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Abstract
During the last few decades E. S. Thomas, S. J. Agronsky, J. G.

Ceder, and T. L. Pearson gave an equivalent definition of the real Baire
class 1 functions by characterizing their graph. In this paper, using their
results, we consider the following problem: let T be a given subset of
[0, 1] × R. When can we find a function f : [0, 1] → R such that the
accumulation points of its graph are exactly the points of T? We show
that if such a function exists, we can choose it to be a Baire-2 function.
We characterize the accumulation sets of bounded and not necessarily
bounded functions separately. We also examine the similar question in
the case of Baire-1 functions.

1 Introduction

In the last sixty years, certain classes of real functions have been characterized
with a description of their graphs. In the case of Baire-1 functions it is worth
mentioning the article of E. S. Thomas and the article of Agronsky, Ceder, and
Pearson (see [2] and [1]): in the former one an equivalent definition of bounded
Baire-1 functions was given, in the latter this result was generalized for the
not necessarily bounded case. In this paper we also investigate a property of
graphs of Baire-1 and Baire-2 functions. The problem is the following: if T is
a given subset of [0, 1]×R, when does there exist a Baire-1 or Baire-2 function
f : [0, 1] → R such that the accumulation points of its graph are exactly the
points of T?

We answer these questions in two steps in both cases. It is easier to understand
the theorems and the proofs if we also require f to be bounded, thus we start
with this case.
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2 Notation

Throughout this paper we use the following notation: the graph of the real
function f is denoted by G. Analogously, the graph of f0 is G0. If f is a real
function, the set of accumulation points of G is Lf . The vertical line given
by the equation x = r is denoted by vr. If H is a set of R2, and r is a real
number, the intersection of vr and H is denoted by H(r). For simplicity, if
(r, y) ∈ H, we say that y ∈ Hr. The open ball with center r and radius ε
is B(r, ε). We use this notation for one-dimensional neighborhoods in R, and
also for two-dimensional neighborhoods in R2. We clarify this ambiguity by
making clear if the center is a point of R or of R2. The interval [0, 1] is denoted
by I. The cardinality of a set H is #(H). The diameter of a set H is diam(H).
Finally, if a set A ⊆ I is the subset of the domain of f , and a ∈ A, sometimes
we refer to the point (a, f(a)) as a point of G above A.

3 Preliminary results

In the introduction we have already mentioned the result of Agronsky, Ceder,
and Pearson. This theorem will be a very useful tool for us, so it is appropriate
to recall it. We need the following definition:

Definition 3.1. An open set S ⊆ R2 is an open strip if for every r ∈ R the
set S(r) is an open interval.

In [2, Theorem 2.2] a characterization of Baire-1 functions was given by using
this definition:

Proposition 3.1. Let f : I → R be a function. It is Baire-1 if and only if
there is a sequence (Sn) of open strips such that ∩∞n=1Sn = G.

As we will see, this theorem is a truly useful tool if our goal is to show that
a certain function is Baire-1. Besides that we will also apply the following
lemma, which handles a variant of our original problem.

Lemma 3.1. For a given closed set T ⊆ I × R, there exists a countable set
A ⊆ I such that there is a function f : A→ R satisfying Lf = T .

Proof. Let Ti = (I× [−i, i])∩T for all i ∈ N. Then every Ti is compact. Let
us consider an open ball of radius one around each point of T1. These open
balls cover T1, hence it is possible to choose a finite covering. Let us take a
point in each chosen open ball such that the x coordinates of these points are
pairwise different. Let us denote the set of these points by H1, and the set of
their x coordinates by A1.
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Now, similarly, let us consider open balls with radius 1
2 around each point

of T2 and choose a finite covering, then finally take points in these chosen
neighborhoods and define H2 and A2 analogously. We can continue this pro-
cedure by induction: in the nth step we consider the 1

n -neighborhoods of the
points of Tn, and we define the finite sets Hn and An using these open balls.

Let A = ∪∞n=1An and H = ∪∞n=1Hn. These are countable sets. Let f be
the function that assigns to every x ∈ A the y coordinate of the chosen point
above x. Then this point of the graph is clearly a point of H. We would
like to prove that Lf = T for this function f . We do this by verifying two
containments.

1. T ⊆ Lf . Let us consider any point P of T . By definition, P ∈ Tk for a
suitable k positive integer. Thus for every n larger than k there exists
a point xn ∈ An such that the distance of (xn, f(xn)) and P does not
exceed 1

n . Therefore, there exists a sequence of distinct points in G that
converges to P , hence T ⊆ Lf .

2. Lf ⊆ T . Let us consider any point P of Lf . Since it is an accumula-
tion point of G, there exists a sequence (pn) in G converging to P and
containing each of its terms only once. Now if k is given, for sufficiently
large n the point pn is in Hm with m ≥ k. It means that the distance
of pn and T does not exceed 1

k . Thus there are points of T arbitrarily
close to the sequence (pn). Therefore, the limit of (pn) is in T , since T
is closed. Hence P ∈ T and Lf ⊆ T .

Remark 3.1. The above proof shows that there are only finitely many points
of the graph G that are more than ε apart from T for a given ε > 0. Later we
will use this slightly stronger result.

4 Functions of Baire class 2

As we have promised, we consider the bounded case first. It is obvious that
if Lf = T , then T must be a compact set, being bounded and closed. There
is another condition needed: T (x) is never empty for x ∈ I. Indeed, if (xn) is
a sequence that converges to x, (xn 6= x), the sequence formed by the points
(xn, f(xn)) is a bounded sequence in R2, and its limit is in T , thus T (x) 6= ∅.

We point out that until this point we have not used the Baire-2 property of
the function f . Despite that, as we will see, these conditions are also sufficient:
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Theorem 4.1. Suppose T ⊆ I × R. There exists a bounded Baire-2 function
f : I → R such that Lf = T if and only if

• T is compact,

• T (x) is nonempty for x ∈ I.

Proof. Before beginning the formal proof, we give a short sketch. First, we
construct a function f0 such that f0(x) ∈ T (x) for every x ∈ I. After this
step, we apply Proposition 3.1 to prove that f0 is a Baire-1 function. Finally,
we use Lemma 3.1 to modify f0 on a countable set A to obtain a bounded
Baire-2 function f such that Lf = T .

Put f0(x) = max(T (x)) for every x ∈ I. Since T (x) is nonempty, this
definition makes sense. The function f0 is Baire-1; this is a well-known fact
since f0 is upper semicontinuous and every upper semicontinuous function is
Baire-1. Nevertheless, it is useful to find a direct proof which uses Proposition
3.1 to understand better how this theorem works.

We define a nested sequence of open strips, (Sn). First, we construct a
subset S′n of Sn, that is the union of certain neighborhoods of points of G0.
Let the radius of such an open ball be εx,n, where εx,n satisfies the following
three conditions: εx,n ≤ 1

n and εx,n ≤ εx,n−1 for every n ≥ 2. It is obviously
possible. Moreover, we have a bit more complicated so-called overlapping
condition related to the projection of the open balls B((x, f0(x)), εx,n) to the
x-axis. Specifically:

∀x ∈ I, ∀n ∈ N,∀r ∈ R, r ∈ B(x, εx,n) we have f0(r)− f0(x) <
1

n
.

Such εx,n can be chosen. If not, then there is a sequence (xk) that converges
to x and f0(xk) ≥ f0(x) + 1

n for every k. In this case (f0(xk)) is a bounded
sequence, so it has a convergent subsequence. As a consequence, the sequence
(xk, f0(xk)) has a limit point in the plane whose first coordinate is x, and
whose second coordinate is larger than f0(x) = max(T (x)) by at least 1

n .
Since T is closed, it is a contradiction.
Thus for every n ∈ N and x ∈ I, we can choose some εx,n satisfying all three of
our conditions. By taking the union of the neighborhoods B((x, f0(x)), εx,n),
we obtain an open set S′n containing G0 for every n. Also S′n ⊆ S′n−1 for
every n ≥ 2, since S′n is the union of open balls with the same centers and
smaller radii. However, it is not sufficient for us: our aim is to construct open
strips. But this problem can be solved easily. Specifically, there is a simple
way to extend an arbitrary open set H ′ to an open strip H: for every x, let
H(x) = (inf(H ′(x)), sup(H ′(x)). Figure 1 demonstrates such an extension, in
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a case where H ′ is the union of a few open disks: H is the open set bounded
by the dashed lines. It is plain to see that the set H made this way is an
open strip which contains H ′. We also use this method to construct Sn(x) by
extending S′n(x). The property Sn ⊆ Sn−1 is obviously preserved during the
extension.

Figure 1: Extending an open set into an open strip

To apply Proposition 3.1, we have to verify that S = ∩∞n=1Sn = G0. It is clear
that S contains G0 since S′n contains every point of G0 for all n. We have to
show that S has no other points. Proceeding towards a contradiction, let us
assume that there exists a point x ∈ I and y 6= f0(x) such that (x, y) ∈ S. We
distinguish two cases.

1. The case y > f0(x). Since (x, y) ∈ Sn for every n, the set S′n has a point
(x, zn) above (x, y). The sequence (zn) is obviously bounded, hence it
has a limit point z ≥ y. But S′n is formed by open balls whose centers
are the points of G0 ⊆ T and whose radii are not larger than 1

n . Thus
(x, z) ∈ T as T is closed. So T has a point whose first coordinate is
x and whose second coordinate is larger than f0(x) = max(T (x)), a
contradiction.

2. The case y < f0(x). By a similar argument to the previous one, we might
notice that S′n has a point (x, zn) below (x, y) for every n. Let k ∈ N
satisfy y < f0(x)− 1

k . Then if n ≥ 2k, amongst the open balls forming S′n
we might find a ball that intersects vx and for its center (xn, f0(xn)) the
inequality f0(xn) < f0(x)− 1

2k holds. But by definition, it is impossible:
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this neighborhood must satisfy the overlapping condition, thus it cannot
intersect vx, a contradiction. Hence f0 is a function of Baire class 1.

Using Lemma 3.1, we modify f0 on a countable set A, so that the accumulation
set of the new points above A is T . We denote this altered function by f . Then
it is a bounded Baire-2 function. Nevertheless, if we consider now the whole
graph, Lf = T remains true, since every point of the graph above I \ A is in
T . Therefore other accumulation points cannot occur.

In the following, we turn our attention to the not necessarily bounded
Baire-2 functions. In this case the conditions are more complicated and the
proof is a bit more difficult. However, we give a similar characterization.

We approach the problem by finding out some necessary conditions. During
that process, we use only that f : I → R, as we did earlier in our previous
theorem. It is easy to see that T must be closed in this case, too. But it is
not true at all that Lf (x) = T (x) must be nonempty for every x ∈ I. For
instance, let f be the function that vanishes in 0, and elsewhere its value is
1
x . Then Lf (0) is empty. Nevertheless, we may suspect that T (x) cannot be
empty in any set C. Our lemma is the following:

Lemma 4.1. If f : I → R and C = {x ∈ I : Lf (x) = ∅}, then C is countable.

Proof. Proceeding towards a contradiction, let us assume that C is uncount-
able. Put Cn = {x ∈ C : |f(x)| < n} for every n ∈ N. Then C = ∪∞n=1Cn, and
there exists an uncountable Cn. As a consequence, it contains one of its limit
points, c. Thus there exists a sequence (ci) in Cn (ci 6= c) that converges to
c. Since (f(ci)) is bounded, it has a convergent subsequence, therefore Lf (c)
cannot be empty, a contradiction.

We state that these necessary conditions are also sufficient, namely:

Theorem 4.2. Suppose T ⊆ I × R. There is a Baire-2 function f : I → R
such that Lf = T if and only if

• T is closed,

• there is a countable C ⊆ I such that T (x) is nonempty for x ∈ I \ C.

Proof. The concept of the proof is similar to our proof given for the bounded
case. We begin by the construction of a function f0 and then we prove that
it is a Baire-1 function. The desired function f will be obtained by modifying
f0 on a countable set using Lemma 3.1.
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We start by observing that C is a Gδ set. Suppose c ∈ C. Since T is closed,
it has a Bc,n neighborhood for every n ∈ N such that for all x ∈ Bc,n distinct
from c, the absolute value of every element of T (x) is larger than n. Otherwise
T (c) would not be empty. Then for a given n, the set Bn = ∪c∈CBc,n is an
open set containing C. On the other hand, clearly ∩∞n=1Bn = C. Hence the
set C is Gδ, as we wanted to show.

Now, we begin the construction of our function. The easier part is its defi-
nition on C. We consider an enumeration of the countable set C = {c1, c2, ...}
and we let f0(cn) = n for every n. However, the definition of f0 in I \C cannot
be as straightforward as it was in our previous proof. Namely, it is possible
that T (x) has no maximum. Therefore we have to be more careful.

For every n ∈ N, let

Un = {x ∈ I : ∃r ∈ T (x), |r| ≤ n}. (4.2)

As T is closed, it is easy to see that each Un is closed, too. It is also obvious
that Un ⊆ Un+1 and ∪∞n=1Un = I \ C. Thus, for every x ∈ I \ C there is a
smallest nx such that x ∈ Unx . Using this property, we may define f0(x) as
the largest element of T (x), whose absolute value does not exceed nx. We
can do so since T (x) is closed and it has such an element. The inequalities
nx − 1 < |f0(x)| ≤ nx are also true, as otherwise x would be the element of
Um for some m < nx. (Or, if nx = 1, then 0 = nx − 1 ≤ |f0(x)| ≤ nx = 1.)

Now, we have defined f0 on I. We would like to use Proposition 3.1 to show
that f0 is Baire-1. In order to do this, we construct the open strip Sn for every
n. First, we define the open set S′n constisting of some balls B((x, f0(x)), εx,n).
We select εx,n so that εx,n ≤ 1

n and εx,n ≤ εx,n−1 for every n ≥ 2, as we did
earlier. Nevertheless, as we defined f0 differently in certain sets, our further
conditions should be case-specific: we handle separately the case x ∈ C and
the case x ∈ I \ C.

(i) The case x ∈ C. It means that x = ck for some k. Let

En = ∪x∈CB((x, f0(x)), εx,n),

and Fn be its projection onto the x-axis, that is Fn = ∪x∈CB(x, εx,n).
Let us choose these neighborhoods such that ∩∞n=1Fn = C. It is possible
since C is a Gδ set. Furthermore, we also demand that B(ck, εck,n) does
not contain the points c1, ..., cn, with the exception of ck. We remark
that these conditions imply ∩∞n=1En equals the graph of f0|C.

(ii) The case x ∈ I \ C. Let us make some remarks concerning this comple-
mentary set. Let V1 = U1, and for n ≥ 2, let Vn = Un \ Un−1. Then the
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set Vn is Fσ for every n, as the difference of closed sets. Consequently,
there exist closed sets Vn,i for every n and i such that Vn = ∪∞i=1Vn,i.
We can take an enumeration W1,W2, ... of the sets Vn,i. Let x ∈ Vk.
We can suppose that the εx,n are chosen so that B(x, εx,n) does not con-
tain the points c1, c2, ..., cn. Furthermore, we can suppose that B(x, εx,n)
does not intersect the sets W1,W2, ...,Wn, except for those which con-
tain x. Finally, we have a special overlapping condition, namely that
f0(r)− f0(x) < 1

n for every r ∈ B(x, εx,n)∩ Vk. One can prove that this
condition can be satisfied as we proved it last time, in the bounded case.
It is worth mentioning that if f0(x) < 0, then (x,−(k − 1)) cannot be a
limit point of a sequence of points in G0 above I \C. Since T is closed, if
such a sequence would exist, then (x,−(k − 1)) ∈ T . But it means that
x ∈ Uk−1, hence x /∈ Vk.

Now the open set S′n is defined for each n. As in the bounded case, our next
step is making strips of these open sets: let Sn(x) = (inf(S′n(x)), sup(S′n(x)))
for every x ∈ I. Set ∩∞n=1Sn = S and similarly ∩∞n=1S

′
n = S′. We are going to

show that S = G0. Since G0 ⊆ S is obvious, we can focus on proving S ⊆ G0,
or equivalently, proving that S has no point outside of G0. We examine the
relation of these sets independently for every x ∈ I: our goal is S(x) ⊆ G0(x).
We distinguish the same cases which we distinguished during the construction
of S′n(x):

1. The case x ∈ C, that is, x = ck for some k. Let us consider the set
S′n(x). If n ≥ k, amongst the open neighborhoods forming S′n there can
be only one that intersects vx: the neighborhood of (x, f0(x)). Thus for
sufficiently large n the equality S′n(x) = Sn(x) holds, and S′n(x) contains
only one open interval whose radius is 1

n . Hence if n converges to infinity,
we find that the only element of S(x) is f0(x). Therefore S(x) ⊆ G0(x).

2. The case x ∈ I \ C. It means x ∈ Vk and x ∈Wm for some k and m. Let
us consider S′n(x). We would like to find out for which r the open ball
B((r, f0(r)), εr,n) can intersect vx. It is clear that for sufficiently large n
a neighborhood around a (ci, f0(ci)) cannot do so as the intersection of
these open balls are exactly the graph of f0|C. Furthermore, if n ≥ m,
then the neighborhood chosen around (r, f0(r)) can intersect vx if and
only if r ∈ Wm. Indeed, we have chosen these neighborhoods such
that they do not intersect W1,W2, . . . ,Wn, unless those neighborhoods
contain r. Thus if n is large enough, vx can be intersected by a certain
B((r, f0(r)), εr,n) only if r ∈ Wm. Only these places are relevant if we
want to find out what S(x) is. But how did we define Wm? It is a
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subset of Vk, thus the values of f0 in Wm are between k − 1 and k. It
is important to us that f0 is bounded here, and f0(x) = max(Tk(x)) for
each element of Wm, where Tk = (I × [−k, k]) ∩ T , as in Lemma 3.1.
Therefore, in the relevant places we defined f0 as we would have done in
Theorem 4.1, if we had regarded Tk instead of T . Consequently, in this
case one can conclude the proof of S(x) ⊆ G0(x) as it was done there.

After these observations, the conclusion of the proof is clear. We use Lemma
3.1 as we did just before and alter the function on a countable set A, such
that Lf = T for the resulting function f . Then f is obviously a Baire-2
function.

By proving this theorem we finished our characterization of accumulation
points of Baire-2 functions. On the other hand, our proofs clarified that for
any ordinal number α larger than 2 the Baire-α functions are not interesting
concerning our question. Namely, the accumulation set of the graph of a
Baire-α function is also the accumulation set of a Baire-2 function. This fact
explains why we examine only the Baire-1 and Baire-2 functions.

5 Functions of Baire class 1

First, we focus again on the bounded case. Since Baire-1 functions are also
Baire-2 functions, the conditions we found earlier recur in this case: T should
be compact and T (x) should be nonempty, if x ∈ I. Nevertheless, it is clear
that these conditions are not sufficient. Namely, if Lf = T and for a given
x the set T (x) has multiple elements, then f is discontinuous at x. But a
Baire-1 function cannot have an arbitrary set of discontinuities: it must be a
meager Fσ set. Thus if D = {x : #(T (x)) > 1}, then D should be a meager
Fσ set. As we will see, these conditions suffice. However, before the statement
of the actual theorem, let us notice that if we require T to be closed, then it is
redundant to require D to be Fσ. Indeed, let Dn = {x : diam(T (x)) ≥ 1

n} for
each n ∈ N. Then it is easy to see that these sets are closed and their union
is D. (Moreover, each Dn is nowhere dense, otherwise some of them would
contain an interval, and D cannot do so.) Consequently, D is an Fσ set. Using
this fact, our theorem is simply the following:

Theorem 5.1. Suppose T ⊆ I × R. There is a bounded Baire-1 function
f : I → R such that Lf = T if and only if

• T is compact,

• T (x) is nonempty, if x ∈ I,
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• the set D = {x : #(T (x)) > 1} is meager.

Proof. Let us begin the proof by the construction of f . First, we use Lemma
3.1 to define f on a countable set A such that the accumulation set of the graph
of f |A coincides with T . We can suppose that A is disjoint from D. Indeed, in
any neighborhood of any point x ∈ I there are infinitely many points of I \D,
since D is meager. Thus we have defined f on A. On the other hand, on I \A
let us define f as we did it in the bounded Baire-2 case: let f(x) = max(T (x)).
For this f , we have Lf = T , and obviously f is bounded.

We would like to apply Proposition 3.1 to f . We use the usual method:
we define the open set S′n for each n, which is the union of open balls around
points of the graph with εx,n radius, and then we extend these sets to open
strips. The conditions concerning εx,n will be case-specific, except for the
usual size conditions.

(i) The case x ∈ A = {a1, a2, ...}. Then x = ak for some k. Our first condi-
tion on εx,n is that B(x, εx,n) must not contain the points a1, a2, ..., an,
except for ak. The second condition is related to the overlapping of D.
Since D is a meager Fσ set, we can choose D1, D2, ... nowhere dense
closed sets such that D = ∪∞n=1Dn. Moreover, none of these sets con-
tains x since x ∈ A and the sets A and D are disjoint. Therefore, the
condition ”B(x, εx,n) and ∪ni=1Di are disjoint” can also be satisfied.

(ii) The case x ∈ I \A. First, in order to stay away from the set A, the open
ball B(x, εx,n) must not contain the points a1, a2, ..., an. The second
condition is identical to the overlapping condition of the bounded Baire-2
case: if r ∈ B(x, εx,n) \A, then f(r)− f(x) < 1

n .

We have finished the construction of the open set S′n, and now, we can extend
it to obtain the open strip Sn by taking the infimum and the supremum along
each vx. Our goal is to prove that the intersection S of the sets Sn is G. Of
course, the challenging part is the verification of S ⊆ G. Let us consider S(x)
for each x. We separate three cases by the location of x:

1. The case x ∈ A, that is x = ak. If n ≥ k, then amongst the neighbor-
hoods forming S′n there can be only one that intersects vx, namely, the
open ball centered at (x, f(x)). Therefore, Sn(x) = S′n(x), and

Sn(x) = (f(x)− εx,n, f(x) + εx,n) ⊆
(
f(x)− 1

n
, f(x) +

1

n

)
.

This fact immediately implies that the only element of S(x) is f(x).
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2. The case x ∈ D. It means that x ∈ Dk for some k. Thus if n ≥ k, the
neighborhoods B((ak, f(ak)), εak,n) cannot intersect vx. Therefore, if n
is sufficiently large, if we want to describe Sn(x), we have to deal only
with the points in I \ A. But above I \ A we defined f and the neigh-
borhoods forming S′n as we defined f0 and S′n in the proof of Theorem
4.1. Consequently, the proof given there for S(x) = G0(x) for any x ∈ I
works.

3. The case x ∈ I \ (A ∪D). Proceeding towards a contradiction, we as-
sume that S(x) has an element y distinct from f(x). Then S′n(x) has a
point zn for each n such that |f(x)− zn| ≥ |f(x)− y|. By definition, the
set G is bounded, thus it is obvious that there exists some K ∈ R such
that for any n and x, the S′n(x) has no element larger than K. It im-
plies that the sequence (zn) is bounded. Therefore, it has a convergent
subsequence whose limit is some z ∈ R. For this limit z the inequality
|f(x)−z| ≥ |f(x)−y| also holds, thus f(x) 6= z. Since there is a point of
G whose distance from (x, zn) does not exceed 1

n , the point (x, z) is also
an accumulation point of G, thus (x, z) ∈ Lf , a contradiction. Namely,
for our f the equation Lf = T holds, however, the only element of T (x)
is f(x) 6= z ∈ Lf (x).

Therefore S = G, thus we can apply Proposition 3.1. Hence f is a bounded
Baire-1 function, such that Lf = T .

As we have characterized the bounded Baire-1 functions, now we might
focus on the most challenging problem appearing in this paper: the charac-
terization of the not necessarily bounded Baire-1 functions. However, as we
will see, during the proof we will apply the same ideas. Following the usual
scheme, we begin by thinking about necessary conditions concerning T .

The conditions we found during the examination of the general Baire-2 case
obviously recur: T is a closed set and T (x) = ∅ can hold only on a countable
subset of I. As T is closed, this subset is Gδ. Of course we need more than
these simple conditions. We have to pay attention to the fact that a Baire-1
function cannot have an arbitrary set of discontinuities: it must be a meager
Fσ set, and at points of continuity, #(Lf (x)) = 1, thus #(T (x)) = 1. However,
we must be careful. In the bounded case, the property #(Lf (x)) = 1 already
guaranteed that f is continuous at x, or f has a removable discontinuity at x.
But in this case, it is not true at all: for instance, if f(x) = 1

2x−1 for x > 1
2 ,

and f(x) = 0 for x ≤ 1
2 , then although Lf

(
1
2

)
= 0, it does not imply that

f is continuous at 1
2 or it has a removable discontinuity there. Therefore, we
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must pay attention to the infinite limits. If we embed T into I × R and take
its closure T , then we have to demand that this T can intersect the extended
vertical lines in multiple points only above a meager Fσ set. However, the
additional Fσ condition is unnecessary since we supposed that T is closed.
Indeed, if Dn = {x : diam(T (x)) ≥ 1

n}, then these sets are nowhere dense
closed sets and their union is D, hence D is Fσ.

If we collect all of these remarks, we gain a more complicated system of
conditions than the ones in the previous cases. We show that it is sufficient.

Theorem 5.2. Suppose T ⊆ I × R. There is a Baire-1 function f : I → R
such that Lf = T if and only if

• T is closed,

• there is a countable C ⊆ I, such that T (x) is nonempty for x ∈ I \ C,

• the set D = {x : #(T (x)) > 1} is meager.

Proof. We define f on a countable set A, such that the accumulation set of
the graph of f restricted to A equals T . We do so using the method given in
Lemma 3.1. It is easy to see that we can construct such a set A disjoint from
C and D.

Now let us focus on I \A. We define f on this set as we defined f0 in the
proof of Theorem 4.2. First, if C = {c1, c2, ...}, then f(cn) = n for each n ∈ N.
Besides that we also define Un as we did it in (4.2). These are closed sets in
this case, too, though not necessarily disjoint from A. At places which are not
in A let us define f as we defined f0 after (4.2): if x ∈ Un, let f0(x) be the
largest element of T (x) which has absolute value not exceeding n. Now we are
ready with the construction of f and Lf = T clearly holds: if we consider only
the points of the graph above A, it is true by definition, furthermore, sequences
containing infinitely many points of the graph above C cannot converge, and
points of the graph above I \ (A∪C) are in T . Thus every accumulation point
of G is also the accumulation point of the graph of f |A, and the set of these
accumulation points is T . (We note that C might intersect D, a concern that
we will address later.)

We would like to apply Proposition 3.1 to f by giving the open sets S′n
formed by neighborhoods of points of G and extending them to open strips.
Again, we separate some cases. We also use our familiar notation: A =
{a1, a2, ...}, C = {c1, c2, ...}, and D = ∪∞n=1Dn, where Dn is a nowhere dense,
closed set for each n.



Accumulation Points of Graphs of Baire Functions 327

(i) The case x ∈ C, x = ck. Here, we define our neighborhoods with εx,n
radius quite comfortably, namely, we can define the sets En and Fn
as we did it in (i) of the proof of Theorem 4.2 and repeat the con-
ditions used there. Hence we can choose these open balls such that
∩∞n=1Fn = C, and B(ck, εck,n) does not contain the points c1, ..., cn, with
the exception of ck. We also require that this neighborhood is disjoint
from {a1, a2, ..., an}. We remark that these conditions imply ∩∞n=1En
equals the graph of f0|C.

(ii) The case x ∈ A. We evoke the conditions of (i) of the proof of Theorem
5.1. Namely, B(x, εx,n) does not intersect the closed sets D1, D2, ..., Dn,
and it does not contain a1, a2, ..., an, with the exception of x. Further-
more we give the following additional condition: these neighborhoods
have to stay away from C, thus they must not contain c1, c2, ..., cn.

(iii) The case x ∈ I \ (A ∪ C). We evoke the condition system of (ii) of the
proof of Theorem 4.2. We define the sets Vn and Wn as we did there:
V1 = U1, and Vn = Un \ Un−1 for n ≥ 2. Then any set Vn is Fσ. Let
W1,W2, ... be an enumeration of the closed sets forming them. Now
if x ∈ Vk, we require B(x, εx,n) to be disjoint from c1, c2, ..., cn, and
also disjoint from the sets W1,W2, ...,Wn, except for those containing x.
Furthermore, of course, we give an overlapping condition: f0(r)−f0(x) <
1
n for each r ∈ B(x, εx,n)∩ Vk. These are exactly the conditions we used
in (ii) of the proof of Theorem 4.2. The only additional condition is the
following: B(x, εx,n) must not contain the points a1, a2, ..., an.

Thus we have constructed the open set S′n for each n. We extend it in the usual
way to form the open strip Sn. Our goal is to verify that their intersection S
equals G. The challenging part is to show that S contains no distinct points
from G. Let us consider S(x) and S′(x) for each x. We separate four cases by
the location of x:

1. The case x ∈ C, x = ck. This is obvious: if n ≥ k, the only chosen
neighborhood that intersects vx amongst the ones forming S′n(x) is the
neighborhood of (x, f(x)), and thus S′n(x) = Sn(x). Therefore, Sn(x) is
an interval whose diameter does not exceed 2

n and contains f(x). Thus
the only element of S(x) is f(x), as we wanted to show.

2. The case x ∈ A, x = ak. We can simply repeat our previous argument:
for sufficiently large n, there is only one chosen neighborhood that in-
tersects vx, and since the diameters of these neighborhoods converge to
0, the only element of S(x) is f(x).
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3. The case x ∈ D \ C. It means x ∈ Dk for some k ∈ N. Now, if
n ≥ k, the neighborhood B((x′, f(x′)), εx′,n) for x′ ∈ A cannot inter-
sect vx. It is also true that for sufficiently large n, the neighborhood
B((x′, f(x′)), εx′,n) for x′ ∈ C cannot intersect vx, since these neighbor-
hoods are nested and their intersection is the graph of f |C. Hence it is
enough to consider the graph of f above I \ (A∪C). At these places we
defined f and the open balls forming S′n as we defined f0 and the open
balls forming S′n during the proof of Theorem 4.2. Consequently, case 2.
of the proof of Theorem 4.2 can be used to prove S(x) = G(x).

4. The case x ∈ I \ (A ∪ C ∪D). Proceeding towards a contradiction, let
us suppose that S(x) contains some y ∈ R, where y 6= f(x). It means
that for every n we can choose a point zn in S′n(x), such that |f(x)−zn| ≥
|f(x)− y|. Since zn ∈ S′n(x), the point (x, zn) is in one of the open balls
forming S′n. Here, if n is sufficiently large, then this ball is centered
at a point of the graph above I \ C. Indeed, if n is large enough, the
neighborhoods around points of the graph above C cannot intersect vx
by definition. Now, the sequence (zn) has a limit point z in R. Obviously,
for this z the inequality |f(x)−z| ≥ |f(x)−y| also holds, thus f(x) 6= z.
However, if n is sufficiently large, there is a point of the graph not above
C whose distance from (x, zn) does not exceed 1

n . Consequently, there
is a sequence (pn) of points of the graph above I \ C such that (pn)
converges to (x, z). Without loss of generality, we might assume that
the elements of this sequence are all distinct. Since these points are not
above C, they are above A or they are also elements of T . Nevertheless,
if n is sufficiently large, for any given ε > 0, a point pn that is above A
cannot be farther than ε from a point of T , as we noted in Remark 3.1.
This fact immediately implies (x, z) ∈ T , a contradiction, since the only
element of T (x) is f(x) by our assumptions.

Hence S = G, therefore we might apply Proposition 3.1. Thus f is a Baire-1
function satisfying Lf = T .

6 Concluding remark

Before the end of this paper, we would like to point out something in connec-
tion with our theorems about the not necessarily bounded functions. Namely,
amongst the conditions of the last theorem there was one condition about T .
However, T = Lf does not necessarily hold for the function we constructed.

For instance let T be the following closed set: let C = { 1n : n ∈ N} ∪ {0},
c1 = 0, and for n ≥ 2, let cn = 1

n−1 . For each point x in I \ C let T (x) =
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{− 1
d(x,C)}, where d(x,C) is the distance of x from C. Then it is easy to see

that this set T satisfies the conditions of Theorem 5.2 with regards to the not
necessarily bounded Baire-1 functions. It is also true, that T (0) = {−∞}.
Now, let us consider f , specifically Lf (0). We recall that in our construction
f(cn) = n. It implies Lf (0) = {−∞,+∞}. It means that although Lf (0) =
T (0) = ∅, T (0) 6= Lf (0). Thus the sets we examined earlier are equal, but
these extended sets are not.

This example raises two new questions: if we regard our theorems about the
not necessarily bounded Baire-1 and Baire-2 functions and we do not change
the conditions, is it possible to construct a function f in each of these cases
that satisfies Lf = T and Lf = T simultaneously? However, we might answer
these questions easily:

Proposition 6.1. Suppose T ⊆ I × R.

• If there exists a Baire-2 function satisfying Lf = T , then it can be chosen
such that Lf = T also holds.

• If there exists a Baire-1 function satisfying Lf = T , then it can be chosen
such that Lf = T also holds.

Proof. We will appropriately modify the functions we have constructed in the
proofs of Theorem 4.2 and Theorem 5.2. It is clear that for those functions T ⊆
Lf holds. Indeed, for any point t ∈ T there are points of G arbitrarily close
to t. Thus if we consider a point (x,∞) of T , then it is also an accumulation
point of G. Hence if Lf 6= T , then T is a proper subset of Lf .

For those functions it is also clear that if Lf has a point p which is not in
T , then it is an accumulation point of the graph of f |C. Namely, if we take a
sequence (pn) in G which converges in I × R and contains only finitely many
points of G above C, then after a while every term of this sequence is above
A or in T . The terms above A will get arbitrarily close to a point of T if n is
sufficiently large. Thus if we have a point in Lf which is a limit point of such
a sequence, then it is also a point of T . Hence if Lf has a point outside T ,
then there exists a sequence in the graph of f |C converging to this point.

It is a problem we can easily handle in both cases by modifying f on C:
if C = {c1, c2, ...}, then let |f(cn)| = n. The sign is determined by whether T
contains (cn,+∞) or (cn,−∞). If both of them occurs, then let f(cn) = n.
If we define the function f on C this way, then Lf clearly does not change,
the equality Lf = T still holds. Indeed, if a sequence of points of G above
C converges to a point in I × R, then the second coordinate of this point is
+∞ or −∞. By symmetry, we can consider the +∞ case. For a subsequence
(cnk

) the sequence (cnk
, f(cnk

)) converges to some (x,+∞) ∈ I × R. We can
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suppose that all the numbers f(cnk
) are positive. Then by definition, in the

1
nk

neighborhood of cnk
we might choose a point ak such that T (ak) has an

element larger than nk. We denote this element of T by tk. Now it is clear
that the sequence (tk) is in T and it also converges to (x,+∞). Hence all
the elements of Lf are in T , too. Thus we constructed a function of the
corresponding Baire class satisfying Lf = T and Lf = T simultaneously.
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