose f : [a, b]→ R is approximately continuous, so that for all
y ∈ R, λ(f−1(y)) = 0. Then, setting s = sup(f [a, b]), lim

y→s
λ(Hy) = 0. There-

fore by Lemma 5, for such a function f and any ε > 0, λ(Gε(Hy, (a, b)))→ 0
as y → s.

We restate O’Malley’s Lemma for reference.

O’Malley’s Lemma. Suppose f : [a, b] → R is approximately continuous
satisfying λ(f−1(y)) = 0 for all y ∈ R. Let [a0, b0] ⊂ [a, b] be such that
s0 := sup f [a0, b0] > max{f(a0), f(b0)}. Then for each ε > 0 and y0 < s0
there is a y1 ∈ (y0, s0) and a component (a1, b1) of Gε(Hy1 , (a0, b0)) satisfying:

1. [a1, b1] ⊂ (a0, b0)

2. (b1 − a1) < 1/2(b0 − a0)

3. max{f(a0), f(b0), y0} < y1

4. max{f(a1), f(b1)} 6 y1

5. ∆(Hy0 , (a1, b1)) > 1/2

6. If I ⊂ (a0, b0) is an open interval such that I ∩ {a1, b1} 6= ∅, then
∆(Hy1 , I) 6 ε.
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The reader will note a marked similarity between the proof given of O’Malley’s
Theorem 1∗ and the following proof of O’Malley’s Lemma, both depending on a
recursive construction of an increasing sequence of real numbers and a nested
sequence of intervals. The thing to notice is that, in the following proof of
O’Malley’s Lemma, the two sequences are chosen so that the corresponding
members satisfy the first four items in the statement of O’Malley’s Lemma,
and then one real number and interval is chosen which also satisfies items (5)
and (6) as well. By contrast, each of the real numbers and corresponding inter-
vals found in the proof of O’Malley’s Theorem 1∗ satisfy all six items from the
statement of O’Malley’s Lemma. It was then shown that the intersection of all
the intervals consists of a single point, which turns out to be the point we were
looking for (at which the function achieves a local approximate maximum).

Proof. Fix f, (a, b), (a0, b0), s0, y0 and ε > 0 as in the hypotheses. Find α > 0
so that max{f(a0), f(b0), y0} < α < s0. Since f is approximately continuous
there is a δ > 0 so that if I is an interval in [a, b] with either a0 or b0 as an
endpoint, and with λ(I) < δ,

∆(Hα, I) < ε/2. (1)

In order to choose our number y1 and interval (a1, b1), we will first con-
struct a strictly increasing sequence of real numbers {rk} and nested intervals
{(ck, dk)}. To initialize this construction, we set r0 = y0 and (c0, d0) = (a0, b0).

By Remark 6, we may find some r1 with α < r1 < s0 so that λ(Gε(Hr1 , (a0, b0))) <
min{δ, 1/2(d0 − c0)}. Let (c1, d1) be any component of Gε(Hr1 , (a0, b0)). As-
suming that (c1, d1) shares an endpoint with (c0, d0) yields the contradiction

ε/2 6 ∆(Hr1 , (c1, d1)) 6 ∆(Hα, (c1, d1)) < ε/2.

The first inequality comes from Lemma 5(1), the second from r1 > α, and the
third from (1). Thus [c1, d1] ⊂ (c0, d0).

So far (1), (2) and (3) are satisfied for (c1, d1). To see (4), suppose, by way
of contradiction, that r1 < max{f(c1), f(d1)}, and without loss of generality
that r1 < f(c1). The approximate continuity of f at c1 then yields that
∆(Hr1 , c1) = 1. This, in turn, implies that there is an open interval I contained
in (c0, d0) and containing c1 with ∆(Hr1 , I) > ε. This contradicts Lemma 5(2).

At this point we have that the interval (c1, d1) and the value r1 satisfy
items (1)-(4) in the statement of the lemma (replacing (a1, b1) with (c1, d1)
and y1 with r1). The next step is to iterate this construction, obtaining a
strictly nested sequence of intervals (ck, dk) and a strictly increasing sequence
of numbers r1 < r2 < · · · < s0 such that, for each k > 1, (ck+1, dk+1) is a
component of Gε(Hrk+1

, (ck, dk)) satisfying
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(i) [ck+1, dk+1] ⊂ (ck, dk)

(ii) (dk+1 − ck+1) < 1/2(dk − ck).

(iii) max{f(ck), f(dk), rk} < rk+1

(iv) max{f(ck+1), f(dk+1)} 6 rk+1

In order to justify this recursive construction (i.e. to ensure that at the kth

stage the function f and the interval (ck, dk) satisfies the assumption made on
f and (a0, b0) in the statement of the lemma), observe that since (ck+1, dk+1)
is a component of Gε(Hrk+1

, (ck, dk)), Hrk+1
∩ (ck, dk) 6= ∅. Therefore setting

sk = sup f [ck, dk], we have sk > rk+1 > max{f(ck), f(dk)}.
Items (i) and (iv) above guarantee that the intersection of the intervals

[ck, dk] consists of a single point, {x0} =
⋂
k[ck, dk].

For each k > 1, r1 < rk+1, so ∆(Hr1 , (ck, dk)) > ∆(Hrk+1
, (ck, dk)) > ε/2

(by Lemma 5(1)). Therefore using Remark 3 we obtain ∆(Hr1 , x0) > ε/4.
Remark 4 now yields that f(x0) > r1 and since r1 > y0, ∆(Hy0 , x0) = 1.
Therefore using Remark 2, we can find some n so that ∆(Hy0 , (cn, dn)) > 1/2.
Define y1 = rn and (a1, b1) = (cn, dn).

For this choice of (a1, b1) and y1 it is easy to verify items (1)–(4) from the
statement of the lemma. Item (5) follows immediately from the choice of n.

It remains to establish item (6). To this end, let (c, d) ⊂ (a0, b0) be any
open interval with (c, d) ∩ {a1, b1} 6= ∅. Now, (c, d) ⊂ (c0, d0) = (a0, b0),
and (c, d) 6⊂ (cn, dn) = (a1, b1), so we may choose the least m ∈ {1, . . . , n}
such that (c, d) 6⊂ (cm, dm) (and thus (c, d) ⊂ (cm−1, dm−1)). Moreover,
(c, d) intersects (a1, b1), which is in turn contained in (cm, dm), so we have
that (c, d) ∩ {cm, dm} 6= ∅. Therefore, since (cm, dm) is a component of
Gε(Hrm , (cm−1, dm−1)), it follows from Lemma 5(2) that ∆(Hrm , (c, d)) ≤ ε.
Since y1 > rm, it follows that ∆(Hy1 , (c, d)) 6 ε as required.

4 An example

In order to show that item (b) in Ornstein’s Theorem may not be significantly
weakened without losing the result of the theorem, in [6] a continuous function
f : [0, 1]→ R is described which satisfies the following weaker assumption (b’),
but which is not monotonic on [0, 1].

(b’) For each point x0 ∈ [0, 1], the set E =
{
x : f(x)−f(x0)

x−x0
≥ 0
}

does not

have zero density at x0.
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In this section we identify a problem with this example and provide a
fix. In the last section we show that the typical continuous function satisfies
condition (b’) but is not monotonically increasing.

4.1 The Function and the Problem

Begin by choosing the eight points, pi = i/7 for i = 0, 1, . . . , 7 in [0, 1] (the
points {pi} have been explicitly chosen for the sake of concreteness, but with
any other choice of these points the same problem would occur) and defining
a function g at each of those points as follows:

g(p0) = 1, g(p1) =
4

3
, g(p2) =

1

3
, g(p3) =

4

3
,

g(p4) =
−1

3
, g(p5) =

2

3
, g(p6) =

−1

3
, g(p7) = 0. (2)

Extend g linearly on the intervening intervals and let

Ex0 =

{
x ∈ [0, 1] :

g(x)− g(x0)

x− x0
≥ 0

}
. (3)

Then φ(x) = ∆(Ex, [0, 1]) is continuous and, by inspection, positive at each
point x ∈ [0, 1]. Hence, there an α > 0 such that φ(x) > α for each x ∈ [0, 1].

A sequence of functions, gn is defined inductively by first setting g0 = g.

Assuming gn has been defined, gn+1 is obtained by replacing each
decreasing segment of gn with a suitable affine copy of g in such a
way that the resulting gn+1 is continuous. (?)

We refer to the process described in (?) as the insertion of g into gn. Specif-
ically, this entails that if [a, b] denotes a maximal interval on which gn is
decreasing, define gn+1(x) = S ◦ g ◦ T (x) for each x ∈ [a, b] where

T (x) =
x− a
b− a

and S(x) = xg(a) + (1− x)g(b). (4)

The claim is that the sequence gn converges pointwise to a continuous
function, and that this limit function f satisfies the condition (b’).

Unfortunately, {gn} does not converge to a continuous function. To see
this, we will show that there is a sequence of points {xn} ∈ [0, 1] such that
for each n the sequence {gk(xn)} is eventually constant, and these constants
approach ∞ as n → ∞. By the compactness of [0, 1] this implies that the
functions gn do not converge to a continuous function.
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To that end, we define a nested sequence I1 ⊃ I2 ⊃ I3 · · · of sub-intervals
of [0, 1] inductively as follows. We set I1 = [3/7, 4/7]. Suppose that Ik has
been defined for all k < n, and In−1 = [an−1, bn−1]. Then we define

In =

[
an−1 +

3

7n
, an−1 +

4

7n

]
.

The construction of {gn} above immediately implies that for each n, In is
a maximal interval of decrease for gn. Let us also define a sequence {∆yn} by
∆yn = gn(bn) − gn(an), the net change in gn on In. Since g(1) − g(0) = 1,
and when gn is defined on In−1, the vertical scaling factor used is |∆yn−1|, an
easy induction argument shows that

∆yn = ∆y0 · |∆yn−1| = − |∆y0|n+1
= −

(
5

3

)n+1

.

Using the same reasoning, it may also be shown that

gn(an) = 1 +

n∑
i=0

1

3
·
(

5

3

)i
.

Of course this sequence {gn(an)} → ∞, and we note that since In is a
maximal interval of decrease of gn, for any m > n, gm(an) = gn(an). There-
fore putting xn = an, the sequence has the properties described above. We
conclude therefore that the sequence gn does not converge to a continuous
function.

In actuality and with a little more computation it’s not hard to see that
{gn( 1

2 )} → +∞. The purpose of this note, however, is simply to point out
that the example needs repair and in the following subsection we show how
this can be done in a rather straightforward manner.

4.2 A Fix

In this section we adapt Ornstein’s function so that the change in y values
(as in the ∆yn from our discussion of Ornstein’s functions) on each decreasing
interval is strictly less than 1. We will use h’s here, rather than g’s to avoid
confusion.

Define h to be the continuous function defined [0, 13] with the following
prescribed values at the integers, and linear in the intervening intervals.
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h(0) = 4/4 h(1) = 6/4 h(2) = 3/4
h(3) = 5/4 h(4) = 2/4 h(5) = 4/4
h(6) = 1/4 h(7) = 3/4 h(8) = 0/4
h(9) = 2/4 h(10) = -1/4 h(11) = 1/4
h(12) = -2/4 h(13) = 0/4

The function h has been chosen so that at each point x0, h0 takes a smaller
value to the left of x0 or a larger value to the right of x0, thus again assuring
that the difference quotient is positive on a density (in [0, 13]) α set (for some
α > 0 independent of x0). If we choose α > 0 a bit smaller, we can say a bit
more, that for each x0 ∈ [0, 13], the set

Ex0 =

{
x ∈ [0, 13] :

h0(x)− h0(x0)

x− x0
≥ 0

}
,

where we disregard all x-values on which h0 is decreasing, has density α
in [0, 13]. This will be of use to us when we show that our final function h∞
satisfies the property (b’).

Let hn be the sequence of functions with domain [0, 13] defined recursively
in precisely the same manner as Ornstein’s function was defined, but using
h = h0 as our “seed function”, rather than Ornstein’s g. That is,

. . . to get hn+1 we simply replace each line segment of the graph
of gn having negative slope with an affine copy of h.

We will now show that our sequence hn does converge uniformly on [0, 13].
If h0 is decreasing on an interval [a, b] ⊂ [0, 13], then

h0(b)− h0(a) ≥ −1 · 3

4
.

Recursively, if hn is decreasing on an interval [a, b] ⊂ [0, 13], then

hn(b)− hn(a) ≥ −1 ·
(

3

4

)n
.

Therefore the difference between hn+1 and hn on [a, b] is at most (3/4)n

times the difference between h0 and the line y = −1/13x + 1 on the interval
[0, 13]. That is, the sequence {hn} converges uniformly.

4.3 Show that h∞ Satisfies (b’)

If x0 ∈ [0, 13] is contained in one of the intervals on which some one of the hn’s
is increasing, then the desired result holds immediately, because the function
values of all later hn+k’s will not change on that interval.



On Scottish Book Problem 157 343

Suppose that x0 is not in any such interval. Define I0 = [0, 13], and for
each n > 0, let In ⊂ [0, 13] denote the interval on which hn−1 is decreasing
which contains x0. (That is, In is the interval containing x0 on which hn−1 is

changed to form hn.) It is easy to see that m(In) =

(
1

13

)n−1
.

Moreover, if we set

En =

{
x ∈ In :

h∞(x)− h∞(x0)

x− x0
≥ 0

}
,

(again including only the x values at which hn is increasing) then we will show
that ∆(En, In) ≥ 1/26. Since the intervals In → {x0}, this will immediately
imply that (b’) holds.

We first show that, if I1 = [1, 2], then

∆(E0, I0) = ∆(E0, [0, 13]) ≥ 1/26.

The idea is that, regardless of the value of h∞(x0), the union [0, .5] ∪ [2.5, 3]
(ie the left half of the interval of increase to the left of I1 and the right half
of the interval of increase to the right of I1) contains at least mass 1/2 of E0.
Put y0 = h∞(x0). We proceed by cases.

Case 6.1. y0 ≥ 1.25.

By inspection, E0 contains the interval [0, 0.5]. Thus ∆(E0, [0, 13]) ≥ 1/26.

Case 6.2. y0 ≤ 1.

By inspection, E0 contains the interval [2.5, 3]. Thus ∆(E0, [0, 13]) ≥ 1/26.

Case 6.3. 1 ≤ y0 ≤ 1.25.

This is the interesting case. Consider the intervals of the graph with x-
values [0, .5] and [2.5, 3]. h∞ has constant slope on these intervals, and

h∞(0) = h∞(2.5) = 1, and h∞(.5) = h∞(3) = 1.25.

Therefore if we choose ε ∈ (0, 1/2) so that h∞(ε) = y0, then E0 contains the
union [0, ε] ∩ [2.5 + ε, 3].

But m([0, ε] ∩ [2.5 + ε, 3]) = .5, so we conclude that ∆(E0, [0, 13]) ≥ 1/26.
This argument extends immediately to show that ∆(E0, [0, 13]) ≥ 1/26 for

every other choice of I1, always finding points in E0 with mass at least 1/2 in
the intervals of increase of h0 directly to the left and right of I1.

Let us now consider the second interval I1. We wish to show that ∆(E1, I1) ≥
1/26. The first (ie from left to right) possibility for I2 is the interval [14/13, 15/13].
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Here the argument is the same with the y values for the cases being: Case
1) y0 ≥ 27/16, Case 2) y0 ≤ 1.5, and Case 3) 1.5 ≤ y0 ≤ 27/16, and the
intervals where we will be finding points in E1 are [26/26, 27/26] (the first
half of the interval of increase of h1 to the left of I2) and [31/26, 32/26] (the
second half of the interval of increase of h1 to the right of I2). The conclusion
is that m(E1) is greater than or equal to the length of one of these intervals,
m(E1) ≥ 1/26, and m(I1) = 1. Thus ∆(E1, I1) ≥ 1/26. This iterates nicely
(we always pick up a factor of 1/13 in both the numerator and the denominator
of our density calculation, which cancel), thus ∆(En, In) ≥ 1/26, and thus the
upper density of the set

E =

{
x ∈ [0, 13] :

h∞(x)− h∞(x0)

x− x0
≥ 0

}
at x0 is greater than or equal to 1/26 > 0, proving that h∞ satisfies (b’).

5 Counterexamples are typical

The goal of this final section is to show that continuous functions with Property
(b’) are ubiquitous in the complete space C[0, 1] of all continuous functions on
[0,1] endowed with the sup metric. However, “ubiquitous” can be defined in
several ways.

A property is typical in a complete metric space of functions, C[0, 1] if the
set of functions enjoying that property is residual (the complement of a set
of the first Baire Category) in C[0, 1]. A well known method of establishing
whether a given set A is residual or not is the so-called Banach-Mazur Game
which we describe briefly here. See [7] for more details and generalizations.

This is a two player game and the players take turns selecting open balls
from C[0, 1]. Suppose A ⊂ C[0, 1] is fixed. Player P1 selects a ball, B1, then
player two, P2 selects a ball B2 ⊂ B1 and so on so that the game produces a
nested sequence of balls, {Bn : n ∈ N}. P2 wins the game if A ∩

⋂∞
n=1Bn 6= ∅

otherwise P1 wins. And P2 has a winning strategy provided P2 can always
win the game, meaning independently of the balls P1 selects.

Banach-Mazur Theorem. P2 has a winning strategy iff A is residual.

The Banach-Mazur Game is a convenient way to see why the next result
is true. The proof uses the following notation. If pi = (xi, yi) ∈ R2, i = 1, 2
we define

DQ(p1, p2) =
y2 − y1
x2 − x1

.

Theorem 1. The typical continuous function has Property (b’).
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Proof. Suppose P1 has chosen the ball Bn ≡ Bε(f) ⊂ C[0, 1] at the nth stage
of play. We describe the strategy for P2.

1. First partition [0, 1] into sufficiently small intervals such that the inser-
tion (see (?) on page 340) of h into any partition interval lies within
the ε/2 ball about f . Let g : [0, 1] → R be the conjunction of all such
insertions and define

Ex0
=

{
x :

g(x)− g(x0)

x− x0
> 0

}
.

Then for every partition interval J and every x0 ∈ J , ∆(Ex0
, J) > α.

This function g is the center of the ball P2 will respond with.

2. To determine the response radius, first fix a partition interval J and an
x0 ∈ J . There exists η(x0) > 0 such that ∆(Ex0\Bη(x0), J) > α. Hence
by compactness there is a η > 0 such that for every x ∈ [0, 1] and every
partition interval J containing x,

∆(Ex\Bη(x), J) > α.

Hence, again by compactness, there is a 0 < δ < ε/2 such that δ < η
and if x0 ∈ [0, 1] and x1 ∈ Ex0\Bη then whenever

p0 ∈ Bδ((x0, g(x0)) and p1 ∈ Bδ((x1, g(x1)) then DQ(p0, p1) > 0. (5)

Player P2 returns the ball Bδ(g) where δ is the radius just determined above.

Now, any sequence of plays converges uniformly in the sense that if fn is
any choice of a function in Bn, then the sequence of functions {fn} converges
uniformly. Due to (5), at each x ∈ [0, 1] the density of the set of points for
which the difference quotient is positive at x exceeds α at the scale of each
play of P2. That is, the limit function satisfies (b’); this then, completes the
proof.

As it is well known that the set of monotone functions is nowhere dense in
C[0, 1], the following is an immediate corollary.

Corollary 7. The typical continuous function satisfies property (b’) but is not
monotonically increasing on any interval.
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