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ON VBG FUNCTIONS AND THE
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Abstract

The study of functions of generalized bounded variation (VBG) and
generalized absolute continuity (ACG) that appears in Saks’s treatise
Theory of the integral can be thoroughly reworked by using some as-
pects of the theory of variational measures proposed originally by Ralph
Henstock and extended by many others. We present a development of
these concepts and use it for a characterization of the Denjoy-Khintchine
integral.

1 Introduction

The material in Saks [27] on VBG∗ functions, ACG∗ functions, and the Denjoy-
Perron integral has been thoroughly rewritten in the last few decades. We
know now that, associated to any continuous function F : R → R, one can
define a Borel measure VF on R that exactly expresses the variational proper-
ties of the function F . In particular, F has bounded variation on an interval
if and only if VF is finite on that interval, and F is VBG∗ on a set E if and
only if VF is σ-finite on E. Moreover, F is ACG∗ on a closed set E if and only
if VF is absolutely continuous with respect to Lebesgue measure on E. This
variational measure has a representation as an integral should the set E be
measurable and composed entirely of points of differentiability of F :

VF (E) =

∫
E

|F ′(t)| dt.
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Finally, this same study establishes that the identity

F (x)− F (a) =

∫ x

a

f(t) dt (a < x ≤ b)

in the sense of the Denjoy-Perron integral is equivalent to the assertion that
F ′(x) = f(x) at almost every and VF -almost every point x of [a, b]. This
integral is certainly, by now, well-known as the Henstock-Kurzweil integral
although the accompanying theory of the variational measures is probably
less familiar to non-specialists.

It has also been known, at least as folklore, that the same kind of program
can be undertaken for the other related concepts developed in Saks: the classes
of functions that are VBG or ACG and for the Denjoy-Khintchine integral.
Henstock has always presented his theory of integration as encompassing all
or most of the nonabsolutely convergent integrals, certainly including the two
most famous, the Denjoy-Perron and the Denjoy-Khintchine integrals.

He had not, however, checked the details. To him it seemed apparent that
the characterization of the latter integral by Tolstov [35], [36] as a Perron-type
integral would lead easily to a similar characterization using Riemann sums.
In [17, pp. 222–223] he put forward the structure that might have worked.

He was mistaken in a key point and mentioned this in [19, Ex. 3, pp. 2–3].
In the latter paper he sketches out, without details, an amended scheme that he
proposes will handle the Denjoy-Khintchine integral. The rather cumbersome
division space that he sketches there may, perhaps, be adequate for the task,
but is not satisfying in any compelling way. A basic problem is that his
exposition depends always on his elaborate general theory of integration in
division spaces that few readers have been willing to consume.

More recent studies by Ene [13] and Sworowski [31]) have addressed this
problem and devised careful schemes that exhibit the Denjoy-Khintchine in-
tegral as a Riemann-type integral. For specialists this is probably all we have
asked for.

Even so there is a disappointing lack of simplicity in these presentations.
The treatment in Saks of these concepts is elegant and satisfying. One would
have hoped that a simpler and more obvious construction would join and
complement the admirable treatment in Saks.

Our goal in this exposition is to develop the theory for variational measures
that capture the concepts of VBG and ACG functions and to use that the-
ory to provide a simpler characterization of the Denjoy-Khintchine integral.
The main motivation is indeed simplicity which we hope has been achieved.
This can be considered a contribution to study of the variational measures
associated with a function, a study that includes, among others, these notable
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contributions: [2], [3], [4], [10], [11], [12], [13], [18], [19], [20], [25], [26], [28],
[29], [30], [31], [33], [34], [37], [39], and [40].

We begin with a review of the material from Saks that we wish to supple-
ment. This review should make the ideas a bit more accessible to the reader.
Not everyone interested in this topic will have a working knowledge of that
material, nor know on what to focus for this task.

1.1 Weak variation relative to a set

One possible way to capture the essence of Jordan’s original 1881 computation
[21] of the variation for a function F : [a, b] → R can be expressed by this
definition.

Definition 1. Let F : R → R and let I be a collection of closed intervals.
Then we write

V (F, I) = sup

n∑
i=1

|F (di)− F (ci)|

where the supremum is computed using all choices of nonoverlapping intervals
{[ci, di]} chosen from the collection I.

For the ordinary Jordan variation, certainly

V (F, [a, b]) = V (F, I0)

where I0 is the collection of all closed subintervals of [a, b].
This definition encourages a generalization by choosing the families I in

the best way for some purpose. For example, let E be an arbitrary set of
real numbers. To define the variation of F relative to E one needs to select
appropriate families I that relate in some intimate way to the set E.

One idea that comes to mind immediately (perhaps one should beware of
ideas that so readily come to mind) is to take for our class of intervals IE , the
collection of all intervals [c, d] with endpoints c and d in the set E. Then

V (F ;E) = V (F, IE) (1)

looks like a reasonable candidate for the variation of F concentrated on E.
Indeed Saks [27, p. 221] uses exactly this notation and refers to V (F ;E) as

the weak variation. “Variation faible” in the first 1933 French version, entitled
Théorie d l’intégrale, of his treatment of these ideas. The translator’s fidelity
to the original has led to the standard terminology VB, VB∗, VBG, and VBG∗
which preserves the French word order (variation bornée generalisée).
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This expression “measures” the variation of a function on a set but, in no
way, is this expression a measure: it has no nice analytical properties. Here is
Saks’s terminology and definitions of the concepts VB and VBG.

Definition 2. Let F : R → R and let E be a set of real numbers. We say
that F is VB on E provided that V (F ;E) <∞.

Definition 3. Let F : R → R and let E be a set of real numbers. We say
that F is VBG on E provided there is a denumerable collection of sets {En}
covering E so that F is VB on En for each n.

1.2 E-forms

It is suggested by this definition, and will prove to be quite true, that much
of our attention will be on a situation like this, where a set E is expressed as
a union of a countable family of subsets.

Let us take on the following terminology from Ene [13] and Sworowski [31].
By an E-form we mean simply a countable family E of sets whose union is all
of the set E. Expressed in this language, Definition 3 asserts that F is VBG
on a set E if and only if there is an E-form E for which F is VB on each set
S ∈ E . There is little extra economy here, but the language will pay for itself
later on.

If E1 and E2 are two E-forms then we write

E1 ≺ E2

if each set S ∈ E2 is a subset of at least one member (possibly more than
one member) from E1. This gives us a partial order, directed in the order of
increasing refinement.

If E1 and E2 are two E-forms then we write

E1 ∧ E2

as the countable collection

{S1 ∩ S2 : S1 ∈ E1, S2 ∈ E2}

One can leave out any empty sets. This collection is again a countable collec-
tion of sets whose union is E and so is also an E-form. Note that

E1, E2 ≺ E1 ∧ E2

in the partial order.
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1.3 The main features of VB and VBG functions

In working with the Jordan variation on an interval one sees that the notion of
bounded variation is intimately related to monotonic functions. Indeed that
was precisely the purpose for which Jordan intended the concept.

The same connection is observed here for VB and VBG functions but re-
quires some attention to detail. Let us review these details before introducing
the appropriate scheme for defining the weak variational measures. This ma-
terial is all in Saks [27, pp. 221–222] and a review can also be found in the
treatise [8] or the expository account in [15].

Lemma 4. Let F : R→ R and let E be a bounded set of real numbers. Then
the following statements are true:

1. If F is bounded and monotonic on E then F is VB on E.

2. If F is bounded and monotonic on E then there is function G : R → R
that is monotonic so that F (x) = G(x) for all x ∈ E.

3. If F is unbounded but monotonic on E then F is VBG on E.

This lemma extends to a similar characterization of functions having finite
weak variation on a set.

Lemma 5. Let F : R→ R and let E be a bounded set of real numbers. Then
the following are equivalent.

1. F is VB on E.

2. There is function G : R→ R that is of bounded variation so that F (x) =
G(x) for all x ∈ E.

These lemmas explain the connection between ordinary bounded variation
and VBG which can be summarized in this way.

Lemma 6. Let F : R → R and let E be a set of real numbers. Then the
following are equivalent.

1. F is VBG on E.

2. There is an E-form E consisting of bounded subsets of E so that F is
VB on each S ∈ E.

3. There is an E-form E consisting of bounded subsets of E so that, corre-
sponding to each S ∈ E there is a function GS of bounded variation so
that F (x) = GS(x) for all x ∈ S.
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1.4 Continuous VBG and ACG functions

Since one of our concerns is a characterization of the Denjoy-Khintchine inte-
gral, we shall frequently address our attention to continuous functions. The
variational ideas are much simplified in this setting. For continuous functions
we could simply take the following as a definition for the class of VB and VBG
functions. We can add in now the classes of functions AC and ACG from Saks,
that are normally described for continuous functions.

Lemma 7. Let F : R → R be a function that is continuous on a closed
bounded set E with endpoints a and b for which a < b. Define G : [a, b] → R
to be that continuous function for which F (x) = G(x) at each point x ∈ E and
that is linear on each interval contiguous to E in [a, b]. Then

1. F is VB on E if and only if G has bounded variation on [a, b].

2. F is AC on E if and only if G is absolutely continuous on [a, b].

In this special case of continuous functions F : R → R we also have a
narrower characterization of VBG and ACG:

1. If F is continuous and VBG on a closed set E then there is an E-form
E consisting of closed, bounded subsets of E so that F is VB on each
S ∈ E .

2. If F is continuous and ACG on a closed set E then there is an E-form
E consisting of closed, bounded subsets of E so that F is AC on each
S ∈ E .

1.5 The category lemma

When E is closed and F is continuous a category argument can be applied
to the scheme just described. If E is the union of a sequence {En} of closed
sets, then by the Baire category theorem, there is a portion of E contained
in En for at least one of these sets. That argument leads to the following
characterizations of VBG and ACG functions.

Lemma 8. Let F : R → R be a function that is continuous on a nonempty
closed set E. Then the following are equivalent:

1. F is VBG [resp. ACG] on E.

2. For every nonempty closed subset S of E there is a nonempty portion
[c, d] ∩ S on which F is VB [resp. AC].



On VBG Functions 179

3. F is VBG [resp. ACG] on every subset of E that has Lebesgue measure
zero.

The equivalence of the first two statements is already in Saks [27, pp. 233–
234]. The proof requires a category argument in both directions. The third
equivalent statement appears to be measure-theoretic in nature but it is not.
It too is just a consequence of the Baire category theorem. Every closed set E
would contain a dense subset of type Gδ that has Lebesgue measure zero. The
Baire category theorem can be applied to sets of type Gδ as well as to closed
sets

For the added third statement, see Ene [10, pp. 11–12] for a simple proof.
It seems that this addition to the category lemma is due to Ene, although
there were later rediscoveries. There is an identical category lemma available
for a variety of similarly defined concepts (including those in Saks with VB
and VBG replaced by VB∗ and VBG∗ and AC and ACG replaced by AC∗ and
ACG∗).

1.6 Approximate differentiability of VBG functions

Functions that have bounded variation are differentiable almost everywhere.
In the presentation in Saks this is extended to functions that are VBG∗. Saks
also treats the differentiability properties of VBG functions. For these the
ordinary derivative must be replaced by the approximate derivative. Thus we
have the following theorem from Saks [27, p. 222] that he attributes to Denjoy
and Khintchine.

Theorem 9 (Denjoy-Khintchine). Let F : R → R be a measurable function
that is VBG on a set E. Then F has a finite approximate derivative F ′ap(x)
at almost every point x of E.

In the situation described earlier for VBG functions on a set E, we have
presented a sequence of sets {En} covering E and a sequence of functions
Gn : R→ R of bounded variation so that F (x) = Gn(x) for each x ∈ E ∩En.
Then, by the Denjoy-Khintchine theorem, we can also take advantage of the
fact that F ′ap(x) = G′n(x) for almost every x ∈ E ∩ En.

2 Covers

The fundamental notion that we use is that of a cover in certain senses. By
a “cover” we mean simply a collection of closed bounded intervals that has
some useful property relative to the points of a particular set.
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The most famous concepts of this type are the Vitali covers. A family of
intervals I is a Vitali cover of a set E if for each x ∈ E and any ε > 0 there
is at least one interval [u, v] ∈ I that contains x and has length less than ε.

Suppose that, for each set E ⊂ R, there has been defined some collection
of covers F[E]. We can always assume that ∅ ∈ F[∅]; occasionally one might
also have ∅ ∈ F[E] even if E is nonempty. (Frequently F[E] will be a filter,
but cannot be if it contains the empty set.) The main structural properties
that one might need from families of covers in order to develop a theory of
variational measures are listed below.

1. [filtering]

(a) If I1, I2 are covers with I1 ∈ F[E] and I1 ⊂ I2, then I2 ∈ F[E].

(b) If I1, I2 are covers both of which belong to F[E] then the intersec-
tion I1 ∩ I2, also belongs to F[E].

2. [subadditive] If E ⊂
⋃∞
n=1En and In ∈ F[En], then

∞⋃
n=1

In ∈ F[E].

3. [pruning by open sets] If E ⊂ G where G is open and I ∈ F[E] then

I(G) = {I ∈ I : I ⊂ G} ∈ F[E].

It is useful to have a filter, but it is not always needed. The Vitali cov-
ers satisfy statements 1(a), 2, and 3 but not statement 1(b) so they are not
filtering. In order to construct an outer measure one needs not much more
than statement 2. For that measure to be a Borel measure we should add in
statement 3. In the next section Lemma 10 is the basis for our construction
of measures and can be used in a wide variety of situations.

2.1 Construction of the measures

Let h be a real-valued interval function, i.e., to each interval [u, v] there is
assigned a number h([u, v]). For any cover I we write

V (h, I) = sup

n∑
i=1

|h([ui, vi])|

where the supremum is computed using all choices of nonoverlapping intervals
{[ui, vi]} chosen from the collection I. We assume that V (h, ∅) = 0.
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Lemma 10. Let h be a real-valued interval function and suppose we are given
families F[E] for each set E ⊂ R. Define

hF(E) = inf{V (h, I) : I ∈ F[E]}.

If these families satisfy statement 2 [subadditive property] above, then hF is an
outer measure on the real line. If, in addition, these families satisfy statement
3 [pruning property], then hF is a Borel measure on the real line.

Proof. Suppose that E ⊂
⋃∞
n=1En and that each hF(En) < ∞. Let ε > 0.

Choose a cover In from each F[En] so that

hF(En) ≤ V (h, In) ≤ hF(En) + ε2−n.

Then the subadditive property supplies that

I =

∞⋃
n=1

In ∈ F[E].

Hence

hF(E) ≤ V (h, I) ≤
∞∑
n=1

V (h, In) ≤
∞∑
n=1

hF(En) + ε.

This verifies the inequality hF(E) ≤
∑∞
n=1 hF(En) which is what is needed to

see that hF is an outer measure.
The pruning property is used to check that hF is a Borel measure, i.e., that

all Borel sets are hF-measurable. This is equivalent to the requirement that
hF is a metric outer measure in the language of Carathéodory. (There are
numerous textbooks that give an account of Carathéodory’s theory; naturally
we suggest [7, Chapter 3].)

One needs to show that, if A and B are positively separated, then

hF(A ∪B) ≥ hF(A) + hF(B).

There are disjoint open sets G1 and G2 with A ⊂ G1 and B ⊂ G2. Take any
cover I from F[A ∪B]. Write then

I(G1) = {I ∈ I : I ⊂ G1} and I(G2) = {I ∈ I : I ⊂ G2}.

Observe that I(G1) ∈ F[A] and I(G2) ∈ F[B]. (This makes use of both
properties 2 and 3.) Hence

hF(A) + hF(B) ≤ V (h, I(G1)) + V (h, I(G2)) ≤ V (h, I).

As this is true for all such choices of I from F[A ∪B] we have the inequality

hF(A) + hF(B) ≤ hF(A ∪B)

that we require.
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2.2 Vitali covering theorem

As a special case of this lemma, we have the following characterization of the
Lebesgue measure that is essentially just the Vitali covering theorem expressed
in this language.

Theorem 11. Let λ denote the interval function λ([u, v]) = v − u and let
V[E] be the collection of all Vitali covers of a set E. Then λV is Lebesgue
outer measure on the real line.

Proof. Let λ also denote the Lebesgue outer measure on the real line. Take
any Vitali cover I of a set E. Then by the Vitali covering theorem there is a
disjointed sequence {[ui, vi]} ⊂ I for which

λ

(
E \

∞⋃
i=1

[vi, ui]

)
= 0 and λ(E) ≤

∞∑
i=1

(vi − ui).

From this it follows that, for all such I, λ(E) ≤ V (λ, I). Hence λ(E) ≤ λV(E).
In the other direction, if λ(E) < t then there is an open set G ⊃ E with

λ(G) < t. Define I to be the collection of all intervals [u, v] contained in G.
This is a Vitali cover of E and so

λ(E) ≤ λV(E) ≤ V (λ, I) ≤ λ(G) < t.

The identity λV(E) = λ(E) now follows since t can be any number larger than
λ(E).

2.3 Full, fine, weak, and q-weak covers

As suggested by the measure constructions just reviewed, our task of building
a variational measure for a function F that will carry the information about
whether F is VBG or ACG on a set can be carried out by a judicious choice of
covers. These are the “weak covers” of the next definition. At the same time
we review the other, better known, classes of covers that we call here full and
fine.

It is rather obvious from the way in which the concepts VB, VBG, AC,
and ACG work that a definition of a weak cover that hopes to capture that
idea should invoke a sequence of sets {En} whose union is a set E. In the
language we have used in Section 1.2 this is called an E-form.

Definition 12. Let I be a collection of closed, bounded intervals and E an
arbitrary set.
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1. I is said to be a full cover of E if for each point x ∈ E there is a δ > 0 so
that all intervals [x, v] with x < v < x+ δ belong to I, and all intervals
[u, x] with x− δ < u < x belong to I.

2. I is said to be right-fine at a point x ∈ E if for every ε > 0 there is at
least one interval [x, v] with x < v < x+ ε that belongs to I.

3. I is said to be left-fine at a point x ∈ E if for every ε > 0 there is at
least one interval [u, x] with x− ε < u < x that belongs to I.

4. I is said to be a fine cover of E if, at every point x ∈ E, I is either
right-fine or left-fine.

5. I is said to be a weak cover of E if there is an E-form E such that,
whenever an interval [u, v] has one endpoint in a set S ∈ E and the other
endpoint in S, then necessarily [u, v] must belong to I.

6. I is said to be a q-weak (quite weak cover) of E if there is an E-form E
such that, whenever an interval [u, v] has both endpoints in a set S ∈ E ,
then necessarily [u, v] must belong to I.

Note that, according to this definition, every fine cover is also a Vitali cover
(see Section 2). In the definition of a fine cover of a set E, however, we require
for points x ∈ E that there be an abundance of small intervals [u, v] in the
cover with an endpoint at x. (The Vitali covers, in contrast, require only that
these intervals contain x).

2.4 Properties of full, fine, weak, and q-weak covers

We know from Section 2.1 what properties we should need in order for a
satisfactory construction of measures from these various classes of covers. In
the next theorem we summarize all of the properties that play a role at some
moment in the theory.

Theorem 13. The following statements about full, fine, weak, and q-weak
covers hold:

1. [filtering] The family of all full [weak or q-weak] covers of a set E is
filtering.

[Note: this is not the case for fine covers or Vitali covers. Also, since
a weak cover of a nonempty set might be empty, it is not necessarily a
filter.]
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2. [full covers are weak] If I is a full cover of a set E then it is also a weak
cover of E.

3. [weak covers are q-weak] If I is a weak cover of a set E then it is also a
q-weak cover of E.

4. [full covers are fine] If I is a full cover of a set E then it is also a fine
cover and a Vitali cover of E.

5. [q-weak covers are nearly fine] If I is a weak cover of a set E then I
is left-fine and right-fine at nearly every point of E, i.e., with countably
many exceptions.

6. [weak covers of countable sets] I = ∅ is a weak cover of a set E if and
only if E is countable.

7. [pruning] If I is a full [fine, q-weak, or weak] cover of a set E and G is
an open set containing E then

I(G) = {I ∈ I : I ⊂ G}

is also a cover of E in the same sense.

8. [subadditive] If {Ek} is a sequence of sets for which Ik is a full [fine,
weak, q-weak] cover of Ek, then, in the same sense,

∞⋃
k=1

Ik is a cover of every subset of the set

∞⋃
k=1

Ek.

Proof. The most important properties for the purpose of constructing Borel
measures are the final two properties, 7 and 8. The other properties are useful
in checking relations among the measures.

Statement 1. It is enough for the proof to check that the intersection of
two covers (in one of the senses) is again a cover in the same sense. This is
available for full, q-weak, and weak covers but fails for fine covers.

The fine covers are just special kind of Vitali covers and we can see easily
that the intersection of two fine covers of a set might even be empty. A simple
example illustrates this. Let

I1 = {[0, 1/n] : n = 1, 2, 3, . . . }

and
I2 = {[−1/n, 0] : n = 1, 2, 3, . . . }.



On VBG Functions 185

Each is a fine cover of the set containing only the point zero. The intersection
I1 ∩ I2 is, however, empty.

For full covers the statement is easily proved. Select δ1(x) > 0 for each
x ∈ E so that [x, v] and [u, x] belong to I1 for x < v < x + δ1(x) and
x − δ1(x) < u < x. Do the same for I2 with a positive function δ2(x). Take
δ3(x) = min{δ1(x), δ2(x)}. Then I1∩I2 must contain every interval [x, v] and
[u, x] for x ∈ E and for which x < v < x+ δ3(x) and x− δ3(x) < u < x. This
verifies that I1 ∩ I2 is a full cover of E.

For weak covers of a set E select two E-form E1 and E2 such that whenever
an interval [u, v] has one endpoint in a set S ∈ Ei (i = 1, 2) and the other
endpoint in S then [u, v] must belong to Ii (i = 1, 2). Simply now take

E3 = E1 ∧ E2.

We check that whenever an interval [u, v] has one endpoint in a set S ∈ E3
(i = 1, 2) and the other endpoint in S then [u, v] must belong to both I1 and
also to I2 and hence to their intersection. This verifies that I1 ∩ I2 is a weak
cover of E. A similar argument will handle the q-weak covers.

Statement 2. Assume that I is a full cover of a set E. Select, for each x ∈ E,
a number 0 < δ(x) < 1 so that [x, v] and [u, x] belong to I for x < v < x+δ(x)
and x− δ(x) < u < x.

We can use δ to decompose E in a familiar way: let

An = {x ∈ E : 1/(n+ 1) < δ(x) < 1/n} (n = 1, 2, 3, . . . )

and let

Anm = An ∩
[
m− 1

n+ 1
,
m

n+ 1

]
(m = 0,±1,±2,±3, . . . ).

Let Cnm be the closures of the sets Anm. Consider any interval [u, v] with one
endpoint u in a set Anm and the other endpoint v in the closure of that set,
i.e., the set Cnm. Then δ(u) > 1/(n + 1) and u < v ≤ u + 1/(n + 1). This
means that [u, v] is in I. A similar statement can be made if v is in Anm and
the other endpoint in Cnm.

Let E be the E-form obtained from the countable family of all the sets
Anm. This E-form evidently verifies that I is a weak cover of E.

Statement 3. This one is obvious.

Statement 4. It is immediate that every full cover of a set is also a fine cover
of that set. In fact there is a duality here between full and fine covers that
is worth pointing out. A collection I is a full cover of a set E if and only if
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I ∩ J is fine at each point of E for all choices of fine covers J of E. Dually,
a collection I is a fine cover of E if and only if I ∩ J is fine at each point of
E for all choices of full covers J of E. (We will use this duality concept in
Definition 29 to obtain a dual version of the weak covers.)

Statement 5. Assume that I is a q-weak cover of a set E. Then, by definition
there is an E-form E that witnesses I to be a q-weak cover. Let SIS(E) denote
the collection of all points x that are semi-isolated (i.e., isolated on one side
at least) in at least one set S ∈ E . This is a countable set which we take to
be the exceptional countable set in the statement. If x is a point of E not in
this set then there must be a set S ∈ E that contains x and x is not isolated
on either side in S. This gives an abundance of intervals [x, s] and [s, x] in I
for s ∈ S. In fact I is both left-fine and right-fine at each point of E except
possibly at points belonging to the countable set SIS(E).

Statement 6. If E is countable, then there is an E-form E consisting of sets
containing exactly one point of E. This is witness to the fact that ∅ is a weak
cover of E. Conversely, if E is not countable and I is a weak cover of E, then
there must be an E-form E that is witness to the fact that I is a weak cover
of E. At least one set S ∈ E must be infinite so that I must contain infinitely
many intervals.

Statement 7. We verify this statement for weak covers. (The full and the fine
case are simpler since, in both cases, one needs only verify a local property at
each point of the set E.) As usual, there must be an E-form E1 that is witness
to the fact that I is a weak cover of E.

Let G be an open set containing E and let {(ai, bi)} be the sequence of open
component intervals of G. Consider the countable collection E2 consisting of
all sets {

E ∩
[
ai +

1

m
, bi −

1

m

]}
for m = 1, 2, 3, . . . and i = 1, 2, 3, . . . . This collection E2 must be an E-form.
Note that if S ∈ E2 then S ⊂ G.

Now take

E3 = E1 ∧ E2

and observe that the E-form E3 is witness to the fact that I(G) is a weak
cover of E. The same argument (even a simpler version) would do the same
job for q-weak covers.

Statement 8. This statement is well-known and easy for full and fine covers.
Those covers are defined in a pointwise-sense and so the verification can simply
verify that a property holds at each point of the set E for which we assume
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that

E ⊂
∞⋃
k=1

Ek.

We verify this statement only for weak covers. In the case of q-weak covers
a similar argument will work. Let A1 = E ∩ E1, let A2 = E ∩ E2 \ E1,
A3 = E∩E3 \(E1∪E2), . . . . This produces a disjointed sequence of sets {Ak}
whose union is all of E. Each Ik is a weak cover of Ek and so also a weak
cover of Ak. Thus we can choose, for k = 1 = 2, 3, . . . , an Ak-form Ek that is
witness to the fact that Ik is a weak cover of Ak. Define

E =

∞⋃
k=1

Ek.

This is an E-form. We check to see that it is a witness to the fact that

I =

∞⋃
k=1

Ik

is a weak cover of E. If S ∈ E then S ∈ Ek for some k. Thus, if u ∈ S and
v ∈ S, then necessarily [u, v] ∈ Ik so [u, v] ∈ I. Similarly if v ∈ S and u ∈ S
then [u, v] ∈ I.

2.5 Cousin’s lemma

Full covers have a well-known partitioning property that makes them partic-
ularly useful for handling integrals or proving elementary properties of real
functions defined on intervals.

Lemma 14. [Cousin’s Lemma] Suppose that I is a full cover of an open
bounded interval (a, b) and that I is right-fine at a and left-fine at b. Then,
for every closed subinterval [c, d] ⊂ [a, b], there is a finite subdivision

c = c0 < c1 < c2 < . . . cn−1 < cn = d

so that each [ci−1, ci] ∈ I (i = 1, 2, . . . , n), i.e., [c, d] =
⋃n
i=1[ci−1, ci] expresses

[c, d] as the union of finitely many nonoverlapping intervals from I.

This lemma is easily proved by appealing to the Heine-Borel theorem or the
nested interval theorem from elementary real analysis. It has been rediscovered
many times. Some of us attributed it to Goursat [16] for a while, but the earlier
paper of Cousin [9] emerged, and it is now very firmly known as the Cousin
lemma. Any earlier 19th century discovery is unlikely now to dislodge this
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label. There is no shortage of proofs of this, although the exact formulation
of the lemma may differ among them.

For the weak covers (with some extra assumptions) there is a similar par-
titioning property available that requires only a routine Baire category argu-
ment. We especially need this lemma for our characterization of the Denjoy-
Khintchine integral later on. Note that Lemma 14 follows from Lemma 15
since every full cover is also a weak cover.

Lemma 15. [Weak version of Cousin’s Lemma] Suppose that I is a weak cover
of a closed, bounded interval [a, b] that is right-fine at each point of [a, b) and
left-fine at each point of (a, b]. Then, for every closed subinterval [c, d] ⊂ [a, b],
there is a finite subdivision

c = c0 < c1 < c2 < . . . cn−1 < cn = d

so that each [ci−1, ci] ∈ I (i = 1, 2, . . . , n), i.e.,

[c, d] =

n⋃
i=1

[ci−1, ci]

expresses [c, d] as the union of finitely many nonoverlapping intervals from I.

Proof. Let us say that a point x ∈ [a, b] is regular if there is a neighborhood
(x − ε, x + ε) so that I contains a partition of any subinterval [c, d] of [a, b]
that is contained in the open interval (x − ε, x + ε). By the Heine-Borel
theorem. the collection of all regular points is an open set G ⊂ (a, b) for
which I contains a partition of any interval [c, d] contained in G. Moreover,
if (ai, bi) is a component interval of G we can use the fact that I is right-fine
at ai and left-fine at bi to see that I must contain a partition of any interval
[c, d] ⊂ [ai, bi].

If G ⊃ [a, b] we are done. If not, then P = [a, b] \G is a nonempty, perfect
subset of [a, b] with contiguous intervals {[ai, bi]}. We obtain a contradiction
from the supposition that P is nonempty. Let E be an [a, b]-form that witnesses
I as a weak cover of [a, b]. That means that if u is a member of a set S
belonging to E and if v is in S, the interval [u, v] is in I (with a similar version
if v ∈ S).

By the Baire category theorem there is a nonempty portion P ∩ [c, d] in
which one of the sets S ∈ E is dense. This means that all intervals [u, v] with
one endpoint in S ∩ [c, d] and the other endpoint in P ∩ [c, d] must belong to
I.

From this we shall argue that any interval [c′, d′] ⊂ [c, d] must have a
partition that is contained in I. Consider the possible cases: (i) If c′, d′ in P ,
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then either there is no point s of S between c′, d′ or there is a point s of S
between c′, d′. In the former case, for some i, c′ = ai and d′ = bi so [c′, d′]
has a partition from I. In the latter case, both [c′, s] and [s, d′] are in I. We
again have our partition. (ii) If c′ 6∈ P but d′ ∈ P , then there is a component
interval (ai, bi) of G to which c′ belongs. Consider the interval

[c′, d′] = [c′, bi] ∪ [bi, d
′].

We know that there is a partition of [c′, bi] contained in I and that [bi, d
′]

also has a partition contained in I. Consequently, we must have a partition
of [c′, d′] contained in I. (iii) If c′ ∈ P but d′ 6∈ P a similar argument will
prevail. Finally, (iv) if c′ 6∈ P and d′ 6∈ P then there is a component interval
(ai, bi) of G to which c′ belongs and there is a different component interval
(aj , bj) of G to which c′ belongs. We know that there is a partition of each of

[c′, bi], [bi, aj ], and [aj , d
′].

There are no other cases to consider. We have shown then that every subin-
terval of [c, d] has a partition contained in I. This contradicts the definition
of P and completes the proof.

2.6 Full covers, fine covers, and ordinary derivates

The connection between full and fine covers and the process of differentiation is
intimate and immediate. That is, in essence, the reason why these covers offer
such a simple way of connecting the apparently diverse concepts of measure,
derivative, and integral.

For example, consider the two bilateral extreme derivatives DF (x) and
DF (x) of a function F at a point x. Define

Er = {x : DF (x) > r},

Er = {x : DF (x) > r},

and

I =

{
[u, v] :

F (v)− F (u)

v − u
≥ r
}
.

It is easy to check that I is a full cover of the set Er and is a fine cover of
the (larger) set Er. This “full/fine covering lemma” can be used in a variety
of ways when studying derivatives. Readers familiar with Vitali arguments
will have seen this before, but have perhaps not articulated the role of the full
covers.
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For approximate derivatives one does not see immediately any such weak
covering lemma that would unite weak covers and the process of approximate
derivation. The intimate relation between approximate derivatives and VBG
functions is certainly displayed in Saks. That would suggest some kind of rela-
tion involving weak covers. In fact the connection is quite direct and explains
why these weak covers play a role in the theory of the Denjoy-Khintchine
integral.

We start with the most elementary case where weak covers might arise
from a differentiation problem.

2.7 Weak covers and Dini derivatives

There is a weak covering argument that has been used (expressed in different
language) for more than a century. One of the earliest uses was by Beppo
Levi [24] to show that the set of points where a function has both a right
derivative and a left derivative that are unequal would have to be countable.
We express it for the upper right Dini derivative.

Lemma 16 (Weak covering lemma (a)). Let F : R→ R and suppose that at
every point x of a set E the upper right Dini derivative satisfies, for some real
number r, the inequality

D
+
F (x) < r.

Then the collection

I =

{
[u, v] :

F (v)− F (u)

v − u
< r

}
is a q-weak cover of E.

Proof. This is the simplest of the covering arguments we shall present since
it involves no density computations. We see (from the definition of upper right
Dini derivative) that, for each u in E, there is a 1 > δ(u) > 0 so that

F (v)− F (u)

v − u
< r

provided u < v < u+ δ(u).
We can use δ to decompose E in a familiar way:

En = {x ∈ E : 1/(n+ 1) < δ(x) < 1/n}.

Decompose each set En into a further sequence of subsets {Enj} such that each
has diameter less than 1/(n + 1). Choose any interval [u, v] with endpoints
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in the same set Enj . In that case u ∈ E and v − u < 1/(n + 1) < δ(u).
Consequently

F (v)− F (u)

v − u
< r

and so [u, v] ∈ I. We have shown that any interval [u, v] with endpoints in
the same set Enj must belong to I. This verifies that I is a q-weak cover of
E.

Example As an elementary, but perhaps amusing exercise, here is the argu-
ment used by Grace Chisholm Young [38] for her theorem on Dini derivatives,
but re-expressed in the language of q-weak covers.

For an arbitrary function F the set of points x at which the strict

inequality D
+
F (x) < D−F (x) holds is countable.

Take any rationals r and s and define

Ers = {x : D
+
F (x) < r < s < D−F (x)}.

The collections

Ir =

{
[u, v] :

F (v)− F (u)

v − u
< r

}
and Is =

{
[u, v] :

F (v)− F (u)

v − u
> s

}
are both q-weak covers of Ers. Thus the intersection Ir ∩ Is = ∅ is also a q-
weak cover of Ers. That implies that each such set Ers is countable. Complete
the proof by taking the union of these sets over all rationals r and s.

2.8 Weak covers and approximate derivates

For approximate derivatives there is an intimate connection with weak covers.

Lemma 17 (Weak covering lemma (b)). Let F : R→ R and suppose that at
every point x of a set x the lower bilateral approximate derivative

ADF (x) > r.

Then the collection

I =

{
[u, v] :

F (v)− F (u)

v − u
> r

}
.

is a q-weak cover of E.
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Proof. We follow (for easy comparison) the arguments in [27, pp. 238–
239] from which the idea for the covering argument is extracted. For the
appropriate definitions of approximate derivative, point of density, and point
of dispersion we can also refer to [27, §3, p. 220].

Write Fr(t) = F (t) − rt for all t. We see (from the definition of upper
approximate limit) that, for each x in E, the set{

y :
F (y)− F (x)

y − x
≤ r
}

=

{
y :

Fr(y)− Fr(x)

y − x
≤ 0

}
has x as a point of dispersion (on both sides).

Consequently, for each x ∈ E there is a δ(x) > 0 so that

λ({t : Fr(t)− Fr(x) ≤ 0} ∩ [x, x+ h]) ≤ h/3

and

λ({t : F (x)− Fr(t) ≤ 0} ∩ [x− h, x]) ≤ h/3

provided 0 ≤ h ≤ δ(x). We can use δ to decompose E,

En = {x ∈ E : 1/n < δ(x) < 1/(n− 1)}.

Choose any interval [u, v] with endpoints in the same set En and such that
v − u < 1/n. Set h = v − u and use the above density estimates to see that

λ({t : Fr(t)− Fr(u) ≤ 0} ∩ [u, v]) ≤ h/3

and

λ({t : Fr(v)− Fr(t) ≤ 0} ∩ [u, v]) ≤ h/3.

Thus, the interval (u, v) must contain a point w (many points in fact) for
which both

Fr(w)− Fr(u) > 0 and Fr(v)− Fr(w) > 0.

Adding these we have Fr(v) − Fr(u) > 0. Thus F (v) − F (u) > r(v − u). By
definition [u, v] ∈ I.

Now it is clear how to verify that I is a q-weak cover of the set E. De-
compose each set En into a further sequence of subsets {Enj} such that each
has diameter less than 1/n. Then we have shown that any interval [u, v] with
endpoints in the same set Enj must belong to I.
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2.9 Weak covers and approximate Dini derivatives

There is one more weak covering argument that we can extract from Saks [27,
pp. 238–240]. This uses both the upper and the lower one-sided approximate
derivatives, i.e., it uses a pair of the four approximate Dini derivatives. We
express it for the upper and lower right approximate Dini derivatives.

Lemma 18 (Weak covering lemma (c)). Let F : R → R and suppose that
at every point x of a set E the lower and upper right approximate derivatives
satisfy, for some positive number r,

−r < AD+F (x) ≤ AD+
F (x) < r.

Then the collection

I =

{
[u, v] :

∣∣∣∣F (v)− F (u)

v − u

∣∣∣∣ < 4r

}
is a q-weak cover of E.

Proof. We know (from the definition of approximate limits) that, for each x
in E, the set

Axr =

{
y :

∣∣∣∣F (y)− F (x)

y − x

∣∣∣∣ ≥ r}
has x as a point of dispersion on the right.

Consequently, for each x ∈ E there is a δ(x) > 0 so that

λ(Axr ∩ [x, x+ h]) ≤ h/4

provided 0 ≤ h ≤ δ(x). We can use δ to decompose E in the familiar way:

En = {x ∈ E : 1/n < δ(x) < 1/(n− 1)}.

Choose any interval [u, v] with endpoints in the same set En and such that
v − u < 1/(2n). Set w = 2v − u. Then w − u < 1/n < δ(u) so that

λ(Aur ∩ [u,w]) ≤ (w − u)/4.

From this we can deduce that

λ(Aur ∩ [v, w]) ≤ (w − v)/2

since (w − u)/4 = (w − v)/2. We also have w − v < 1/n < δ(v) so that

λ(Avr ∩ [v, w]) ≤ (v − w)/4.
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These inequalities show that there must exist a point y that belongs to the
interval (v, w] so that both of the following inequalities must hold:∣∣∣∣F (y)− F (u)

y − u

∣∣∣∣ < r

and ∣∣∣∣F (y)− F (v)

y − v

∣∣∣∣ < r.

(For those familiar with such arguments this corresponds to what we called
an “external intersection condition” in [6] in the context of path derivatives.)

Now put these inequalities to work to obtain the estimate∣∣∣∣F (v)− F (u)

v − u

∣∣∣∣ < 4r

for u, v in En and v − u < 1/(2n). The details are simply these:

|F (v)− F (u)| ≤ |F (y)− F (u)|+ |F (y)− F (v)| < r(y − u) + r(y − v)

≤ r(w − u) + r(w − v) = 2r(v − u) + 2r(v − u) = 4r(v − u).

By definition then, [u, v] ∈ I.
To see that I is a q-weak cover of E let {Enk} be a decomposition of

each set En into subsets of diameter smaller than 1/(2n). Consequently any
interval [u, v] with endpoints in the same set {Enk} must belong to I as we
have just seen.

2.10 Approximately full covers

We have just seen an intimate connection between q-weak covers and approx-
imate derivatives. If one were embarking, however, on a study of approximate
derivatives the following definition would be the most likely choice.

Definition 19. Let I be a collection of closed intervals and E ⊂ R. We
say that I is an approximately full cover of E if, for each x ∈ E there is a
measurable set Ax that has x as a point of density so that every interval [u, x]
with u ∈ Ax belongs to I and every interval [x, v] with u ∈ Ax belongs to I.

This concept has been used to study the approximately continuous integral
of Burkill. Henstock alludes to this occasionally in his writing, but one should
see instead Bullen [5] who uses approximately full covers as part of an extensive
study of this integral. The survey article of Skvortsov et al. [30] is an essential
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reference if one wishes to clarify some of the claims made in the literature as
well as for an account of the variational measures that would be associated
with approximately full covers.

These covers have most of the useful properties of full, weak, and q-weak
covers. Like the others, they are also filtering and have the subadditive and
pruning properties of Theorem 13 . Clearly every full cover is also an approx-
imately full cover.

There are two properties that are worth pointing out, even though our
study here will not make further use of this concept. The first is well-known
and is discussed and exploited in [5], [30], and [32] among others. The second
property would be useful for relating any proposed variational measure based
on approximately full covers to the weak variational measures we study in this
article.

Lemma 20 (Approximate Cousin lemma). Suppose that I is an approximately
full cover of a bounded, open interval (a, b) that is right fine at a and left fine at
b. Then, for every closed subinterval [c, d] ⊂ [a, b], there is a finite subdivision

c = c0 < c1 < c2 < . . . cn−1 < cn = d

so that each [ci−1, ci] ∈ I (i = 1, 2, . . . , n).

Lemma 21 (Relation to q-weak covers). Suppose that I is an approximately
full cover of a set E. Let I1 denote the collection that includes I but also
any interval [u,w] for which [u, v] and [v, w] belong to I for some u < w < v.
Then I1 is a q-weak cover of E.

Proof. This is already part of the proof of Lemma 16 although it was not
there expressed in the language of approximately full covers.

3 Variational measures

We are now in a position to define the variational measures associated with a
function that are our main object of study. Each of the classes of covers (full,
fine, weak and q-weak) gives rise to a measure.

Definition 22. Let F : R→ R and let E be a set of real numbers. Then we
define

1. VF (E) = inf{V (F, I) : I is a full cover of E}.

2. vF (E) = inf{V (F, I) : I is a fine cover of E}.

3. WF (E) = inf{V (F, I) : I is a weak cover of E}.
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4. W q
F (E) = inf{V (F, I) : I is a q-weak cover of E}.

The immediate properties that we can obtain are that these are Borel
measures with obvious relations among them.

Theorem 23. Let F : R→ R be an arbitrary function. Then the set functions
VF , vF , W q

F , and WF are Borel measures on R and these inequalities hold:

vF ≤ VF and W q
F ≤Wf ≤ VF .

Proof. That these are Borel measures follows from Lemma 10. The inequal-
ities derive immediately from the facts that all full covers are fine covers, all
weak covers are q-weak covers, and all full covers are weak covers.

The full variational measures VF play a well-known role in studying and
characterizing the notions VBG∗ and ACG∗. We propose the closely related
(and smaller) variational measures WF and W q

F to play a similar role in study-
ing and characterizing the notions VBG and ACG. As we shall see the two
measures WF and W q

F agree for continuous functions. It is not hard, however,
to see that they are different in general. Let F (x) = 0 for x rational and
F (x) = 1 for x irrational; such a function is VBG. The smaller measure W q

F

vanishes on all sets, but WF ([0, 1]) =∞.

3.1 Weak covering arguments for VBG and ACG functions

We now summarize what we can extract from the theory of VBG and ACG
functions reviewed in Section 1.4 in the language of covers and variational
measures.

First lemma To begin, we note how and in what way the concept of VBG
is completely captured by the measures WF and W q

F .

Lemma 24. Let F : R→ R and E ⊂ R. Then

1. W q
F (E) ≤ V (F ;E).

2. If E is closed, then WF (E) ≤ V (F ;E).

3. F is VBG on E if and only if W q
F is σ-finite on E.

4. If F is continuous on the set E, then WF (E) = W q
F (E).

5. If F is continuous on E, then F is VBG on E if and only if WF is
σ-finite on E.
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Proof. Statement 1. Let IE denote the collection of all intervals [u, v] with
both endpoints in the set E. Then IE is a q-weak cover of E and, by definition,
V (F ;E) = V (F, IE). Thus

W q
F (E) ≤ V (F, IE) = V (F ;E).

Statement 2. If E is closed, then IE (as above) is now a weak cover of E and
so

WF (E) ≤ V (F, IE) = V (F ;E).

Statement 3. From statement 1 it follows that if F is VBG on E then W q
F

must be σ-finite on E. Suppose then that W q
F (E) < ∞. There is a q-weak

cover C with V (F, C) < ∞. Select an E-form E that witnesses C as a q-weak
cover. Check that

V (F ;S) ≤ V (F, C) <∞
for each S ∈ E . Consequently, F is VBG on E.

Statement 4. If W q
F (E) =∞, then certainly WF (E) = W q

F (E). If W q
F (E) <

∞ then F is VBG and we can use the classical theory of continuous VBG
functions.

We know from Lemma 7 that we must have

a. A sequence of closed bounded sets {En} whose union includes all of E.

b. For each n, a continuous function Gn : R → R of bounded variation
function so that F (x) = Gn(x) for each x ∈ En.

c. For each n, F ′ap(x) = G′n(x) for almost every x ∈ En.

We can insist too that Gn is linear and continuous in the contiguous intervals
to En if that helps. For our lemma we can exploit property (b) by using a
version of the Vitali theorem for the continuous functions of bounded variation
Gn:

VGn
= vGn

.

(See [34, Theorem 6.29].)
Using the agreement of F and Gn on the closed set En, we see that, for

any set S ⊂ En,

vGn
(S) ≤W q

Gn
(S) = W q

F (S) ≤WF (S) = WGn
(S) ≤ VGn

(S).

Thus W q
F (S) = WF (S) for all subsets of the closed set En. As these are Borel

measures the same must be true for all subsets of E which are contained in
the union of the En.

Statement 5. This now follows from Statements 3 and 4.
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Second lemma Let us examine the proof of the first lemma to see if there
is more that we can extract. In the case that F is ACG (not merely VBG) the
functions Gn can be chosen to be absolutely continuous. About such functions
we know that

VGn(S) =

∫
S

|G′n(x)| dx (2)

for all measurable sets S and, consequently VGn
vanishes on all sets of Lebesgue

measure zero.

Applying this to any measure zero subset Z of E, we have that

WF (Z) ≤
∞∑
n=1

WF (Z ∩ En) =

∞∑
n=1

WGn
(Z ∩ En) =

∞∑
n=1

VGn
(Z ∩ En) = 0.

Consequently WF vanishes on all measure zero subsets of E. This proves one
direction in the following lemma.

Lemma 25. Let F : R→ R, E ⊂ R and suppose that F is continuous on E.
Then F is ACG on E if and only if F is VBG on E and the measure WF is
zero on all subsets of E that have Lebesgue measure zero.

Proof. The other direction that needs proof starts by assuming that WF is
absolutely continuous with respect to Lebesgue measure and that F is VBG.
Thus, we shall use our scheme to deduce that the functions Gn as above are
absolutely continuous (we know as yet that they are continuous and have
bounded variation).

But if N ⊂ En is a set of measure zero and WF (N) = 0, then WGn
(N) = 0.

If N is a set of measure zero that is inside any complementary interval to En,
then, since we insisted that Gn is linear and continuous in the contiguous
intervals to En, then again WGn

(N) = 0. So for any set N of measure zero
WGn

(N) = 0. That implies that Gn is absolutely continuous for each n and
exhibits F as an ACG function on E.

As a corollary we can invoke the category lemma (Lemma 8) and improve
this, for closed sets E, by dropping the need to assume in advance that F is
VBG.

Corollary 26. Let F : R→ R, let E ⊂ R be a closed set and suppose that F
is continuous on E. Then F is ACG on E if and only if the measure WF is
zero on all subsets of E that have Lebesgue measure zero.
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Third lemma Can we extract yet more from our proof? The identity (2)
provides

WF (S) = WGn
(S) = VGn

(S) =

∫
S

|G′n(x)| dx =

∫
S

|F ′ap(x)| dx

for all measurable sets S ⊂ En. But the sequence {En} consists of closed sets
whose union is all of E. As WF is a measure this identity must hold for all
measurable sets S ⊂ E. This establishes the next of our lemmas.

Lemma 27. Let F : R→ R and E ⊂ R. If F is continuous on E and also F
is ACG on E then, for all measurable subsets S of E,

W q
F (S) = WF (S) =

∫
S

|F ′ap(x)| dx. (3)

Fourth lemma Yet again the same covering argument gives us one more
useful observation to be extracted. We shall need it for the characterization
of the Denjoy-Khintchine integral.

The theory of the Henstock-Kurzweil integral can be applied here to each
of the absolutely continuous functions Gn. Let gn be any function that is
almost everywhere equal to G′n. Then, for any εn > 0, we can find a gauge
δn : R→ R so that

n∑
i=1

|Gn(vi)−Gn(ui)− gn(wi)(vi − ui)| < εn (4)

whenever {([ui, vi], wi) : i = 1, 2, 3, . . . , n} is a packing finer than δn. To be a
packing requires only that the collection of intervals {[ui, vi] : i = 1, 2, 3, . . . , n}
are pairwise nonoverlapping. To be finer than δn requires vi − ui < δn(wi)
where wi is either ui or vi.

This can be translated into a useful statement about the function F on
the set En since F and Gn agree on En and G′n(x) and F ′ap(x) agree almost
everywhere on En.

Lemma 28. Suppose that F is continuous on a closed set E and AC on each
member of a sequence of closed sets {En} whose union is E. Let f(x) be any
function that agrees almost everywhere with F ′ap(x) on En.

Then, for any εn > 0, we can find a gauge δn : En → R+ so that

n∑
i=1

|F (vi)− F (ui)− f(wi)(vi − ui)| < εn (5)

whenever {([ui, vi], wi) : i = 1, 2, 3, . . . , n} is a packing with ui, vi, wi = ui or
wi = vi, ui, vi ∈ En and vi − ui < δn(wi).



200 B. S. Thomson

3.2 The Vitali covering theorem for VBG functions

The Vitali covering theorem on the real line is usually asserted for Lebesgue
measure and always in a form that arrives at some conclusion similar to

λ

(
E \

∞⋃
n=1

[un, vn]

)
= 0.

Our version of this theorem in Section 2.2 had the equivalent but unusual
conclusion

vλ = Vλ = λ

where λ is Lebesgue outer measure. What we claim also as a Vitali covering
theorem is the identity

vF = VF

which holds for continuous functions F if and only if F is VBG∗. A proof is
given in [34, Chapter 6]. This material is known (although I would not say
well-known). It is an essential part of the study of VBG∗ functions.

A proposed “weak” version is our concern now. In order to develop a Vitali
theorem for the weak measures we need a dual measure wF to accompany the
weak measure WF in the same way that vF and VF are dual measures. The
following definition captures this.

Definition 29. A collection I of closed, bounded intervals is said to be a
weak fine cover of a set E provided for any weak cover J of E the collection
I ∩ J is fine at nearly every point in E.

By “nearly” we mean fine at all but countably many points. Thus a weak
fine cover is also a fine cover (and hence also a Vitali cover) if countable sets
are ignored. Note that there is essentially the same duality between weak
covers and weak fine covers as there is between full covers and fine covers.

Theorem 30. Suppose that F : R→ R. For any set E we define

wF (E) = inf{V (F, I) : I a weak fine cover of E)}.

Then wF is a Borel measure on R and wF ≤ WF ≤ VF . If F is continuous
then

vF ≤ wF ≤WF ≤ VF .

Proof. By Lemma 10 we can establish that wF is a Borel measure by showing
that the class of weak fine covers of any set E has both the required subadditive
property and the pruning property.
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We start with the pruning property. Suppose that I is a weak fine cover
of E and that G is an open set that contains E. Take any weak cover J of E
then

I(G) ∩ J = I ∩ J (G).

We know that J (G) is a weak cover of E and thus we know that the intersec-
tion I∩J (G) is fine at nearly every point of E. But that means that I(G)∩J
is fine at nearly every point of E for any choice of J . By definition then, I(G)
is a weak fine cover of E.

Let us check the subadditive property. Suppose that E ⊂
⋃∞
n=1En and we

have, for each n, a collection In that is a weak fine cover of En. Define

I =

∞⋃
n=1

In.

Take any weak cover J of E. Then I ∩ J must be fine at nearly every point
in En. As this is true for all n, there are at most countably many points in E
at which I ∩ J fails to be fine. By definition, I is a fine weak cover of E.

Because of these two properties, we can conclude that wF is a Borel mea-
sure. The inequality wF ≤ WF follows from the simple fact that every weak
cover of a set is also a weak fine cover. The inequality vF ≤ wF for continuous
functions follows from the fact that every weak fine cover of a set is a fine cover
of all but a countable subset and the fact that vF vanishes on all countable
sets for continuous functions.

Theorem 31 (Weak Vitali covering theorem). Suppose that F is VBG on a
set E and continuous on E. Then,

wF (S) = WF (S) for all S ⊂ E.

Proof. The weak Vitali covering theorem is obtained from the Vitali theorem
VG = vG for continuous functions of bounded variation G. As usual, find a
sequence of bounded closed sets {En} covering E and a sequence of continuous
functions {Gn} of bounded variation with F (x) = Gn(x) on E∩En. We know
then that vGn = VGn . We also know, for continuous functions, that

vGn
≤ wGn

≤WGn
≤ VGn

.

But WF = WGn and wF = wGn on subsets of E ∩ En because the two
functions F and Gn have identical values on the closed set En. Putting these
together and using the fact that these are measures we obtain that wF = WF

on all subsets of E.
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3.3 Some variational inequalities

Lemma 32. Let F : R → R be a function such that |F ′ap(x)| > r at every
point x of a set E. Then

Ir =

{
[u, v] :

∣∣∣∣F (v)− F (u)

v − u

∣∣∣∣ > r

}
is a q-weak cover of E. Consequently W q

F (E) ≥ rλ(E).

Proof. To establish that Ir is a q-weak cover of E is identical to the proof
of Lemma 17 (where we assumed the weaker hypothesis that ADF (x) > r
instead). Let I be an arbitrary weak cover of E. Then Ir ∩ I is also a weak
cover of E. It is moreover nearly a Vitali cover of E. Thus, taking advantage
of the Vitali covering theorem (i.e., Theorem 11) we must have

rλ(E) ≤ V (rλ, I ∩ Ir) ≤ V (F, I ∩ Ir) ≤ V (F, I).

As this holds for all choices of I, it follows that W q
F (E) ≥ rλ(E).

A similar lemma is proved in a nearly identical fashion.

Lemma 33. Let F : R → R be a function such that |F ′ap(x)| < s at every
point x of a set E. Then

Is =

{
[u, v] :

∣∣∣∣F (v)− F (u)

v − u

∣∣∣∣ < s

}
is a q-weak cover of E. Consequently W q

F (E) ≤ sλ(E).

Proof. We can establish that Is is a q-weak cover of E by the same methods
as the preceding lemma. Take any open set G containing E. Then Is(G) is
also a weak cover of E. We must have

W q
F (E) ≤ V (F, Is(G)) ≤ V (sλ, Is(G)) ≤ sλ(G).

As this holds for all choices of G it follows that W q
F (E) ≤ sλ(E).

3.4 Zero approximate derivatives and finite approximate deriva-
tives

As a result of Lemmas 32 and 33 there is a close connection between weak
variation zero and approximate derivative zero. There is a similar connection
between finite weak variational measure and finite approximate derivatives.
We express this connection in the next two theorems.
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Theorem 34. Let F : R→ R. The following assertions hold:

1. If, at every point x of a set E, the approximate derivative F ′ap(x) is zero,
then W q

F (E) = 0.

2. If W q
F (E) = 0, then at almost every point x of E the approximate deriva-

tive F ′ap(x) is zero.

Proof. Let F : R→ R be a function such that s > |F ′ap(x)| = 0 at every point
x of a bounded set E. Then by Lemmas 33, we know that W q

F (E) ≤ sλ(E).
If this is true for all s > 0, then W q

F (E) = 0. If E is unbounded, then this
shows that every bounded portion of E has W q

F -measure zero. Thus, in that
case too, W q

F (E) = 0.
The opposite direction is nearly identical but with the exclusion of some

set of measure zero. The assumption that W q
F (E) = 0 requires F to be VBG

on E, and hence, F has a finite approximate derivative at almost every point
of E. Let N1 be the set of points x ∈ E at which F ′ap(x) fails to exist; we
know now that λ(N1) = 0. Let Nm+1 be the set of points x ∈ E at which
|F ′ap(x)| > 1/m for m = 1, 2, 3, . . . . Then by Lemma 32, we have the inequality

0 = mW q
F (E) ≥ mW q

F (Nm+1) ≥ λ(Nm+1).

Thus, Nm+1 has Lebesgue measure zero. The set N =
⋃∞
m=1Nm has Lebesgue

measure zero too since it is a union of countably many sets of measure zero.
Since N contains every point at which either F ′ap(x) fails to exist or at which
F ′ap(x) 6= 0, we have proved that, at almost every point x of E, the approximate
derivative F ′ap(x) is zero.

A similar version for finite approximate derivatives can be stated without
proof. Note that we already know that VBG functions have finite approximate
derivatives almost everywhere.

Theorem 35. Let F : R→ R. The following assertions hold:

1. If, at every point x of a set E of Lebesgue measure zero, the approximate
derivative F ′ap(x) exists and is finite, then W q

F (E) = 0.

2. If W q
F (E) < ∞, then at almost every point x of E the approximate

derivative F ′ap(x) exists and is finite.

3.5 Representation of the q-weak variational measures

If F is a function that is differentiable in the ordinary sense at every point of
a measurable set E, then the identity

VF (E) =

∫
E

|F ′(x)| dx
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is known (see [34, Theorem 6.8]). There is an identical version for the approx-
imate derivative replacing the full variational measure with the q-weak one.
We have already seen such a representation in Lemma 27, but there was the
added assumption that F was continuous.

Theorem 36. Let F : R → R be a measurable function that has a finite
approximate derivative F ′ap(x) at every point x of a measurable set E. Then

W q
F (E) =

∫
E

|F ′ap(x)| dx. (6)

Proof. We can assume that E is a measurable set of finite measure. Write
f(x) = |F ′ap(x)| for convenience. This is a measurable function defined on E.

We use the variational estimates of Lemmas 32 and 33 to obtain measure
inequalities for sets of the form

Drs = {x ∈ E : r < |f(x)| ≤ s}.

Write

Drsn = {x ∈ E : r < |f(x)| < s+ 1/n} (n = 1, 2, 3, . . . ).

Then we have

rλ(Drs) ≤W q
F (Drs) and W q

F (Drs) ≤W q
F (Drsn) ≤ (s+ 1/n)λ(Drsn).

Since

Drs =

∞⋂
n=1

Drsn

we conclude, from standard measure-theoretic properties, that

rλ(Drs) ≤W q
F (Drs) ≤ sλ(Drs). (7)

Define the set

Z = {x ∈ E : f(x) = 0}

and note that

W q
F (Z) =

∫
Z

f(x) dx = 0.

Let θ > 1 and use the sequence

0 < · · · < θ−3 < θ−2 < θ−1 < 1 < θ1 < θ2 < θ3 < . . .
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to define the sets

En = {x ∈ E : θn < f(x) ≤ θn+1} (n = 0,±1,±2, . . . ).

One has to verify that E is the disjoint union of all of these sets Z, E0, E1,
E−1, . . . and that these are all measurable sets. As W q

F vanishes on subsets of
E that have Lebesgue measure zero, these sets are also W q

F -measurable.
We make use of the variational estimates (7) just obtained to deduce that

θnλ(En) ≤W q
F (En) ≤ θn+1λ(En).

We compute that

θ−1W q
F (En) ≤ θnλ(En) ≤

∫
En

f(x) dx ≤ θn+1λ(En) ≤ θW q
F (En).

We also have

W q
F (Z) =

∫
Z

f(x) dx = 0.

Now, summing all of these inequalities, we obtain

θ−1W q
F (E) ≤

∫
E

f(x) dx ≤ θW q
F (E).

This is valid for all choices of θ > 1 and so the identity (6) in the theorem
must follow for W q

F .

4 Generalized bounded variation

One of our goals was to obtain a way of rewriting and extending the the-
ory from Saks about functions of generalized bounded variation (VBG) and
generalized absolute continuity (ACG). We can review some of the highlights
here.

4.1 Generalized bounded variation and variational measures

We can now summarize how the measures (full, fine, and weak) relate to the
classical notions of generalized bounded variation explored in Saks. Saks cred-
its Denjoy and Khintchine with the first versions of the theory of these gen-
eralized variations. Denjoy, in particular, developed his ideas for continuous
functions and focused only on the variational ideas on closed sets. The expo-
sition in Saks has long been considered definitive (at least until the emergence
of the theory of these variational measures many years later).

Let us state some of the facts as a theorem. If we restrict ourselves to
continuous functions the details are simplified.
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Theorem 37. Let F : R→ R be a continuous function, [a, b] an interval and
E ⊂ R. Then

1. VF ([a, b]) = V (F, [a, b]), i.e., the total variation of F (which may be
infinite).

2. If F is locally of bounded variation, then

vF = wF = W q
F = WF = VF .

3. F is VBG∗ on E if and only if VF is σ-finite on E.

4. F is ACG∗ on E if and only if VF is σ-finite on E and absolutely con-
tinuous with respect to Lebesgue measure on E.

5. F is VBG on E if and only if WF is σ-finite on E.

6. F is ACG on E if and only if WF is σ-finite on E and absolutely con-
tinuous with respect to Lebesgue measure on E.

7. If F is VBG∗ on E then vF = VF on all subsets of E.

8. If F is VBG on E then wF = WF on all subsets of E.

9. Suppose that E is closed. Then F is VBG∗ on E if and only if VF is
σ-finite on every subset of E that has Lebesgue measure zero.

10. Suppose that E is closed. Then F is ACG∗ on E if and only if VF
vanishes on every subset of E that has Lebesgue measure zero.

11. Suppose that E is closed. Then F is VBG on E if and only if WF is
σ-finite on every subset of E that has Lebesgue measure zero.

12. Suppose that E is closed. Then F is ACG on E if and only if WF

vanishes on every subset of E that has Lebesgue measure zero.

For discontinuous functions There are some differences for discontinuous
functions. In order for VF to be σ-finite on a set E it would be necessary and
sufficient for F to be VBG∗ on E and also locally bounded at each point of
E. In order for F to be VBG on E, it would be necessary and sufficient for
the q-weak measure W q

F to be σ-finite on E. The measures W q
F and WF do

not necessarily agree for discontinuous functions. The two “Vitali” theorems
vF = VF and wF = WF generally require continuity.
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4.2 Criteria for the classes VBG and ACG

Saks [27, pp. 237–240] gives a number of criteria that can be used to deduce
that a function is VBG or ACG from information about its derivatives, ei-
ther its Dini derivatives, its approximate derivates, or its approximate Dini
derivatives. These criteria correspond precisely to the three covering lemmas
we presented in Sections 2.7, 2.8, and 2.9.

Theorem 38. The following statements are sufficient conditions for a func-
tion F : R→ R to be VBG on a set E.

1. At every point x of E one at least of the four Dini derivatives

D
+
F (x), D

+
F (x), D

−
F (x), or D

−
F (x)

is finite.

2. At every point x of E one at least of the two approximate extreme deriva-
tives

ADF (x) or ADF (x)

is finite.

3. At every point x of E the pairs of the approximate Dini derivatives satisfy
either

−∞ < AD+F (x) ≤ AD+
F (x) <∞

or

−∞ < AD−F (x) ≤ AD−F (x) <∞.

Proof. See the conditions in Lemmas 16, 17, and 18. The proofs are simply
applications of those lemmas. One can consult Saks for the rather straight-
forward details. The only real work that needs to be done is the covering
argument itself.

Corollary 39. Suppose that F : R → R is continuous, and that, at every
point x of a set E, the pairs of the approximate Dini derivatives satisfy either

−∞ < AD+F (x) ≤ AD+
F (x) <∞

or

−∞ < AD−F (x) ≤ AD−F (x) <∞.

Then F is ACG on E.
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4.3 Lusin’s condition (N)

A function F is said to satisfy Lusin’s condition (N) on a set E provided the
Lebesgue measure of the image set F [Z] is zero for every measure zero subset
Z of E. There is a close connection with the concepts we are studying here.
In particular, Saks proves that

[27, Theorem 6.7] In order that a function F which is continuous
and VB on a bounded closed set E be AC on E, it is necessary and
sufficient that F fulfill Lusin’s condition (N) on this set.

This connects continuous ACG functions with functions that are both VBG
and satisfy Lusin’s condition (N).

There is another perspective that we can have on this feature. The lemma
shows that absolute continuity of the measure WF necessarily requires that F
satisfy Lusin’s condition (N).

Lemma 40. Suppose that F is continuous. Then, for every set E ⊂ R,

λ(F [E]) ≤WF (E). (8)

Proof. We shall use in the proof the similar inequality for the full variational
measures:

λ(G[E]) ≤ VG(E)

where λ is the Lebesgue outer measure and G[E] is the image under the
function G of the set E. For a proof we refer the reader to [34, Theorem 6.7].
If G is continuous and has bounded variation, then we would know more:

λ(G[E]) ≤WG(E) = VG(E).

Let us address the inequality (8). If WF (E) =∞ there is nothing here to
prove. Suppose that WF (E) <∞. Then F is VBG on E and we can construct
the usual sequence of closed sets {En} and usual sequence of continuous func-
tions of bounded variation {Gn} with F = Gn on En. Let {E′n} be a pairwise
disjoint sequence constructed from {En} so as to have the same union, so that
E′n ⊂ En, and the sets {E′n} are Borel sets.

This means that

λ(F [E]) ≤
∞∑
n=1

λ(F [E ∩ E′n]) =

∞∑
n=1

λ(Gn[E ∩ E′n])

≤
∞∑
n=1

WGn
(E ∩ E′n) =

∞∑
n=1

WF (E ∩ E′n) = WF (E).
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5 The Denjoy-Khintchine integral

So far, the q-weak covers and the q-weak variational measures W q
F offer a

different and more useful exposition for VBG functions. For continuous func-
tions, the weak covers and the weak variational measures WF offer a way
to study both the VBG and ACG concepts. We now to turn to our other
project—to provide a characterization of the Denjoy-Khintchine integral that
arises from the same considerations. This should be considered a presentation
and simplification of some of the material that can be found in Ene [13] and
Sworowski [31] for that integral.

5.1 Packings and partitions

We have defined a cover to simply mean a collection I of closed intervals. For
an integration theory, we prefer covering relations. By a covering relation we
shall mean a collection of pairs ([u, v], w) where [u, v] is a closed interval and
w is either the endpoint u or the endpoint v.

Definition 41. If a covering relation

π = {([ui, vi], wi) : i = 1, 2, 3, . . . , n}

is finite and the intervals {[ui, vi]} in this collection do not overlap, then π is
said to be a packing. If, moreover,

n⋃
i=1

[ui, vi] = [a, b],

then π is said to be a partition of the interval [a, b].

We can extend our definitions of full covers, fine covers, and weak covers to
similar concepts for coverings. Thus, full coverings, for example, now can be
used in any instance in which a full cover would have appeared. The simplest
version of the theory for our purposes, however, is simply to announce which
packings or partitions are to be employed.

Definition 42. Let δ : E → R+ be a gauge on a set E. We say that a packing

π = {([ui, vi], wi) : i = 1, 2, 3, . . . , n}

is finer than δ provided that, for each i, wi is a point of E, and either wi = ui
or wi = vi, and the corresponding interval [ui, vi] has length smaller than
δ(wi).
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Definition 43. Let E be an E-form. We say that a packing

π = {([ui, vi], wi) : i = 1, 2, 3, . . . , n}

is compatible with E provided that wi = ui or wi = vi is a point of some S
from E and the corresponding interval [ui, vi] has endpoints in the set S.

There is a relation between these two concepts that is closely connected
to a fact that we have proved earlier: every full cover of a set is also a weak
cover. The proof is identical with that for Statement 2 of Theorem 13.

Lemma 44. Let δ : E → R+ be a gauge on a set E. Then there must exist an
E-form E so that any packing π that is compatible with E is necessarily finer
than δ.

5.2 Characterization of the Denjoy-Perron integral

In order to motivate our characterization of the Denjoy-Khintchine integral, let
us summarize some of the facts already well-known for the narrower Denjoy-
Perron integral.

Theorem 45. Let f , F be real functions defined on a closed bounded interval
[a, b]. The following five statements are equivalent:

1. f is Denjoy integrable in the restricted sense on [a, b] and F is an indef-
inite integral for f on that interval.

2. F is ACG∗ on [a, b] and F ′(x) = f(x) at almost every point x ∈ (a, b).

3. F ′(x) = f(x) at almost every and VF -almost every point x ∈ [a, b].

4. For each ε > 0 there is a gauge δ on [a, b] such that

n∑
i=1

|F (vi)− F (ui)− f(wi)(vi − ui)| < ε (9)

for every packing {([ui, vi], wi)} that is finer than δ.

5. For each ε > 0 there is a gauge δ on [a, b] such that, for any subinterval
[c, d] of [a, b], ∣∣∣∣∣F (d)− F (c)−

n∑
i=1

f(wi)(vi − ui)

∣∣∣∣∣ < ε (10)

for every partition {([ui, vi], wi)} of [c, d] that is finer than δ.
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The first two statements are classical (i.e., about a century old now). Den-
joy’s integral is defined by a countable, transfinite sequence of extensions of
the Lebesgue integral. The second statement is commonly called the descrip-
tive version and is due to Lusin. A further characterization was given by
Perron at the same time; it has some technical uses for developing properties
of the integral but was severely (and intemperately) criticized by Denjoy as
a nonconstructive fantasy. Zygmund in Math Reviews [MR0031096 (11,99d)]
recounts this in a characteristically gentle way: “One also finds a criticism of
what is usually called Perron’s definition of integral. This is merely one aspect
of the author’s [Denjoy] distrust of a certain type of mathematical reasoning.
One may not share the author’s views here in their entirety, and still be in
agreement with him about the importance of constructive definitions in the
theory of integrals.”

A full account of the Denjoy integral, the Lusin characterization, and the
Perron version appears in Saks [27, Chapter VIII].

The fourth and fifth assertions are now half a century old and are due to
Henstock. At first these were noticed only by specialists, but eventually the
fact that a formally simple exposition of this integral using Riemann sums was
possible attracted significant attention. The late Bob Bartle was awarded the
Paul R. Halmos–Lester R. Ford Award in 1997 for expository excellence as a
result of his account of this integral [1] published in the American Mathemat-
ical Monthly. That the integral had been known for nearly forty years prior is
a good indication of how little mainstream attention it had attracted as well
as how the material in Saks had fallen from favor. There are numerous sources
for these ideas (many in the bibliography below, including [34]).

5.3 A variational characterization of the Denjoy-Khintchine inte-
gral

We present now our first version of Theorem 45 for the Denjoy-Khintchine
integral. Note that the statement in the theorem assuming that F is already
given to be continuous makes this less satisfying than Theorem 45 since, in that
theorem, the continuity of F can be deduced from the variational statements.
Another “defect” is that there is no statement about partitions possible in this
version since they may not exist. Both of these difficulties are patched up in
Section 5.5 below.

Theorem 46. Let f , F be real functions defined on a closed bounded inter-
val [a, b]. Suppose that F is continuous. The following four statements are
equivalent:
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1. f is Denjoy integrable in the wide sense on [a, b] and F is an indefinite
integral for f on that interval.

2. F is ACG on [a, b] and F ′ap(x) = f(x) at almost every point x ∈ (a, b).

3. F ′ap(x) = f(x) at almost every and WF -almost every point x ∈ (a, b).

4. For each ε > 0 there is an [a, b]-form E such that

n∑
i=1

|F (vi)− F (ui)− f(wi)(vi − ui)| < ε (11)

for every packing {([ui, vi], wi)} that is compatible with E.

Proof. The equivalence of the first two statements is classical and can be
found, in detail, in Saks [27, Chapter VIII]. The descriptive characterization
(i.e., statement 2) is due to Lusin as was the similar characterization in The-
orem 45. The third statement is equivalent to the second since that condition
implies that F is ACG on [a, b] and, conversely, all ACG functions have that
property.

We show that the fourth statement in the theorem is implied by the second.
Thus, we assume that F is ACG. Let ε > 0. Using Lemma 28, we know that
there is an [a, b]-form E1 consisting of a sequence of closed sets {En} and, for
each En ∈ E , a gauge δn : En → R+ so that

n∑
i=1

∣∣F (vi)− F (ui)− F ′ap(wi)(vi − ui)
∣∣ < ε 2−n (12)

whenever {([ui, vi], wi) : i = 1, 2, 3, . . . , n} is a packing with wi = ui or wi = vi,
ui, vi ∈ En and vi − ui < δn(wi).

Construct another [a, b]-form E2 (no longer consisting of closed sets) so that
the sets in E2 are pairwise disjoint and

E1 ≺ E2.

Just write A1 = E1, A2 = E2 \ E1, A3 = E3 \ (E1 ∪ E2), . . . . Then E2
will be defined as the collection of sets A1, A2, A3, . . . . Define the gauge
δ : [a, b]→ R+ by setting δ(x) = δn(x) if x ∈ An.

By Lemma 44, there is an [a, b]-form E3 so that any packing compatible
with E3 is also finer than δ. Take then

E = E2 ∧ E3.
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Suppose that {([ui, vi], wi) : i = 1, 2, 3, . . . , n} is a packing that is compatible
with the [a, b]-form E . Then, by the construction, the packing is finer than δ
and, at the same time, compatible with E1. Take any element ([ui, vi], wi). By
definition, wi ∈ An ⊂ En for some n and vi − ui < δ(wi) and ui, vi belong to
An ⊂ En.

Thus, using (12), we can estimate that the total of the elements of the sum
(11) for which wi belongs to An for some fixed n is smaller than ε 2−n. It
follows that the entire sum is smaller than ε. This completes the proof in the
one direction.

We complete the proof by showing that the fourth statement in the theorem
implies that F is ACG and that f is almost everywhere the approximate
derivative of F . We assume that ε > 0 and that we have been given an
[a, b]-form E for which the inequality (11) holds for all such packings.

We first verify that F is ACG. Let N be any subset of [a, b] of Lebesgue
measure zero and proceed with the goal of proving that WF (N) = 0. Write
N0 = {x ∈ N : f(x) = 0} and

Nk = {x ∈ N : k − 1 < |f(x)| ≤ k} (k = 1, 2, 3, . . . ).

These sets exhaust all of the set N . It is enough, then, to check that WF (Nk) =
0 for each k = 0, 1, 2, . . . .

Fix k. Choose an open set Gk containing Nk of measure less than ε. Define
a gauge δk on Nk by requiring for each x ∈ Nk that (x−δk(x), x+δk(x) ⊂ Gk.
By Lemma 44, there is an Nk-form E1 so that packings compatible with that
form are finer than δk.

Define
E2 = {S ∩Nk : S ∈ E}.

This is also an Nk-form. Consequently.

E3 = E1 ∧ E2

is yet again an Nk-form.
If {([ui, vi], wi) : i = 1, 2, 3, . . . , n} is any packing that is compatible with

the Nk-form E3. then we know that

n∑
i=1

|F (vi)− F (ui)− f(wi)(vi − ui)| < ε.

But we also know that each [ui, vi] ⊂ Gk and each wi ∈ Nk so that

n∑
i=1

|f(wi)(vi − ui)| ≤ kλ(Gk) < kε.
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This means that
n∑
i=1

|F (vi)− F (ui)| < ε(1 + k).

We can use the Nk-form E3 to construct a weak cover I of Nk for which we
would have

WF (Nk) ≤ V (F, I)) < ε(1 + k).

This verifies that WF (Nk) = 0 for each k and hence WF (N) = 0 as required,
so WF is absolutely continuous with respect to Lebesgue measure on [a, b]. By
Theorem 37, it follows that F is ACG on [a, b].

Our second and final task in this direction is to show that F ′ap(x) = f(x)
almost everywhere in [a, b]. Since F is ACG, we know that the approximate
derivative F ′ap(x) exists at almost every point of the interval. Take any function
g for which F ′ap(x) = g(x) almost everywhere in [a, b]. We need to show that
f = g almost everywhere.

We know from the first half of the proof that there is an [a, b]-form E1 for
which the inequality

n∑
i=1

|F (vi)− F (ui)− g(wi)(vi − ui)| < ε (13)

holds for all packings compatible with E1. But we were given an [a, b]-form E
for which the inequality

n∑
i=1

|F (vi)− F (ui)− f(wi)(vi − ui)| < ε (14)

holds for all packings compatible with E . Together the inequalities (13) and
(14) evidently show that

n∑
i=1

|g(wi)− f(wi)| (vi − ui) < 2ε

holds for all packings compatible with E ∧ E1.
Define

Bk = {x ∈ [a, b] : |f(x)− g(x)| > 1/k} (k = 1, 2, 3, . . . ).

The union of these sets Bk contains every point at which f and g differ. Fix
k and define

E4 = {S ∩Bk : S ∈ E ∧ E1}.
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This is a Bk-form. For this we see that

n∑
i=1

k−1(vi − ui) ≤
n∑
i=1

|g(wi)− f(wi)| (vi − ui) < 2ε

holds for all packings compatible with E4.
We can use the Bk-form E4 to construct a weak cover I of Bk for which

we would have
V (λ, I)) < 2kε.

Any weak cover is also a Vitali cover of all of Bk except possibly for a countable
subset (which we can ignore). By the Vitali covering theorem (i.e., the version
given as Theorem 11) this means that the Lebesgue measure of Bk must be
zero. Consequently f = g almost everywhere since the set of points where the
identity does not hold is exactly the union of the sequence {Bk}.

5.4 Composite pairs

It is essential for the purposes of a characterization of integrals in this kind
of theory to have some version of the Cousin lemma available. Certainly we
know from Lemma 14 that if we are given an arbitrary gauge on an interval
[a, b], then there must exist a partition π of that interval so that π is finer than
δ.

We might hope for a similar statement. Is it true that for any [a, b]-form
E there must exist a partition π of that interval so that π is compatible with
E? The answer is no. For the weak version of the Cousin lemma (Lemma 15)
we needed covers that were also fine at each point. Consequently, we need to
allow more elements to a packing to be sure of the existence of a partition.

We use the device and the language from Ene [13] and Sworowski [31].
Recall that SIS(E) denotes the countable set of points that are semi-isolated
in at least one member S of the form E . Let us say that (E , δ) is a composite
pair for a set E if E is an E-form and δ is a gauge defined at each point of the
countable set SIS(E).

Definition 47. We say that a packing

π = {([ui, vi], wi) : i = 1, 2, 3, . . . , n}

is compatible with a composite pair (E , δ) for a set E provided that wi = ui
or wi = vi and either

1. wi belongs to some S ∈ E and the interval [ui, vi] has both endpoints in
the same set S, or else
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2. wi ∈ SIS(E) and |vi − ui| < δ(wi).

This definition is enough for a Cousin lemma and useful for a characteri-
zation of the Denjoy-Khintchine integral.

Lemma 48 (Cousin lemma). Suppose that (E , δ) is an arbitrary composite
pair for the interval [a, b]. Then there is a partition

π = {([ui, vi], wi) : i = 1, 2, 3, . . . , n}

of [a, b] that is compatible with the composite pair (E , δ).

Proof. This follows from Lemma 15.

5.5 Characterization of the Denjoy-Khintchine integral

For a characterization of the Denjoy-Khintchine integral, one might not be
entirely happy with Theorem 46. The reason is that the property that F is
continuous does not follow from the variational estimate (11) but is assumed
ab initio. Henstock would certainly not have been satisfied with this since his
program was always to construct a division space that could be used to exactly
describe all or most known integrals, preferably as a limit of a Riemann sums.

The analyses [13] and [31] might have met his requirements but it is not
clear how they fit exactly into the Henstock formalities. Our version is just
a simplification of these. Note that this theorem just repeats Theorem 46
without the assumption of continuity but with the extra assumptions needed
to guarantee the existence of partitions. Those extra assumptions impose
continuity on F as we shall see.

Theorem 49. Let f , F be real functions defined on a closed bounded interval
[a, b]. The following two statements are equivalent:

1. F is ACG on [a, b] and F ′ap(x) = f(x) at almost every point x ∈ (a, b).

2. For each ε > 0 there is an [a, b]-form E0 such that for every [a, b]-form E
for which E0 ≺ E one can choose a gauge δ so that (E , δ) is a composite
pair and every partition {([ui, vi], wi)} of [a, b] that is compatible with
this pair must satisfy

n∑
i=1

|F (vi)− F (ui)− f(wi)(vi − ui)| < ε (15)

and also (hence)∣∣∣∣∣F (b)− F (a)−
n∑
i=1

f(wi)(vi − ui)

∣∣∣∣∣ < ε. (16)
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Proof. Note that (16) follows from (15) so that it is only the latter that we
need to consider for the proof.

The first statement of the theorem assumes that F is continuous (it is
part of the definition of ACG) so we can appeal to Theorem 46. Using that
theorem. we choose an [a, b]-form E0 so that

n∑
i=1

|F (vi)− F (ui)− f(wi)(vi − ui)| < ε/2 (17)

for every packing {([ui, vi], wi) : i = 1, 2, 3, . . . , n} that is compatible with the
[a, b]-form E0. Suppose that E0 ≺ E . Let c1, c1, c1, . . . be an enumeration of
all the points of SIS(E). We define a gauge δ on this set by requiring that

|F (v)− F (u)|+ |f(ci)|(v − u) < ε2−i−1 (18)

whenever v = ci or u = ci and v − u < δ(ci).
Consider any partition {([ui, vi], wi)} of [a, b] that is compatible with the

composite pair (E , δ). (Such a partition does exist by Lemma 48.) Those
elements of the partition that are compatible with E are also compatible with
E0 and so form a packing to which the inequality (17) applies. The remaining
elements form a packing finer than δ to which the inequality (18) applies.
Totaling all of these terms, we see that the sum in (15) is smaller than ε.

The other direction in the theorem immediately follows from Theorem 46.
Well not quite! We do not know yet if F is continuous. Thus, we need to
derive continuity from the statement itself.

Fix a point x0 in [a, b]. We can illustrate by taking it as an interior point
of the interval. The same argument can be altered to handle an endpoint. Let
E0 be as given in the second statement of the theorem. Define E1 to be the
collection of all the sets [a, x0 − 1/n], [x0 + 1/n, b] for n = 1, 2, 3, . . . together
with the singleton set {x0}. This is an [a, b]-form. Choose any [a, b]-form E
with

E0 ∧ E1 ≺ E
and find a gauge δ so that (E , δ) is a composite pair satisfying the inequality
(15). Notice that δ(x0) must be defined since x0 belongs to SIS(E).

Consider any interval [x0, t] with x0 < t < x0 + δ(x0). There is a partition
that is compatible with the pair (E , δ) that includes the element ([x0, t], x0).
Consequently

|F (t)− F (x0)− f(x0)(t− x0)| < ε.

As this is true for all x0 < t < x0 + δ(x0) we have that

lim sup
t→x0+

|F (t)− F (x0)| ≤ ε.
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It follows that F is continuous on the right at x0. Similarly, it is continuous
on the left. Having established continuity we are finished.

Riemann sums characterization This characterization of the Denjoy-
Khintchine integral is of the variational type. A version that uses Riemann
sums directly would assert something like this: f is Denjoy-Khintchine inte-
grable on [a, b] if and only if, for every ε > 0,∣∣∣∣∣

∫ b

a

f(x) dx−
n∑
i=1

f(wi)(vi − ui)

∣∣∣∣∣ < ε

for partitions satisfying some appropriate condition. We already have one di-
rection for this statement. The other direction requires proving a lemma of
the “Saks-Henstock” type so that the connection with the variational charac-
terization can be made. See Ene [13] and Sworowski [31] for a discussion and
further details.

6 Weak derivatives

We are obliged to add one more topic to this discussion. In theories of this
type there are three closely connected constructs: the variational measures,
the integral, and the derivative. The reason the theory is relatively direct and
economical is that all three of these concepts are defined directly by the covers
or covering relations themselves.

We can illustrate with the ordinary derivative and its relation to full covers
(one aspect of which we already have seen in the introduction to Section 2.6).

The following are equivalent for functions F and f :

1. F ′(x) = f(x) at every point x of a set E.

2. For every ε > 0 there is a gauge δ : E → R+ so that the covering relation

βε =

{
([u, v], w) :

∣∣∣∣F (v)− F (u)

v − u
− f(w)

∣∣∣∣ < ε

}
contains all pairs ([u, v], w) for which w ∈ E, w = u or w = v, and
v − u < δ(w).

This is just a reformulation of the definition of a derivative using our covering
language. It is evident, then, how to define a “weak” version of the derivative.



On VBG Functions 219

Definition 50. Let F , f : R→ R and let E ⊂ R. Then f is said to be a weak
derivative of F on the set E provided, for every ε > 0, there is an E-form E
so that the covering relation

βε =

{
([u, v], w) :

∣∣∣∣F (v)− F (u)

v − u
− f(w)

∣∣∣∣ < ε

}
contains all pairs ([u, v], w) for which w ∈ S for some set S ∈ E , w = u or
w = v, and both u and v belong to S.

This weak derivative is related to the derivative introduced by Tolstov [35]
and [36] that he used to obtain a Perron-type of characterization of the Denjoy-
Khintchine integral. His definition, however, uses exclusively E-forms consist-
ing of perfect sets and he expresses the idea more directly and narrowly in
terms of relative derivatives. In Section 6.2 we present a variant of his ideas.

6.1 Properties of the weak derivative

The series of lemmas we now prove explore this concept.

Lemma 51. Let F , f1, f2 : R→ R and let E ⊂ R. If both f1 and f2 are weak
derivatives of F on E then f1(x) = f2(x) nearly everywhere on E.

Proof. By definition there is, for each positive integer n, a pair of E-forms
En1 and En2 so that the pair of covering relations

βni =

{
([u, v], w) :

∣∣∣∣F (v)− F (u)

v − u
− fi(w)

∣∣∣∣ < 1

n

}
satisfies the definition of a weak derivative for the E-forms Eni for i = 1 and
i = 2. Let En = En1 ∧ En2. Note that βn1 ∩ βn2 is a covering relation that
contains all pairs ([u, v], w) for which w ∈ S for some set S ∈ En, w = u or
w = v, and both u and v belong to S.

Let N denote the countable set of points that are isolated in any set S ∈ En
for any n. Fix a point w ∈ E \N . Note that, for each positive integer n,

|f1(w)− f2(w)| < 2/n

since we can always find at least one element ([u, v], w) from βn1∩βn2 for such
points w. Thus, f1 and f2 agree on E except at countably many points.

Lemma 52. Let F , f : R→ R and let E ⊂ R. Suppose that F is continuous
and that f is a weak derivative of F on E. Then F is VBG on E and F ′ap(x) =
f(x) at almost every point x of E.
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Proof. We can assume that E is bounded. Suppose that E ⊂ [a, b] for some
interval. Define the covering relation

β =

{
([u, v], w) :

∣∣∣∣F (v)− F (u)

v − u
− f(w)

∣∣∣∣ < ε

b− a

}
and choose an E-form E so that β contains all pairs ([u, v], w) for which w ∈ S
for some set S ∈ E , w = u or w = v, and both u and v belong to S.

Take any packing {([ui, vi], wi)} that is compatible with E . Such a packing
must be a subset of β. Check that

n∑
i=1

|F (vi)− F (ui)− f(wi)(vi − ui)| <
n∑
i=1

ε(vi − ui)/(b− a) ≤ ε.

The proof of Theorem 46 can be repeated to show that F is VBG and that
F ′ap(x) = f(x) at almost every point x of E. Although that theorem is stated
for [a, b]-forms, the same methods with minor changes would suffice to prove
this.

Lemma 53. Let F , f : R → R and let {En} be a sequence of sets whose
union contains a set E. Suppose that F is continuous and that the derivative
of F relative to the set En is equal to f(x) at every point of En. Then f is a
weak derivative of F on E.

Proof. We can assume that the {En} are pairwise disjoint. Then for each n
there is a gauge δn : En → R+ so that∣∣∣∣F (v)− F (u)

v − u
− f(w)

∣∣∣∣ < ε

for all u, v ∈ En, w = u or w = v and v − u < δn(w). Since F is continuous,
we must also have that ∣∣∣∣F (v)− F (u)

v − u
− f(w)

∣∣∣∣ ≤ ε
for all w = u or w = v, w ∈ En and both u and v in En provided also
v − u < δn(w).

By our usual methods, there is a choice of En-form En so that the collection
of all pairs ([u, v], w) satisfying the conditions that w ∈ S for some set S ∈
En, w = u or w = v, and both u and v belong to S, must also satisfy the
requirement that v − u < δn(w).
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Take E as the collection of all sets E ∩ S for S in some En. It follows that
the covering relation

β =

{
([u, v], w) :

∣∣∣∣F (v)− F (u)

v − u
− f(w)

∣∣∣∣ ≤ ε}
has the required property relative to the E-form E to verify that f is a weak
derivative of F on E.

Lemma 54. Suppose that F : R → R is a continuous function that is VBG
on a set E. Then there is a set of measure zero N so that F ′ap(x) exists at
every point of E \N and F ′ap(x) is a weak derivative of F on E \N .

Proof. By the familiar theory of VBG functions we know that we can find
a sequence of sets {En} and a set N of measure zero so that the union of the
sequence contains all of E \N and so that the relative derivative of F relative
to each set En exists and is equal to F ′ap(x). Thus the lemma follows from the
preceding one.

6.2 Weak Perron integral

Let us, briefly, give a version of the Perron integral following the ideas that Tol-
stov proposed. He defined his major and minor functions as to be continuous
and satisfying a differentiation property relative to a sequence of perfect sets.
Ours is similar, perhaps identical, and perhaps may characterize the Denjoy-
Khintchine integral. We will not, however, impose any extensive development
on the reader.

The definition is just a modification of Definition 50.

Definition 55. Let G, f : [a, b] → R. Then G is said to be a weak major
function for f on the interval [a, b] if G is continuous, G(a) = 0, and, for every
ε > 0, there is an [a, b]-form E so that the covering relation

βε =

{
([u, v], w) :

G(v)−G(u)

v − u
> f(w)− ε

}
contains all pairs ([u, v], w) satisfying the conditions that w ∈ S for some set
S ∈ E , w = u or w = v, and both u and v belong to S.

A minor function would be similarly defined (or else one takes H as a minor
function for f if −H is a major function for −f).

Lemma 56. Suppose that G and H are, respectively, weak major and weak
minor functions for f on [a, b]. Then G(b) ≥ H(b).
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Proof. Let ε > 0. Choose an [a, b]-form E1 for G and an [a, b]-form E2 for H
as in the definition. Let E = E1 ∧ E2 and write F (x) = G(x) − H(x) + 2εx.
Then the covering relation

β =

{
([u, v], w) :

G(v)−G(u)

v − u
− H(v)−H(u)

v − u
> −2ε

}
=

{
([u, v], w) :

F (v)− F (u)

v − u
> 0

}
has this property relative to the [a, b]-form E : β must contain all pairs ([u, v], w)
satisfying the conditions that w ∈ S for some set S ∈ E , w = u or w = v, and
both u and v belong to S.

Let N be the collection of all points in [a, b) that are isolated on the right
in some set S belonging to E . This set N is countable. If x ∈ [a, b) \N, then
there must be a sequence of points yn decreasing to x for which each ([x, yn], x)
is in β and so

F (yn)− F (x)

yn − x
> 0.

Hence, the upper right Dini derivative of F at x is nonnegative. This is so
at every point of [a, b) with at most the countably many exceptions in the set
N . By an old theorem on the Dini derivatives of continuous functions (due to
Dini himself), the function F is nondecreasing on [a, b] (see [27, p. 204]). We
deduce that

G(b)−H(b) = G(b)−G(a)− (H(b)−H(a)) ≥ −2ε(b− a).

Since ε is arbitrary, G(b) ≥ H(b).

The integral is defined by the usual Perron requirement on major and
minor functions, namely that the infimum of G(b) over all choices of weak
major functions for f and the supremum of H(b) over all choices of weak
minor functions H for f should agree. Evidently, if f is the weak derivative of
a continuous function F on an interval [a, b], then f is weak Perron integrable
in this sense as well as Denjoy-Khintchine integrable on [a, b] and F is an
indefinite integral in both senses.

6.3 Some remarks on weak derivatives

The weak derivative and the approximate derivative of a continuous function
can differ only on a set of measure zero. Thus, one might claim that the
former need play no role in the theory since the better known, and more
useful, approximate derivative can be employed instead.
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Even so, a case can be made that the weak derivatives have a more intimate
connection with the concepts VBG, ACG, and the Denjoy-Khintchine integral.
A comparison between Definition 50 and the inequality (11) of Theorem 46
shows an immediate relationship.

For example, both of the following statements are correct:

If f is the weak derivative of a continuous function F on an interval
[a, b], then f is Denjoy-Khintchine integrable on [a, b] and F is an
indefinite integral.

and

If f is the approximate derivative of a continuous function F at
nearly every point of an interval [a, b], then f is Denjoy-Khintchine
integrable on [a, b] and F is an indefinite integral.

One can argue that the former statement reveals more of the essence of this
integral than does the latter. Also, the connection between the two concepts
(derivative and integral) is rather more immediate in the former.
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