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ON PARTITIONS OF THE REAL LINE INTO
CONTINUUM MANY THICK SUBSETS

Abstract

Three classical constructions of Lebesgue nonmeasurable sets on the
real line R are envisaged from the point of view of the thickness of those
sets. It is also shown, within ZF & DC theory, that the existence of a
Lebesgue nonmeasurable subset of R implies the existence of a partition
of R into continuum many thick sets.

Very soon after Lebesgue’s invention (in 1902) of his measure λ on the real
line R, the three constructions of extraordinary point sets in R have followed.
They were done, respectively, by Vitali [17], Hamel [4], and Bernstein [1].

An important byproduct of each of those constructions is the statement of
the existence of a Lebesgue nonmeasurable subset of R. In this connection,
it is reasonable to stress here that those constructions differ essentially from
each other. Namely, recall that:

(a) in [17] Vitali takes a selector V of the quotient set R/Q, where Q
denotes the field of all rational numbers, and shows that V cannot be mea-
surable with respect to any measure on R which extends λ and is translation
invariant;

(b) in [4] Hamel considers R as a vector space over Q and establishes the
existence of a basis for this space; then he defines a nontrivial endomorphism
of the additive group (R,+), which turns out to be nonmeasurable in the
Lebesgue sense;

(c) in [1] Bernstein utilizes the method of transfinite recursion and defines
a subset B of R such that both sets B and R\B meet every nonempty perfect
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set in R; so both B and R \ B turn out to be nonmeasurable with respect
to λ.

It is needless to say that all the above mentioned constructions are based on
appropriate uncountable forms of the Axiom of Choice (AC), which were radi-
cally rejected by Lebesgue in that time. Many years later, it was demonstrated
by Solovay [16] that an uncountable version of AC is absolutely necessary for
obtaining Lebesgue nonmeasurable point sets in R, at least, if one believes
that the theory

ZFC & (there exists a (strongly) inaccessible cardinal)

is consistent. Some delicate and unexpected issues occur here (for more de-
tailed explanation, see e.g. [2]). In this context, it is also reasonable to mention
the papers [14] and [15] in which it is stated that the assumption of the exis-
tence of a (strongly) inaccessible cardinal cannot be removed from Solovay’s
result [16].

Denote by c the cardinality of the continuum.
In [11] Luzin and Sierpiński have extended Bernstein’s construction for

obtaining a partition of the unit interval [0, 1] (or equivalently, of R) into
continuum many Lebesgue nonmeasurable sets. Actually, they proved the
following statement.

Theorem 1. The real line R admits a partition {Bi : i ∈ I} such that:
(1) card(I) = c;
(2) every set Bi (i ∈ I) meets any nonempty perfect subset of R;
In particular, all Bi (i ∈ I) are Bernstein subsets of R and so are non-

measurable in the Lebesgue sense.

Further generalization of Bernstein’s construction looks as follows (cf. [8],
[12]).

Theorem 2. There exists a covering {Bj : j ∈ J} of the real line R with its
subsets, satisfying these three conditions:

(1) card(J) > c;
(2) every set Bj (j ∈ J) meets each nonempty perfect set in R;
(3) the family {Bj : j ∈ J} is almost disjoint; i.e., card(Bj ∩Bj′) < c for

any two distinct indices j ∈ J and j′ ∈ J .

The conditions (2) and (3) of Theorem 2 readily imply that every set
Bj (j ∈ J) is a Bernstein subset of R.

The role of Bernstein sets in general topology, the theory of Boolean alge-
bras, and measure theory is well known (see, for instance, [10], [12], [13]).
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In classical measure theory, the significance of these sets is primarily caused
by providing various counterexamples for seemingly valid statements in real
analysis and by constructions of measures lacking various regularity properties
(see e.g. [7], [8]).

Let E be a ground set, and let µ be a measure defined on some σ-algebra
of subsets of E.

Recall that µ is said to be diffused (or continuous) if all singletons in E
belong to the domain of µ and µ vanishes at all of them.

A set Z ⊂ E is said to be µ-thick in E if the equality µ∗(E \Z) = 0 holds
true, where µ∗ denotes the inner measure associated with µ.

Example 1. Let M denote the class of the completions of all nonzero σ-
finite diffused Borel measures on R. It is not difficult to show that if B is any
Bernstein set in R and µ is any measure from the class M, then both B and
R \ B are µ-thick subsets of R and, consequently, they are nonmeasurable
with respect to µ. Actually, this measure-theoretical property completely
characterizes Bernstein sets in R (see e.g. [3], [8]).

We have already mentioned three classical constructions, each of which
gives an example of a λ-nonmeasurable set in R. Moreover, Bernstein’s con-
struction directly yields the partition {B,R\B} of R into two λ-thick subsets.

In this connection, let us demonstrate that Hamel’s construction directly
leads to a partition of R into countably many λ-thick subsets of R.

For this purpose, let us consider R as a vector space over the field Q.
Let {ei : i ∈ I} be a Hamel basis for this space containing 1; i.e., ei0 = 1

for some index i0 ∈ I. Denote by V the vector space over Q generated by the
family {ei : i ∈ I \ {i0}}.

It is not difficult to check that V is a special kind of a Vitali set in R.
Actually, V is a selector of R/Q but the choice of this selector is done

so carefully that V turns out to be able to carry the vector structure over
Q induced by R. We now assert that V is λ-thick in R. Indeed, suppose
otherwise, i.e., there exists a λ-measurable set C ⊂ R such that

λ(C) > 0, C ∩ V = ∅.

It is easy to see that V is everywhere dense in R (because any uncountable
subgroup of (R,+) is necessarily everywhere dense in R). Consequently, we
may take a countable family {vj : j ∈ J} ⊂ V which is everywhere dense in
R, too. Obviously, for this family, we may write

V ∩ ({vj : j ∈ J}+ C) = ∅.
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Taking into account the metrical transitivity (ergodicity) of λ with respect
to any everywhere dense subset of R, we get

λ(R \ ({vj : j ∈ J}+ C)) = 0.

Therefore, λ(V ) = 0, which is impossible in view of the translation invari-
ance of λ and of the relations

R = Q + V = ∪{q + V : q ∈ Q}, λ(R) = +∞.

The obtained contradiction yields the desired result.

We thus come to the countable partition {q+V : q ∈ Q} of R into λ-thick
sets. It follows from this fact that, for any natural number n ≥ 2, there exists
a partition {A1, A2, . . . , An} of R into λ-thick sets, and so all Ak (1 ≤ k ≤ n)
are nonmeasurable with respect to λ.

Remark 1. In general, Vitali’s construction does not lead to a λ-thick subset
of R. Indeed, fix a real ε > 0 and take an arbitrary nonempty open interval
∆ in R with λ(∆) < ε.

For any x ∈ R, the set x+ Q is everywhere dense in R, so has nonempty
intersection with ∆. This circumstance immediately implies that there exists
a Vitali set W entirely contained in ∆ and, consequently, λ∗(W ) < ε, where
λ∗ denotes the outer measure associated with λ. We thus conclude that there
are Vitali sets in R with arbitrarily small outer Lebesgue measure.

Some other unexpected and extraordinary properties of Vitali sets are dis-
cussed in [9].

We shall work in ZF & DC theory, where DC stands for, as usual, the
Principle of Dependent Choices (see [5], [6], [16]). This principle is stronger
than the Axiom of Countable Choice (CC) and much weaker than AC. More-
over, as we have already mentioned earlier, Solovay’s famous result [16] states
that assuming the existence of a model of ZFC with a (strongly) inaccessible
cardinal, there is a model of ZF & DC in which all sets of reals are Lebesgue
measurable (more formally, Con(ZFC & I) implies Con(ZF & DC & LM)).

Our goal now is to obtain (within ZF & DC theory) a partition of R into
continuum many λ-thick sets by supposing only the existence of a two-element
partition {A,A′} of R such that both sets A and A′ are λ-thick in R.

As demonstrated above, Bernstein’s and Hamel’s constructions give such
a partition {A,A′} within ZFC.

We need the following two auxiliary propositions which belong to ZF & DC
theory.
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Lemma 1. Let E1 and E2 be two Polish spaces, let µ1 be a Borel probability
diffused measure on E1, and let µ2 be a Borel probability diffused measure on
E2. Then there exists a Borel isomorphism φ : E1 → E2 which is simultane-
ously an isomorphism between µ1 and µ2; i.e., we have µ2(φ(X)) = µ1(X) for
every Borel subset X of E1.

This lemma is well known (for a proof, within ZF & DC theory, see e.g.
[3] or [7]).

Lemma 2. Let {En : n = 1, 2, . . . , n, . . . } be a countable family of separable
metric spaces and let, for each natural number n ≥ 1, the space En be equipped
with a probability Borel measure µn. Further, let us denote:

E =
∏
{En : n = 1, 2, . . . , n, . . . }, µ = ⊗{µn : n = 1, 2, . . . , n, . . . }.

Suppose also that a sequence of sets Xn ⊂ En (n = 1, 2, . . . , n, . . . ) is given.
The following two assertions are equivalent:

(1) the product set X =
∏
{Xn : n = 1, 2, . . . , n, . . . } is µ-thick in E;

(2) the set Xn is µn-thick in En for each index n = 1, 2, . . . .

Proof. The implication (1) ⇒ (2) is almost trivial. So we will focus our
attention on the converse implication (2) ⇒ (1). Suppose that (2) is satisfied.

Since E is a separable metric space, the probability product measure µ is
defined on the Borel σ-algebra of E and, in addition to this, µ is inner regular.
The latter means that, for each Borel set Z ⊂ E, the equality

µ(Z) = sup{µ(F ) : F ⊂ Z, F is closed in E}

is valid. Therefore, it suffices to demonstrate that X ∩ P 6= ∅ for any closed
set P ⊂ E with µ(P ) > 0.

For this purpose, we shall construct by recursion an element

y = (y1, y2, . . . , yn, . . . ) ∈ X ∩ P.

Suppose that, for a natural number n, the finite sequence

(y1, y2, . . . , yn) ∈ X1 ×X2 × · · · ×Xn

has already been defined so that the inequality

νn(P (y1, y2, . . . , yn)) > 0

holds true, where
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νn = ⊗{µm : m = n+ 1, n+ 2, . . . },
P (y1, y2, . . . , yn) = {(xn+1, xn+2, . . . ) : (y1, y2, . . . , yn, xn+1, xn+2, . . . ) ∈ P}.

According to classical Fubini’s theorem, the set of all those elements xn+1

from En+1 which satisfy the inequality

νn+1(P (y1, y2, . . . , yn, xn+1)) > 0

is µn+1-measurable and has strictly positive µn+1-measure in En+1.

Since the set Xn+1 is µn+1-thick in En+1, there exists a point yn+1 ∈ Xn+1

such that

νn+1(P (y1, y2, . . . , yn, yn+1)) > 0.

We thus see that our recursion works and, after countably many steps,
yields the sequence

y = (y1, y2, . . . , yn, . . . ) ∈ X.

Observe now that, by virtue of the definition of y, every neighborhood of
y has common elements with the set P . Since P is closed, we immediately
conclude that y ∈ P , so y ∈ P ∩X.

This completes the proof of Lemma 2 (let us underline once more that the
argument presented above is done within ZF & DC theory).

Remark 2. In Lemma 2, the assumption that all spaces En are separable and
metrizable is not necessary. The conclusion of this lemma remains valid under
much weaker assumptions, but the above formulation suffices for our further
purposes.

Remark 3. Preserving the notation of Lemma 2, let Z be an arbitrary µ-thick
set in E.

Then it is easy to verify that, for every natural number n ≥ 1, the set
prn(Z) is µn-thick in En, where prn(Z) denotes the n-th projection of Z. The
converse assertion is not true, in general.

Indeed, simple examples show that the equalities prn(Z) = En may be
valid simultaneously for all natural numbers n ≥ 1 but, at the same time, the
set Z may be of µ-measure zero.
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Remark 4. Let k ≥ 1 be a natural number, let {En : n = 1, 2, . . . , k} be a
finite family of ground sets and let, for each natural number n ∈ {1, 2, . . . , k},
the set En be equipped with a probability measure µn. Further, let us denote:

E =
∏
{En : n = 1, 2, . . . , k}, µ = ⊗{µn : n = 1, 2, . . . , k}.

Suppose also that a finite sequence of sets Xn ⊂ En (n = 1, 2, . . . , k) is
given. Then the following two assertions are equivalent:

(a) the product set X =
∏
{Xn : n = 1, 2, . . . , k} is µ-thick in E;

(b) the set Xn is µn-thick in En for each index n ∈ {1, 2, . . . , k}.
We thus see that in the case of a finite sequence of probability measure

spaces (or, more generally, of nonzero σ-finite measure spaces), the analogue
of Lemma 2 is valid in ZF & DC theory without assuming any regularity
properties of the measures.

Now, we are ready to present the main result of this paper (in what follows
we will denote by λ the restriction of the Lebesgue measure on R to the unit
interval [0, 1]).

Theorem 3. Working in ZF & DC theory, suppose that there exists a par-
tition {A,A′} of the unit interval [0, 1] into two subsets such that

λ∗(A) = λ∗(A′) = 1.

Then there exists a partition {Zi : i ∈ I} of the same interval, which
satisfies the following two conditions:

(1) card(I) = c;
(2) λ∗(Zi) = 1 for each index i ∈ I.

Proof. Let N denote the set of all natural numbers. Consider the Hilbert
cube E = [0, 1]N equipped with the probability product measure

µ = λ⊗ λ⊗ · · · ⊗ λ⊗ · · · .

Take any subset K of N and put:

An,K = A if n ∈ K, and An,K = A′ if n ∈ N \K.

Further, for the same K, introduce the corresponding product set

YK =
∏
{An,K : n ∈ N}.

Proceeding in this manner, we come to the partition {YK : K ⊂ N} of the
Hilbert cube E.
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By virtue of Lemma 2, all members YK (K ⊂ N) of this partition are
µ-thick in E.

Let φ : E → [0, 1] be a Borel isomorphism which simultaneously is an
isomorphism of µ onto λ (the existence of φ follows from Lemma 1).

Obviously, {φ(YK) : K ⊂ N} is a partition of [0, 1] into continuum many
λ-thick subsets of [0, 1]. So we may put

{Zi : i ∈ I} = {φ(YK) : K ⊂ N}.

This finishes the proof of Theorem 3.

As we mentioned at the beginning, nontrivial endomorphisms of the addi-
tive group (R,+) were first exhibited in [4] and all of them turned out to be
nonmeasurable in the Lebesgue sense. In connection with this fact, it is worth
noticing that some of those endomorphisms can be measurable with respect
to certain measures belonging to the class M introduced in Example 1.

Example 2. There exists a function f : R→ R satisfying the following three
conditions:

(a) the range ran(f) of f is contained in the field Q (consequently, ran(f)
is at most countable);

(b) f is measurable with respect to some measure from the class M;
(c) f is a nontrivial endomorphism of the additive group (R,+).
To obtain such an f , consider a nonempty perfect subset P of R linearly

independent over the field Q (the existence of P is a well-known fact of classical
point set theory; cf. [7], [12]).

Let {ei : i ∈ I} stand for some Hamel basis of R containing P .
We define f : R → Q as follows. Every real number x admits a unique

representation in the form

x = qi1ei1 + qi2ei2 + · · ·+ qinein ,

where n = n(x) is a natural number, {i1, i2, . . . , in} is a finite injective family
of indices from I, and {qi1 , qi2 , . . . , qin} is a finite family of nonzero rational
numbers. We put

f(x) = qi1 + qi2 + · · ·+ qin .

Obviously, f is an additive function acting from R into Q, so conditions
(a) and (c) are valid. Further, the restriction f |P is identically equal to 1.
Let µ be a Borel diffused probability measure on R whose support is P , i.e.,
µ(R \ P ) = 0, and let µ′ denote the completion of µ. It is clear that µ′ ∈ M
and f turns out to be µ′-measurable. Thus condition (b) is satisfied, too.
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Remark 5. It can be shown that:
(a) there exists a subset of R which is simultaneously a Vitali set and a

Bernstein set;
(b) there exists a subset of R which is simultaneously a Hamel basis and

a Bernstein set;
(c) there exists no subset of R which is simultaneously a Hamel basis and

a Vitali set.

Remark 6. Let µ be an arbitrary measure from the class M. By using
Lemma 1, it is not difficult to prove within ZF & DC theory that if there
exists a µ-nonmeasurable subset of R, then there exists a partition of R into
two µ-thick subsets. So, taking into account Lemma 1 and Theorem 3, we
may conclude that the following four assertions are equivalent in ZF & DC
theory:

(a) there exists a µ-nonmeasurable subset of R;
(b) there exists a partition of R into two µ-thick subsets;
(c) there exists a partition of R into continuum many µ-thick subsets;
(d) there exists a function g : R → R such that ran(g|X) = R for each

µ-measurable set X ⊂ R with µ(X) > 0.
In this context, the transfinite construction given in [11] becomes super-

fluous. At the same time, it seems that an analogue of Theorem 2 cannot
be deduced within ZF & DC theory by assuming that there exists a λ-
nonmeasurable subset of R.

Remark 7. Consider the theory ZF & DC & (ω1 ≤ c), where ω1 denotes, as
usual, the least uncountable cardinal. It was proved in this theory that there
exists a λ-nonmeasurable subset of R (see [14] and [15]). Consequently, within
the same theory, there exists a partition of R into continuum many λ-thick
subsets.
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