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STRONG DERIVATIVES AND INTEGRALS

Abstract

The strong derivative is not, without some caution, a useful tool in
the study of McShane’s (i.e., Lebesgue’s) integral. Even so, the under-
lying structure of that process of derivation is closely connected to the
formulation of the Riemann sums definition that McShane gave for his
integral. This article discusses some of the features and traps for the
study of those connections.

In this elementary paper we wish to clarify some properties of the strong
derivative and the relation that derivative has to integration. There has been
some confusion in papers published here ([7], [8]) as to the exact situation.
Mostly this stems from an analogy that is easy to push rather too far. The
differentiation basis that expresses the ordinary derivative also expresses the
Henstock-Kurzweil integral. That fact is the source of the ease with which one
can argue back and forth between properties of the integral and properties of
the derivative.

The differentiation basis that expresses the strong derivative also expresses
the Lebesgue integral in an identical manner, as shown originally by Mc-
Shane [12]. That might lead one to think that there is an intimate relationship
between the Lebesgue integral and the strong derivative and, moreover, that
similar arguments can be used in similar situations. The difficulty is that there
is no Vitali covering theorem for the strong differentiation basis. What these,
admittedly vague, statements mean is clarified in our article.

Henstock’s general theory of integration, which he developed in a number
of places and most recently in the textbook [4], uses his variational ideas to
generalize Vitali arguments to situations where the classical Vitali theorem
might be awkward to employ. There is some difficulty in applying the theory
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since, in each specific case, one needs to characterize a notion of “set of inner
variation zero.” Henstock warns about this in a comment at the end of his
chapter:

“The theory of Chapter 4 has not yet been clarified. The author
surmises that eventually a theory not based on Vitali’s or Sier-
pinski’s covering theorem will emerge, to prove that a set of inner
variation zero is of variation zero in much wider and more general
circumstances than are used at present.”

In this article we will illustrate how any attempt to apply his general theory to
the strong differentiation basis (or “division space” as Henstock prefers to call
it) encounters this road block whereby the Vitali theorem is not available. It
can lead, as we shall see, to formally correct statements that have no content.

The next section contains some historical remarks appropriate to the dis-
cussion. The reader who wishes immediately to see the technical details may
skip ahead to Section 2.

1 Henstock’s program

Henstock’s earliest research interest was in summability theory that he learned
from his supervisor Paul Dienes at Birkbeck College. Dienes, however, rec-
ommended to his young student that he make his career in integration the-
ory. At the time there was sufficient interest in nonabsolute integration that
that would be a reasonable suggestion. Henstock was influenced technically,
it seems, most significantly from the works of Saks and Ward, although he
clearly had read extensively in the then current literature devoted to nonab-
solute integration. His development of the integral that now bears his name
arises quite directly from his studies of Ward’s methods. The lemma, of-
ten called Henstock’s lemma and used now extensively in the study of the
Henstock-Kurzweil integral and its generalizations, is a variant of one due to
Saks (as Henstock himself was quick to point out): most authors call it the
Henstock-Saks lemma.

By the early 1960s Henstock was working on a grand scheme of unifying
various methods of integration including, as he hoped, a host of special inte-
grals of which many of the current generation might never have heard (e.g., the
symmetric totalisation of first and second order of Denjoy, the trigonometric
T-integral of Marcinkiewicz and Zygmund, the Cesàro-Perron scale of inte-
grals due to Burkill, the Pn integrals of James, and the Abel-Perron integral
of S. J. Taylor).
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His papers from that time are dense and opaque, basing his methods on a
series of arcane axioms that express abstractly the properties that he desired
and could exploit. I believe he had virtually no readers. One of his students
suggested to him that the theory would be easier and more popular if he could
describe a structure, much the way a measure space is the suitable structure
for the development of an abstract Lebesgue integral. This led him to the
publication [3] that is the first relatively readable account of his very general
ideas, but a work that still has its idiosyncrasies. In this he defines what he
calls a division space, carrying all of the apparatus that allows him to define
integrals, measures and derivatives and investigate their relations.

Among his many contributions (some well-known, some obscured by his
exposition) I would rate his use of the variation and inner variations among
my favorites. These ideas allow Vitali arguments to be extended to many
settings where they would not have naturally been used. They also allow a
complete rewriting of the chapters in Saks [18] in which the clumsier concepts
of ACG, VBG, ACG∗, and VBG∗ are developed. Theorem 20 below, for
example, well illustrates this. Prior to Henstock’s variational ideas one might
have presumed Saks’ textbook to be the final word on the properties of VBG∗
functions.

As Henstock acknowledges in the paragraph from his book quoted in our
introduction, the methods, as so far developed, may in some instances give
only formally correct but meaningless assertions. The prime example is the
following empty statement (that has already appeared in articles in this Ex-
change):

An indefinite Lebesgue integral is strongly differentiable every-
where except on a set of McShane inner variation zero.

This does indeed follow from Henstock’s abstract theory.

My own sentiments about his program is that the effort to fabricate an
abstract theory that incorporates all the features of a wide variety of special
integrals may not be fruitful. It is likely better to use these methods on an ad
hoc basis as the need arises. Then, for example, the investigation of McShane’s
integral either in the real-valued case (as in [7], [8], [10], [19], and [26]) or in
the vector-valued version (as in [5], [14], [15], [20], and [21]) should not lead
to a study of the inner variation and the strong (i.e., unstraddled) derivative
but to other more appropriate tools. One sees also this viewpoint explained
lucidly in Pfeffer [6], first in his description of the methods of analyzing both
the Henstock-Kurzweil and McShane integrals. More tellingly his account of
the various ways of generalizing the integral to higher dimensions depending
on the goals of the theory shows best how these ideas can be used. Although
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many of Henstock’s methods come into play, there is no effort to derive them
from his abstract theory. Indeed it is the special features of the application at
hand, rather than the general features, that have the greatest interest.

2 The strong derivative

The strong derivative1 has an ancient lineage going back, at least, to Peano [16]
who noted that strong differentiability would be equivalent to the existence of
a continuous derivative. Peano viewed that as a positive feature, more useful
in many applications than the traditional definition of a derivative.

We state first the usual definition for the bilateral extreme derivates:

Definition 1. Let F : R→ R and let x0 ∈ R. We define

DF (x0) = lim
t→0+

sup

{
F (y)− F (x0)

y − x0
: y ∈ (x0 − t, x0 + t) \ {x0}

}
and

DF (x0) = lim
t→0+

inf

{
F (y)− F (x0)

y − x0
: y ∈ (x0 − t, x0 + t) \ {x0}

}
.

This is just the ordinary process of differentiation and the existence of the
derivative F ′(x0) is simply the finiteness and agreement of the two bilateral
extreme derivates. The “strong” (or unstraddled) version of this simply com-
putes these same ratios in a neighborhood of x0 without requiring the point
x0 to be straddled.

Definition 2. Let F : R→ R and let x0 ∈ R. We define

D
]
F (x0) = lim

t→0+
sup

{
F (y)− F (x)

y − x
: [x, y] ⊂ (x0 − t, x0 + t), x 6= y

}
and

D]F (x0) = lim
t→0+

inf

{
F (y)− F (x)

y − x
: [x, y] ⊂ (x0 − t, x0 + t), x 6= y

}
.

1The terminology seems to have taken hold, but is unfortunate. Peano used “strict”
derivative. “Strong” has been used for derivatives in higher dimensions taken with regard
to the basis of all intervals (rather than all cubes). The same word is often used to distinguish
between different modes of differentiation for Banach space-valued functions.
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Evidently

D]F (x0) ≤ DF (x0) ≤ DF (x0) ≤ D]
F (x0).

The function F is said to be strongly differentiable at a point x0 if it is

differentiable there and, moreover, D]F (x0) = D
]
F (x0) = F ′(x). This is

considerably stronger than merely requiring the existence of the derivative.
As many will know (and as reviewed below), in order for a function F to be
strongly differentiable at a point x0 that function would have to be Lipschitz
in a neighborhood of the point and the derivative F ′(x) would have to be
continuous at x0, i.e., continuous relative to the set of points at which it
exists.

3 Properties of the strong extreme derivates

The properties are not difficult or surprising (after a moment’s reflection).
The only elementary reference in the literature [9] with some level of detail
is somewhat inadequate and so we give the details here, as transparently as
possible, in the hope that they might be useful for instruction.

Theorem 3. Let F : R→ R and let x0 ∈ R. If

D
]
F (x0) < M <∞

then there is a neighborhood (x0− δ0, x0 + δ0) such that D
]
F (x) < M at every

point x in that neighborhood. In particular, F (x)−Mx is strictly decreasing,
F is VBG∗, and F is a.e. differentiable in that neighborhood.

Proof. If D
]
F (x0) < t < M then, by definition, there is a δ0 > 0 so that

F (x2)− F (x1)

x2 − x1
< t

for x0−δ0 < x1 < x2 < x0−δ0. From that it follows that D
]
F (x) ≤ t < M for

all points x in (x0 − δ0, x0 + δ0). That same inequality proves that F (x)− tx
is strictly decreasing there. The Lebesgue differentiation theorem shows that
F ′ exists a.e. in that interval. Standard material on VBG∗ functions (see
Saks [18, pp. 234–235]) supplies the remaining statement.

The corollaries are immediate applications of the simple inequality in the
theorem.
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Corollary 4. Let F : R→ R. The function D
]
F (x) is upper semicontinuous

and the function D]F (x) is lower semicontinuous.

Proof. To check that D
]
F (x) is upper semicontinuous take any point x0

at which the strong upper derivate is finite, take D
]
F (x0) < t, and use the

theorem to find a neighborhood (x0−δ0, x0+δ0) such that D
]
F (x) < t at every

point x in that neighborhood. This is the definition of upper semicontinuity.

Corollary 5. Let F : R→ R and let x0 ∈ R. Then

−∞ < D]F (x0) ≤ D]
F (x0) <∞

if and only if there is a neighborhood (x0−δ0, x0 +δ0) such that F is Lipschitz
in that neighborhood.

The relation between strong differentiability and continuity of the deriva-
tive was noted long ago by Peano [16]. In this theorem we use the extreme
derivates.

Theorem 6. Let F : R → R be differentiable at a point x0 ∈ R. Then
F is strongly differentiable at x0 if and only if both DF (x) and DF (x) are
continuous at the point x0.

Proof. Recall that D]F (x) ≤ D
]
F (x) and that the larger function is upper

semicontinuous and the smaller is lower semicontinuous. If both functions have
the same finite value at a point x0 then both functions are, in fact, continuous
at that point. Since

D]F (x) ≤ DF (x) ≤ DF (x) ≤ D]
F (x)

the two functions DF (x) and DF (x) must also be continuous at the point x0.
Conversely, suppose that DF (x) and DF (x) are continuous at the point

x0. Let ε > 0 and choose a δ0 > 0 so that, for x in the interval (x0−δ0, x0+δ0),

F ′(x0)− ε < DF (x) ≤ DF (x) < F ′(x0) + ε.

Usual properties of the extreme derivates supply the inequalities

F ′(x0)− ε < F (x2)− F (x1)

x2 − x1
< F ′(x0) + ε

for x0 − δ0 < x1 < x2 < x0 − δ0. This is exactly the requirement that F is
strongly differentiable at the point x0.
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Finally we state a necessary and sufficient condition for strong differentia-
bility that uses only the derivative (which, of course, may fail to exist on a set
of measure zero).

Theorem 7. Let F : R→ R and let x0 ∈ R. Then F is strongly differentiable
at x0 if and only if there is a neighborhood (x0 − δ0, x0 + δ0) such that F
is Lipschitz in that neighborhood and F ′ is continuous at the point x0 (i.e.,
continuous relative to the set of points at which it exists).

Proof. By Theorem 6 we know that, if F is strongly differentiable at x0 then
the upper extreme derivate DF (x) is continuous at x0. Since F ′(x) = DF (x)
at every point of differentiability it follows that F ′ is continuous at the point
x0.

In the converse direction a simple direct proof is useful. Assuming that
F ′ is continuous at the point x0 and F is Lipschitz in a neighborhood of x0
choose a smaller neighborhood (x0−δ0, x0 +δ0) within which, at almost every
point x,

F ′(x0)− ε < F ′(x) < F ′(x0)− ε.

Usual properties of a.e. derivatives of Lipschitz (or absolutely continuous)
functions supply the inequalities

F ′(x0)− ε < F (x2)− F (x1)

x2 − x1
< F ′(x0) + ε

for x0 − δ0 < x1 < x2 < x0 − δ0. This is exactly the requirement that F is
strongly differentiable at the point x0.

It might be worth repeating the version in [9]. This simply uses the fact
that a function F is Lipschitz in an interval if and only if it absolutely contin-
uous and the derivative F ′ is bounded (i.e., bounded on the set of points at
which it exists).

Corollary 8. Let F : R→ R and let x0 ∈ R. Then F is strongly differentiable
at x0 if and only if there is a neighborhood (x0 − δ0, x0 + δ0) such that F is
absolutely continuous in that neighborhood and F ′ is continuous at the point
x0 (i.e., continuous relative to the set of points at which it exists).

4 Strong differentiability of indefinite integrals

Strong differentiability can be used to give a characterization of indefinite
Riemann integrals. This gives a formal answer to a question posed by Erik
Talvila [22] in this Exchange. The characterization that we gave earlier in [24]
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is more informative since strong differentiability is not easy to check without
applying Theorem 7. But in that case it is rather obvious since the charac-
terization essentially is just the assertion that the integrand is bounded and
a.e. continuous.

Theorem 9. Let F : [a, b] → R. Then F is the indefinite integral of a
Riemann integrable function if and only if F is Lipschitz on [a, b] and strongly
differentiable at almost every point of (a, b).

Proof. If F is Lipschitz and strongly differentiable at almost every point of
(a, b) then, by Theorem 6, DF (x) is continuous a.e. and bounded. Conse-
quently it is Riemann integrable and has F for its indefinite integral. Con-
versely, if F is the indefinite integral of a Riemann integrable function f then,
F is strongly differentiable at every point of continuity f , hence it is strongly
differentiable almost everywhere.

A local version is also helpful, even though obvious.

Theorem 10. Let F : [a, b] → R be the indefinite integral of a bounded,
Lebesgue integrable function f . Then F is strongly differentiable at a point
x0 ∈ (a, b) if and only if f is equivalent to a function continuous at the point
x0.

The Henstock-Kurzweil indefinite integral has an ordinary derivative at
almost every point. In contrast, even though the Lebesgue integral permits a
similar definition that is closely related to strong differentiation, there is no
analogous property (cf. the misleading assertions in [7, Theorem 8] and [8,
Theorem 1.2]).

Theorem 11. There exists a bounded, Lebesgue integrable function whose
indefinite integral is not strongly differentiable at any point.

Proof. We need only an example of a bounded, Lebesgue integrable function
f that is not equivalent to a function with a point of continuity. Take a
measurable set V with the property that 0 < |V ∩ (c, d)| < d − c for any
interval (c, d). See Rudin [17] for an elementary construction of such a set.
The characteristic function of V supplies our example on any interval.

We might point out another feature of this example of an indefinite integral
that is a.e. differentiable but nowhere strongly differentiable. The set of points
here at which the derivative exists is full measure, but it is a set of the first
category. One can prove that if F is continuous then the set of points at which
F has a derivative, but not a strong derivative, is necessarily first category (see
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Jurek [11] or, perhaps easier to find, [23, p. 138]). (Related papers, for the
interested reader, are [1] and [28].)

Theorem 11 and its proof suggest that there is likely an abundance of
examples of such functions, i.e., that the typical bounded, Lebesgue integrable
function has an indefinite integral that is not strongly differentiable at any
point. In fact we can prove the following.

Theorem 12. The collection of bounded, Lebesgue integrable functions on an
interval [a, b] whose indefinite integral is strongly differentiable at at least one
point is a nowhere dense subset of L∞([a, b]).

Proof. Let B(f, r) for any bounded, Lebesgue integrable function f and
any r > 0 denote the open ball in L∞([a, b]) centered at f and with radius
r. The proof is based on the following fact about the function χV where V
is the measurable set from the proof of Theorem 11 with the property that
0 < |V ∩ (c, d)| < d− c for any interval (c, d).

Let s and t be any positive real numbers and consider any function f ∈
B(sχV , t) with indefinite integral F . We know that, for every x ∈ [a, b] ex-
cepting a set of measure zero,

s+ t > f(x) > s− t (if x ∈ V )

and
t > f(x) > −t (if x 6∈ V ).

Consequently, for any interval (u, v),

(s+ t)|V ∩ (u, v)|+ t|(u, v)\V | ≥
∫ v

u

f(x) dx ≥ (s− t)|V ∩ (u, v)|− t|(u, v)\V |.

Almost every point of [a, b] is a point of density or a point of dispersion of V
and a point of differentiability for F . If z is a point of density of V and F ′(z)
exists, then we see from these inequalities that

s+ t ≥ F ′(z) ≥ s− t

while, if w is a point of dispersion of V and F ′(w) exists, then

t ≥ F ′(w) ≥ −t.

Now we show that the collection described in the statement of the theorem
is a nowhere dense subset of L∞([a, b]). Take any ball B(g1, r1). Select a
simple measurable function g2 so that ‖g1 − g2‖∞ < r1/4. (This just uses the
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fact that every bounded measurable function is the uniform limit of a sequence
of measurable simple functions.) Write

g2(x) =

n∑
i=1

ciχEi

where ci ∈ R are distinct and where {Ei} are disjoint measurable sets. Let
c be a positive number that is smaller than the distance between any of the
values 0, c1, c2, . . . , cn. Consider the ball B(g2 + sχV , t) where s and t are
chosen as positive numbers so that s < r1/4, 5s < c, and t = s/4.

The ball B(g2 + sχV , t) is entirely contained in B(g1, r1) and, as we now
show, consists entirely of functions whose indefinite integrals are not strongly
differentiable at any point. This will complete the proof.

To see this suppose that f1 ∈ B(g2+sχV , t). Then f = f1−g2 ∈ B(sχV , t).
Let G2 be an indefinite integral of g2, F1 an indefinite integral of f1 and F
an indefinite integral of f . We know that G′2(x) exists almost everywhere in
[a, b] and assumes one of the values 0, c1, c2, . . . , cn. We know that F is
differentiable at almost every point of [a, b]; in fact, if z is a point of density
of V and w is a point of dispersion of V , then

c/4 > 5s/4 = s+ t ≥ F ′(z) ≥ s− t = 3s/4

and

s/4 = t ≥ F ′(w) ≥ −t = −s/4 > −c/4.

So

c/2 ≥ |F ′(z)− F ′(w)| ≥ s/2.

But F = F1 − G2 and so F ′1(x) = F ′(x) + G′2(x) almost everywhere. Since
every interval contains points w and z as above the derivative F ′1 is discontin-
uous at every point at which it exists. Consequently F1 is nowhere strongly
differentiable because of Theorem 10.

5 Vitali covering theorem

The study of differentiation and integration on the real line leads quite natu-
rally to the following concepts. Let β be any collection of interval-point pairs
([u, v], w). (Sometimes, but not always, we might require w ∈ [u, v].) Any
such finite collection

π = {([u1, v1], w1), ([u2, v2], w2), ([u3, v3], w3), . . . , ([un, vn], wn)}
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is said to be a packing if [ui, vi] and [uj , vj ] do not overlap if i 6= j. The total
length of such a packing π is denoted

`(π) =

n∑
i=1

(vi − ui).

For any collection β write

V (`, β) = sup{`(π) : π ⊂ β, π a packing}.

Definition 13. A collection β of interval-points pairs ([u, v], w) is said to be
a full cover of a set E ⊂ R if, for each w ∈ E, there is a δ > 0 so that all pairs
([u, v], w) for which w ∈ [u, v] and v − u < δ must belong to β.

Definition 14. Dually, β is said to be a fine cover of E if for each w ∈ E
and every ε > 0 there must exist at least one pair ([u, v], w) in β for which
w ∈ [u, v] and v − u < ε.

The nature of the duality is explained in [25, Exer. 81, 82]. Realizing this
helps gain an understanding of the concepts, but it is not essential. If you
are familiar with Vitali covers you will recognize the fine covers as intimately
related to that idea and derived from it.

The full and fine covers are useful tools in working with the ordinary deriva-
tive and the Henstock-Kurzweil integral. One might hope that a strong version
of these concepts would play the same role in the study of the strong derivative
and the McShane (i.e., Lebesgue) integral. The analogous definitions would
be these:

Definition 15. A collection β of interval-points pairs ([u, v], w) is said to be
a full McShane-cover of a set E ⊂ R if, for each w ∈ E, there is a δ > 0 so
that all pairs ([u, v], w) for which [u, v] ⊂ (w − δ, w + δ) must belong to β.

Definition 16. Dually, β is said to be a fine McShane-cover of E if for each
w ∈ E and every ε > 0 there must exist at least one pair ([u, v], w) in β for
which [u, v] ⊂ (w − ε, w + ε).

Each of these four notions of a cover gives rise to a measure on the real
line.

Definition 17. For any set E ⊂ R define

`∗(E) = inf{V (`, β) : β a fine cover of E},

`∗(E) = inf{V (`, β) : β a full cover of E},
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`](E) = inf{V (`, β) : β a fine McShane-cover of E},
and,

`](E) = inf{V (`, β) : β a full McShane-cover of E}.

Each of these is a Borel measure on the real line (also known as a “metric
outer measure” in the language of Carathéodory). The relations

`](E) ≤ `∗(E) ≤ `∗(E) ≤ `](E)

are immediate simply because any full cover is a fine cover, any full McShane-
cover is also a full cover, and any fine cover is also a fine McShane-cover. In
Henstock’s terminology the two smaller measures that are defined using fine
covers and fine McShane-covers are known as inner variations. The measures
`∗ and `∗ play a key role in studies of the Henstock-Kurzweil integral; the fact
that they are equal is just the classical Vitali theorem.

Analogously one might be led to believe that the other two measures play
the same role in the study of the McShane (i.e., Lebesgue) integral. The
following theorem reveals where the analogy breaks down. The Vitali theorem
supplies the useful content (i.e., the identity of `∗ and `∗) while the fact that
there is no Vitali theorem for fine McShane-covers is expressed by the fact
that `] is useless. (Overlooking this fact can lead to meaningless claims [cf.
[7, Theorems 8, 9]]).

Theorem 18. For any set E ⊂ R

`∗(E) = `∗(E) = `](E) = |E| (the Lebesgue outer measure of E)

and `](E) = 0.

Proof. The first statement of the theorem not only follows directly from the
Vitali covering theorem for Lebesgue measure, it is equivalent to the Vitali
theorem. See [25, pp. 148–151] for an account.

The proof that the measure `] is trivial is not difficult. Let ε > 0 and let
r1, r2, r3, . . . be an enumeration of the rationals. Consider the collection β of
interval-point pairs of the form(

[ri − ε2−i, ri + ε2−i], x
)

for any x ∈ R and any i = 1, 2, 3, . . . . This is easily verified to be a fine
McShane-cover of any subset E of the real line. Evidently

`](E) ≤ V (`, β) ≤
∞∑
i=1

2ε2−i = 2ε.

Consequently `](E) = 0.
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6 Variation of a function

The variation of a function F : R → R can be expressed by introducing
measures that generalize the measures of the preceding section. The total
variation of F over a packing

π = {([u1, v1], w1), ([u2, v2], w2), ([u3, v3], w3), . . . , ([un, vn], wn)}

is denoted

V (F, π) =

n∑
i=1

(|F (vi)− F (ui)|.

For any collection β write

V (F, β) = sup{V (F, π)) : π ⊂ β, π a packing}.

Then, exactly as we did in Definition 17, we define

Definition 19. For any function F : R→ R and any set E ⊂ R define

F∗(E) = inf{V (F, β) : β a fine cover of E},

F ∗(E) = inf{V (F, β) : β a full cover of E},
F](E) = inf{V (F, β) : β a fine McShane-cover of E},

and,
F ](E) = inf{V (F, β) : β a full McShane-cover of E}.

Again the relations

F](E) ≤ F∗(E) ≤ F ∗(E) ≤ F ](E)

are immediate and each of these is a Borel measure on the real line. The two
measures based on full and fine covers express useful properties of functions
and can be used to some advantage in the theory of the Henstock-Kurzweil
integral. The two measures based on full McShane-covers and fine McShane-
covers, however, do not help much.

Just as a sample of the rich theory available for the former measures let us
cite, without proof, one interesting property which captures in a single state-
ment many familiar theorems from classical analysis (including the Lebesgue
differentiation theorem, de la Vallée Poussin’s theorem, and the Vitali covering
theorem). It is a vain hope that anything quite so nice holds for the variations
based on the McShane-covers. See [25, Chapter 6] for the development of this
theory. Theorems 6.8, 6.21, 6.25, 6.30, and 6.32 in that text, in particular,
provide the proofs of the following statement.
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Theorem 20. Suppose that F : R→ R is a continuous function and let E be
a closed set of real numbers. Then the following are equivalent:

1. F is VBG∗ on E.

2. F ∗ is σ-finite on E.

3. F ∗ is σ-finite on every Gδ measure-zero subset of E.

4. F∗ = F ∗ on every subset of E.

5. If D denotes the set of points of differentiability of F and D∞ the set of
points x at which F ′(x) = ±∞, then

|E \D| = F ∗ (E \ (D ∪D∞)) = 0.

Moreover, should these conditions be valid, then

F ∗(E) = F ∗(E ∩D∞) +

∫
E∩D

|F ′(x)| dx.

In contrast, note how little information is conveyed by the measures F] and
F ]. (The measure F], while useless, nonetheless plays a key role in a bogus
theorem in [8, Theorem 1.4] for example.)

Theorem 21. For an arbitrary function F : R → R the measure F] is zero
on every set.

Proof. The proof is not difficult and is nearly identical with the correspond-
ing part of Theorem 18. We use an old result of W. H. Young [27]. Let us
say that F is feebly continuous at a point x if there is at least one sequence
of points {xn} convergent to x with the property that

lim
n→∞

F (xn) = F (x).

Young proved that the set of points at which an arbitrary function fails to be
feebly continuous is at most countable. (See, e.g., [23, Chapter 2].)

Let ε > 0 and let x1, x2, x3, . . . be a sequence of points chosen to be
everywhere dense and such that F is weakly continuous at each xi. For each i,
select points si ≤ xi ≤ ti with |F (ti)− F (si)| < ε2−i and 0 < (ti − si) < 2−i.

Consider the collection β of interval-point pairs of the form

([si, ti], x)
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for any x ∈ R and any i = 1, 2, 3, . . . . This is easily verified to be a fine
McShane-cover of any subset E of the real line. Evidently

F](E) ≤ V (F, β) ≤
∞∑
i=1

2ε2−i = 2ε.

Consequently F](E) = 0.

For the larger measure based on full McShane-covers we can indicate, just
by a local property, that the measure will have limited use.

Theorem 22. Suppose that F : R → R is a continuous function and let
x0 ∈ R. Then

1. F∗({x0} = F ∗({x0} = 0.

2. Either F ]({x0}) = 0 or else F ]({x0}) = ∞. The former holds if and
only if F has bounded variation in some neighborhood of the point x0.

Proof. The statement that F∗({x0} = F ∗({x0} = 0 is easily proved, merely
from the assumption that F is continuous at x0. If F ]({x0}) < ∞ there is a
full McShane-cover β of the set {x0} so that V (F, β) is finite. There must be a
δ0 > 0 so that all pairs ([u, v], x0) for which [u, v] ⊂ [x0− δ0, x0 + δ0] belong to
β. Thus the variation of F on that interval cannot exceed V (F, β). It follows
that F has bounded variation on [x0 − δ0, x0 + δ0].

Since F is continuous it also has a total variation function T that is also
continuous on [x0 − δ0, x0 + δ0]. It is easy to check that

F ]({x0}) ≤ T (x0 + δ0)− T (x0 − δ0).

From this we see that, if F ]({x0}) <∞ then F ]({x0}) = 0.

7 Equivalence of McShane’s and Lebesgue’s integrals

One sees, so far, that the strong derivative, fine McShane-covers, and the
corresponding inner variations do not play the analogous role in the study
of McShane’s (i.e., Lebesgue’s) integral that the ordinary derivative and fine
covers do in the study of the Henstock-Kurzweil integral. Even so, one can
exploit full McShane-covers and the strong derivative with some caution.

To illustrate let us prove, using these methods, the following assertion
(by now well-known) that characterizes Lebesgue integrability as a McShane
integral (at least for bounded functions). Note especially the correct use of
full McShane-covers and the strong derivative in the details of the proof.
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Lemma 23. Suppose that f is a bounded function on an interval [a, b]. Then
a necessary and sufficient condition for f to be Lebesgue integrable there with
the function F as its indefinite integral is the following:

For every ε > 0, there is a full McShane-cover β of [a, b] so that,
for every packing π contained in β,∑

([u,v],w)∈π

|F (v)− F (u)− f(w)(v − u)| < ε. (1)

Proof. Throughout we are using McShane-covers that employ only subinter-
vals of [a, b] and we restrict all attention to that interval.

In the first part of the proof we show that the stated condition implies that
F is Lipschitz and that F ′ = f almost everywhere in [a, b]. Consequently f is
Lebesgue integrable and F is an indefinite integral. This proves the lemma in
one direction.

Take M as a positive upper bound of |f |. The equation (1) implies that,
if π is a partition of an interval [c, d] ⊂ [a, b] and π ⊂ β, then

|F (d)− F (c)| ≤
∑

([u,v],w)∈π

|F (v)− F (u)|

≤
∑

([u,v],w)∈π

{|F (v)− F (u)− f(w)(v − u)|+M(v − u)}

< ε+M(d− c).

Since every full McShane-cover of [a, b] would have to contain a partition
of any such interval [c, d] (cf. Cousin’s lemma) we see how to deduce that F
is Lipschitz on [a, b] directly from the condition stated in the lemma.

To analyze the set of points x where F ′(x) = f(x) might fail, we introduce,
for each integer n, the collections

Nn =

{
x ∈ [a, b] : lim sup

y→x

∣∣∣∣F (y)− F (x)

y − x
− f(x)

∣∣∣∣ > 1

n

}
and

βn =

{
([u, v], w) : w ∈ [u, v],

∣∣∣∣F (v)− F (u)

v − u
− f(w)

∣∣∣∣ > 1

n

}
.

Every point x where F ′(x) = f(x) fails belongs to one of the sets Nn for some
integer n and the collection βn is a fine cover of Nn.
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Using the full McShane-cover β of [a, b] stated in the condition we can
estimate V (`, β ∩ βn). Take any packing π ⊂ β ∩ βn and argue that∑

([u,v],w)∈π

(v − u) ≤
∑

([u,v],w)∈π

n|F (v)− F (u)− f(w)(v − u)| < nε.

But the collection β ∩ βn is a fine cover2 of Nn and consequently this shows
that

`∗(Nn) ≤ V (`, β ∩ βn) ≤ nε.

Each set Nn has, thus, Lebesgue measure zero and, since the set of all points x
at which the identity F ′(x) = f(x) fails belongs to one of the sets Nn for some
integer n, it follows that F ′ = f almost everywhere as stated. We conclude
that f is Lebesgue integrable on [a, b] and that F is an indefinite integral.

In the oppositive direction we assume that f is a bounded Lebesgue in-
tegrable function with an indefinite integral F . Again take M as a positive
upper bound of |f |, let ε > 0 and write η = ε[3(b − a)]−1. Choose an open
set G so that f is continuous relative to [a, b] \G and so that |G| < ε[6M ]−1.
(This just uses Lusin’s theorem.) Let f be a continuous function on [a, b] that
agrees with f on the closed set [a, b] \ G and for which |f(x)| ≤ M for all
x ∈ [a, b].

Suppose that F is an indefinite integral for the continuous function f . We
know, from the material in Section 4, that F is strongly differentiable at every
point of [a, b] and that f is its derivative. Consequently the collection

β1 =
{

([u, v], w) : w ∈ [a, b],
∣∣F (v)− F (u)− f(w)[v − u]

∣∣ ≤ η(v − u)
}

is a full McShane-cover of [a, b]. Let β consist of all pairs ([u, v], w) ∈ β1
for which w ∈ [a, b] \ G as well as all pairs ([u, v], w) for which w ∈ G and
[u, v] ⊂ G. This too is a full McShane-cover of [a, b].

Note, first, that if π is any packing consisting of subintervals of [a, b] then∑
([u,v],w)∈π

∣∣F (v)− F (u)− [F (u)− F (v)]
∣∣ ≤ ∑

([u,v],w)∈π

∫ v

u

∣∣f(t)− f(t)
∣∣ dt

≤
∫ b

a

∣∣f(t)− f(t)
∣∣ dt

≤ 2M |G|
< ε/3.

2Note that it is also a fine McShane-cover of Nn but that would lead nowhere (because
of Theorem 18).
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Note, secondly, that if π is any packing consisting of subintervals of compo-
nents of the open set G then∣∣∣∣∣∣

∑
([u,v],w)∈π

f(w)(v − u)−
∑

([u,v],w)∈π

f(w)(v − u)

∣∣∣∣∣∣ ≤ 2M |G| < ε/3.

Finally, note that if π is any packing contained in β but with all associated
points in [a, b] \G, then π is also a subset of β1 and hence∑
([u,v],w)∈π

∣∣F (v)− F (u)− f(w)[v − u]
∣∣ ≤ ∑

([u,v],w)∈π

η(v − u) ≤ η(b− a)| < ε/3.

From these three inequalities (1) follows.

There are numerous proofs in the literature that establish the equivalence
of the Lebesgue integral and the McShane integral, none of which, as best
we can tell, make any use of the strong derivative or allude explicitly to
full McShane-covers. Our lemma uses an approximation to strongly differ-
entiable functions to show that the variational version of McShane’s integral
integrates all bounded Lebesgue integrable functions. The other direction
uses full McShane-covers and Vitali’s theorem (i.e., the equivalence of `∗ and
Lebesgue outer measure) to show that all bounded McShane integrable func-
tions must be Lebesgue integrable with the same indefinite

integral.
In Henstock’s general theory of integration in division spaces [the division

space here is the collection of all full McShane-covers] variational integrals
are equivalent to Riemann-sum versions. Moreover, monotone convergence
theorems for such integrals are also available as part of the general theory.
This can be used to establish that the McShane integral is equivalent to the
Lebesgue integral in general.
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