Robert Menkyna, ${ }^{*}$ Institute of Aurel Stodola, Faculty of Electrical

ON THE SUMS OF LOWER SEMICONTINUOUS STRONG ŚWIĄTKOWSKI FUNCTIONS

Abstract

The purpose of this article is to give a solution to a problem raised by A. Maliszewski in [5] by showing that any lower semicontinuous function can be represented as a sum of two lower semicontinuous strong Świątkowski functions.

We deal with the classes of real functions defined on the interval $[0,1]$. The symbols $C, D, Q, S^{*}, l s c$ and usc stand for the class of continuous, Darboux, quasi-continuous, strong Świątkowski, lower and upper semicontinuous functions, respectively. $S^{*} l s c$ denotes $S^{*} \cap l s c$ and $D l s c$ denotes $D \cap l s c . C_{f}$ is the set of all points of continuity of the function f, D_{f} is the set of all points of discontinuity of the function f and $f \upharpoonright F$ denotes the restriction of the function f to the set F. The set B is bilaterally c-dense in the set $A\left(A \subset_{c} B\right)$ iff for each $x \in A$ the sets $(x, x+\delta) \cap B,(x-\delta, x) \cap B$ are nondenumerable for every $\delta>0$.
A. Lindenbaum, in [3] provides the proof that every real function can be represented by a sum of Darboux functions. A similar result is valid for the functions of Baire 1 class. Every function of Baire 1 class can be represented by a sum of Darboux Baire 1 functions, [1]. In [5], A. Maliszewski shows that every cliquish function can be represented by a sum of a strong Świątkowski Baire one function and a strong Świątkowski function and also that every

[^0]lower semicontinuous function can be represented by a sum of Darboux quasicontinuous lower semicontinuous functions, [6]. In the remainder of this article we show the stronger assertion: $l s c=S^{*} l s c+S^{*} l s c$, that is: for an arbitrary lower semicontinuous function f, there exist strong Świątkowski lower semicontinuous functions g and h such that $f=g+h$. An analogous assertion for the class usc is valid, too. We begin with four lemmas:

Lemma 1. Let f be a lower semicontinuous function defined on $[0,1]$ and let K be any closed subset of the set C_{f}. If a function $g \leq f$ is continuous and the set $A=\{x ; g(x)=f(x)\} \subset C_{f}$, then there exists a continuous function h such that $g \leq h \leq f$ and

$$
\begin{gathered}
h(x)=f(x) \text { for every } x \in A \cup K \\
g(x)<h(x)<f(x) \text { for every } x \notin A \cup K .
\end{gathered}
$$

Proof. Since the function $f \in l s c$, there exists a sequence of continuous functions $f_{1} \leq f_{2} \leq f_{3} \leq \ldots$ which converges to the function f. We can demand that $f_{1}<f_{2}<f_{3}<\ldots \rightarrow f$. Otherwise we would replace the sequence of functions $f_{n}, n=1,2, \ldots$ by $f_{n}-\frac{1}{n}$.

The set $A=\{x ; g(x)=f(x)\}$ is closed, because $f-g \geq 0$ and $f-g \in l s c$. Now let $I_{n}=\left(a_{n}, b_{n}\right), n=1,2, \ldots$ be the sequence of contiguous intervals of the set $A \cup K$ and let the function f attain its minimum on the interval $\left[a_{n}, b_{n}\right]$ at a point ξ_{n}. Then there exists an index i_{n} such that

$$
f\left(\xi_{n}\right)-\frac{1}{n}<f_{i_{n}}(x)<f(x), \text { for every } x \in\left[a_{n}, b_{n}\right]
$$

Next we choose a sequence of points $a_{n_{k}}, b_{n_{k}}, k=0,1,2, \ldots$

$$
a_{n} \leftarrow \cdots<a_{n_{2}}<a_{n_{1}}<a_{n_{0}}=b_{n_{0}}<b_{n_{1}}<b_{n_{2}}<\cdots \rightarrow b_{n}
$$

Let $\left\{i_{n, k}\right\}_{k=1}^{\infty}, i_{n, k} \geq i_{n}$ be an increasing sequence of natural numbers such that

$$
f_{i_{n, k}}(x)>g(x), \text { for every } x \in\left[a_{n_{k}}, b_{n_{k}}\right]
$$

and

$$
f_{i_{n, k}}\left(a_{n}\right)>f\left(a_{n}\right)-\frac{1}{k} \wedge f_{i_{n, k}}\left(b_{n}\right)>f\left(b_{n}\right)-\frac{1}{k}
$$

A sequence with these property exists, because $f(x)>g(x)$ on the compact set $\left[a_{n_{k}}, b_{n_{k}}\right]$ and $f_{n}(x) \rightarrow f(x)$. We define a function h as follows, where $n, k \in \mathbb{N}$.

$$
h(x)= \begin{cases}f_{i_{n, k}}(x)+\frac{x-a_{n_{k-1}}}{a_{n_{k}}-a_{n-1}}\left(f_{i_{n, k+1}}(x)-f_{i_{n, k}}(x)\right) & x \in\left[a_{n_{k}}, a_{n_{k-1}}\right] \\ f_{i_{n, k}}(x)+\frac{x-b_{n_{k-1}}}{b_{n_{k}}-b_{n_{k-1}}}\left(f_{i_{n, k+1}}(x)-f_{i_{n, k}}(x)\right) & x \in\left[b_{n_{k-1}}, b_{n_{k}}\right] \\ f(x) & x \in A \cup K .\end{cases}
$$

The function h is continuous on every contiguous interval $I_{n}=\left(a_{n}, b_{n}\right), n=$ $1,2, \ldots$ of the set $A \cup K$ and for each $x \in\left[a_{n_{k}}, a_{n_{k-1}}\right]$

$$
f(x)>f_{i_{n, k+1}}(x) \geq h(x) \geq f_{i_{n, k}}(x)
$$

holds. Therefore,

$$
f(x)>h(x) \geq f_{i_{n, k}}(x), \forall x \in\left(a_{n}, a_{n_{k-1}}\right], \forall k \in \mathbb{N}
$$

and because $a_{n} \in C_{f}$, it follows that

$$
f\left(a_{n}\right)=\lim _{x \rightarrow a_{n}^{+}} f(x) \geq \lim _{x \rightarrow a_{n}^{+}} h(x) \geq \lim _{x \rightarrow a_{n}^{+}} f_{i_{n, k}}(x)=f_{i_{n, k}}\left(a_{n}\right)>f\left(a_{n}\right)-\frac{1}{k} .
$$

Consequently

$$
\lim _{x \rightarrow a_{n}^{+}} h(x)=f\left(a_{n}\right)=h\left(a_{n}\right) \text { and similarly } \lim _{x \rightarrow b_{n}^{-}} h(x)=h\left(b_{n}\right),
$$

that is, the function h is continuous on every interval $\left[a_{n}, b_{n}\right], n=1,2, \ldots$.
In order to prove the continuity of the function h on the interval $[0,1]$, it is sufficient, by the construction of h, to show that h is continuous at an arbitrary point $x_{0} \in K \cup A$. Let a sequence $x_{j}, j=1,2, \ldots$ converge to the point x_{0}. Since the restriction $f \upharpoonright A \cup K=h \upharpoonright A \cup K$ is continuous, it can be assumed that $x_{j} \in I_{n(j)}, j=1,2, \ldots$ and because $h \upharpoonright\left[a_{n}, b_{n}\right]$ is continuous for each $n \in \mathbb{N}$, we can assume that $n(j) \rightarrow \infty$. For each j there exists a point $\xi_{n(j)} \in\left[a_{n(j)}, b_{n(j)}\right]$, such that

$$
f\left(\xi_{n(j)}\right)-\frac{1}{n(j)}<h\left(x_{j}\right)<f\left(x_{j}\right) .
$$

$x_{0} \in A \cup K \subseteq C_{f}$ implies

$$
h\left(x_{0}\right)=f\left(x_{0}\right)=\lim _{j \rightarrow \infty} f\left(\xi_{j}\right)-\frac{1}{n(j)} \leq \lim _{n \rightarrow \infty} h\left(x_{j}\right) \leq \lim _{n \rightarrow \infty} f\left(x_{j}\right)=f\left(x_{0}\right),
$$

and therefore

$$
h\left(x_{0}\right)=\lim _{j \rightarrow \infty} h\left(x_{j}\right) .
$$

The inequality

$$
g(x)<h(x)<f(x) \text { for every } x \notin A \cup K
$$

follows directly from the definition of the function h, because

$$
\begin{aligned}
g(x)<f_{i_{n}}(x)<f_{i_{n, k}}(x) & \leq h(x) \leq f_{i_{n, k+1}}(x)<f(x) \\
x & \in\left[a_{n_{k}}, a_{n_{k-1}}\right] \cup\left[b_{n_{k-1}}, b_{n_{k}}\right] .
\end{aligned}
$$

Definition 2. Let P be a perfect set. We say that the function f is from the class $K(P)$ iff f is constant on every contiguous interval of the set P and we denote by $C K(P)$ the class $C \cap K(P)$.
Remark 3. The class $C K(P)$ has the following properties.
Let P_{1}, P be perfect sets, $P_{1} \subset_{c} P$, and let α, β be real numbers, then

$$
\begin{gathered}
f \in C K\left(P_{1}\right) \Rightarrow f \in C K(P) \\
f, g \in C K(P) \Rightarrow \alpha f+\beta g \in C K(P)
\end{gathered}
$$

Lemma 4. Let $f \geq 0$ be a continuous function, K a closed set, P a nowhere dense perfect set and $K \subset_{c} P$. Then there exists a function $g \in C K(P)$ such that $0 \leq g \leq f$ and $g(x)=f(x)$ for every $x \in K$.

Proof. Let (a, b) be a contiguous interval of the set K and let the function f attain its minimum on the closed contiguous interval $I=[a, b]$ at a point c. The set $I \cap\{x ; f(x)=f(c)\}$ is closed. Then there exist

$$
\min (I \cap\{x ; f(x)=f(c)\}) \text { and } \max (I \cap\{x ; f(x)=f(c)\})
$$

If $a=\min (I \cap\{x ; f(x)=f(c)\})$, we set $a_{0}=a$. On the other hand, if we have that $a<\min (I \cap\{x ; f(x)=f(c)\})$, we choose

$$
a_{0} \in P, a<a_{0}<\min (I \cap\{x ; f(x)=f(c)\})
$$

such that a_{0} is the left boundary point of some contiguous interval of the set P. Such a point exists, because $a \in K \subset_{c} P$. Analogously, we define a point $b_{0} \in P$. If $\max (I \cap\{x ; f(x)=f(c)\})=b$ then $b_{0}=b$ and if $\max (I \cap\{x ; f(x)=f(c)\})<b$, we choose

$$
b_{0} \in P, \max (I \cap\{x ; f(x)=f(c)\})<b_{0}<b,
$$

where b_{0} is the right boundary point of some contiguous interval of the set P.

In the case $a<a_{0}$, we define a function f_{1} on the interval $\left[a, a_{0}\right]$. Since $f(x)>f(c)$ for every $x \in\left[a, a_{0}\right]$, there exists a constant $M>0$, such that $f(x)>f(a)-M>f(c)$ on the interval $\left[a, a_{0}\right]$. The function f is continuous at the point a. Then a sequence of points $a_{0}>a_{1}>a_{2}>\ldots \rightarrow a$ exists such that

$$
f(x)>f(a)-\frac{M}{n}, \forall x \in\left[a, a_{n-1}\right], n=1,2, \ldots
$$

Let $f_{1}(a)=f(a)$ and let the graph of f_{1} be linear segments that join points $\left[a_{0}, f(c)\right],\left[a_{1}, f(a)-M\right],\left[a_{2}, f(a)-\frac{M}{2}\right], \ldots,\left[a_{n}, f(a)-\frac{M}{n}\right], \ldots$. Apparently, the function f_{1} is continuous and decreasing over the interval $\left[a, a_{0}\right]$. Moreover,

$$
f(c) \leq f_{1}(x)<f(x), \forall x \in\left(a, a_{0}\right]
$$

because

$$
f_{1}(x)<f(a)-\frac{M}{n}<f(x), \forall x \in\left[a_{n}, a_{n-1}\right], n=1,2, \ldots
$$

Now, let $Q_{I}=\left\{q_{i}\right\}_{i=1}^{\infty}$ be the sequence of all rational numbers of the interval $(f(c), f(a))$, and let $\mathcal{I}=\left\{I_{n}, n=1,2, \ldots\right\}, I_{n} \subset I$, be the sequence of all closed contiguous intervals of the set $\left[a, a_{0}\right] \cap P$. Since $\left[a, a_{0}\right] \cap P$ is the perfect set and $a, a_{0} \in\left[a, a_{0}\right] \cap P$ then it is evident that

$$
I_{i} \cap I_{j}=\emptyset, \forall I_{i}, I_{j} \in \mathcal{I}, i \neq j, i, j \in\{1,2, \ldots\}
$$

and

$$
\left\{a, a_{0}\right\} \cap I_{i}=\emptyset, \forall i \in\{1,2, \ldots\}
$$

The set \mathcal{I} is ordered, $I_{i}<I_{j}, I_{i}, I_{j} \in \mathcal{I}$, it means that max $I_{i}<\min I_{j}$. We define a mapping

$$
G:\left\{I_{n}, n=1,2, \ldots\right\} \rightarrow Q_{I}
$$

inductively.
In the first step, let $G\left(I_{1}\right)=q_{i_{1}}$, where $q_{i_{1}}$ is the first member of the sequence Q_{I} from which follows the condition

$$
f_{1}(x)>q_{i_{1}}, \forall x \in I_{1}
$$

Such a $q_{i_{1}}$ exists, because $\min \left\{f_{1}(x), x \in I_{1}\right\}>f(c)$ and the set Q_{I} is dense in the interval $(f(c), f(a))$. Denote Q_{1} the sequence, which is created by excluding the element $q_{i_{1}}$ from the sequence Q_{I}.

In the n-th step define the mapping G on the set $\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$, such that

$$
G\left(I_{j}\right)=q_{i_{j}} \in Q_{I}, 1 \leq j \leq n
$$

$$
\begin{gathered}
\forall j \in\{1,2, \ldots, n\} \Rightarrow f_{1}(x)>q_{i_{j}}, \forall x \in I_{j}, \\
I_{m}<I_{l} \Rightarrow G\left(I_{m}\right)=q_{i_{m}}>q_{i_{l}}=G\left(I_{l}\right), \forall m, l \in\{1,2, \ldots, n\}
\end{gathered}
$$

and let Q_{n} be the sequence which we get from the sequence Q_{I} by excluding $q_{i_{1}}, q_{i_{2}}, \ldots, q_{i_{n}}$.

In the $n+1$-th step we set $G\left(I_{n+1}\right)=q_{i_{n+1}}$, such that $q_{i_{n+1}}$ is the first member of the sequence Q_{n}, that satisfies the following conditions:

$$
f_{1}(x)>q_{i_{n+1}}, \forall x \in I_{n+1}
$$

and

$$
\text { if } m, l \in\{1,2, \ldots, n\} \wedge I_{m}<I_{n+1}<I_{l} \Rightarrow q_{i_{m}}>q_{i_{n+1}}>q_{i_{l}}
$$

Such $q_{i_{n+1}}$ exists, because

$$
I_{m}<I_{n+1}<I_{l} \Rightarrow q_{i_{m}}>q_{i_{l}} \wedge \min \left\{f_{1}(x), x \in I_{n+1}\right\}>q_{i_{l}}
$$

and the set Q_{n} is dense in $(f(c), f(a))$. Denote Q_{n+1} the sequence that we get by excluding the element $q_{i_{n+1}}$ from the sequence Q_{n}.

Next, we show that the mapping $G:\left\{I_{n}, n=1,2, \ldots\right\} \rightarrow Q_{I}$ is one to one mapping. With respect to the construction of G it is sufficient to show that G map the set \mathcal{I} onto the set $Q_{I}: G(\mathcal{I})=Q_{I}$. Suppose that $G(\mathcal{I}) \varsubsetneqq Q_{I}$. Then there exists a sequence Q_{n} and $q_{0} \in Q_{I} \backslash G(\mathcal{I})$ such that q_{0} is the first member of the sequence Q_{n}. Let

$$
I_{\max }=\max \left\{I_{j} ; 1 \leq j \leq n \wedge q_{i_{j}}>q_{0}\right\}
$$

and

$$
I_{\min }=\min \left\{I_{j} ; 1 \leq j \leq n \wedge q_{i_{j}}<q_{0}\right\}
$$

For every $x \in I_{\max }$ the inequality $f_{1}(x)>q_{0}$ is valid. Because the function f_{1} is decreasing, then $\max I_{\max }<f_{1}^{-1}\left(q_{0}\right)$ and therefore there exists an infinite number of intervals $I_{k} \in\left\{I_{n+1}, I_{n+2}, \ldots ..\right\}$ such that

$$
I_{\max }<I_{k}<I_{\min } \wedge f_{1}(x)>q_{0}, \forall x \in I_{k}
$$

If $I_{k_{0}}$ is the first such interval in the sequence $\left\{I_{n+1}, I_{n+2}, \ldots \ldots\right\}$, then according to the definition of the mapping $G, G\left(I_{k_{0}}\right)=q_{0}$. This contradicts the assumption $q_{0} \in Q_{I} \backslash G(\mathcal{I})$.

Let g be the function defined on the interval $\left[a, a_{0}\right)$ by

$$
g(x)=\sup \{G(I), I \in \mathcal{I} \wedge x<\min I\}
$$

If $b_{0}<b$ then, in a similar way, we define a function g on the interval $\left(b_{0}, b\right]$ and let

$$
g(x)=f(c) \text { for every } x \in\left[a_{0}, b_{0}\right] .
$$

It is easy to verify that the function g is continuous on the interval $[a, b], 0 \leq$ $f(c) \leq g(x) \leq f(x), \forall x \in[a, b], f(a)=g(a), f(b)=g(b)$ and moreover, g is constant on each contiguous interval I of the set $[a, b] \cap P$.

Now let the function g be defined on each contiguous interval of the set K in the same manner as above and let

$$
g \upharpoonright K=f \upharpoonright K .
$$

Such a function g is continuous on the interval $[0,1]$. It is sufficient to show that the function g is continuous at an arbitrary point $x_{0} \in K$. Let a sequence $x_{j}, j=1,2, \ldots$ converge to the point x_{0}. The restriction $g \upharpoonright K$ is a continuous function and g is a continuous function on each closed contiguous interval of the set K. Applying the same reasoning as in Lemma 1, it can be assumed that $x_{j} \in I_{n_{j}}, j=1,2, \ldots$, where $I_{n_{j}}=\left(a_{n_{j}}, b_{n_{j}}\right)$ is a sequence of contiguous intervals of the set K and $n_{j} \rightarrow \infty$. If the function f attains its minimum over $\left[a_{n_{j}}, b_{n_{j}}\right]$ at a point $c_{n_{j}}$, then the same holds for the function g and $f\left(c_{n_{j}}\right)=g\left(c_{n_{j}}\right)$. The sequence $c_{n_{j}}, j=1,2, \ldots$ again converges to the point x_{0} and

$$
\begin{aligned}
f\left(x_{0}\right) & =\lim _{j \rightarrow \infty} f\left(c_{n_{j}}\right)=\lim _{j \rightarrow \infty} g\left(c_{n_{j}}\right) \leq \lim _{j \rightarrow \infty} g\left(x_{j}\right) \\
& \leq \lim _{j \rightarrow \infty} f\left(x_{j}\right)=f\left(x_{0}\right)=g\left(x_{0}\right) .
\end{aligned}
$$

That is,

$$
\lim _{j \rightarrow \infty} g\left(x_{j}\right)=g\left(x_{0}\right) .
$$

The function g, as defined above, satisfies the assertion of Lemma 4, because it is continuous, constant on each interval contiguous of the set $P, 0 \leq g \leq f$ and $g(x)=f(x)$ for every $x \in K$.

Lemma 5. Let f be a lower semicontinuous function defined on $[0,1]$ and let K be any closed subset of the set C_{f}. If a function $g \leq f$ is continuous, the set $A=\{x ; g(x)=f(x)\} \subset C_{f}$ and the set $A \cup K$ is nowhere dense in $[0,1]$, then there exists a perfect set $P \subset C_{f}$, nowhere dense in $[0,1]$, and a function $h \in C K(P)$ such that

$$
\begin{gathered}
A \cup K \subset_{c} P \\
h(x)=f(x) \text { for every } x \in A \cup K \\
g(x)<h(x)<f(x) \text { for every } x \notin A \cup K .
\end{gathered}
$$

Proof. If (a, b) is a contiguous interval of the set $A \bigcup K$, then, for an arbitrary $x \in(a, b)$,

$$
g(x)<h(x)<f(x)
$$

We will show that there exist sequences $a_{i}, b_{i} \in C_{f}, a_{i} \downarrow a^{+}, b_{i} \uparrow b^{-}, i=$ $1,2, \ldots, a_{1}=b_{1}$, such that

$$
\begin{aligned}
& \max \left\{g(x), x \in\left[a_{i+1}, a_{i}\right]\right\}<\min \left\{h(x), x \in\left[a_{i+1}, a_{i}\right]\right\} \\
& \max \left\{h(x), x \in\left[a_{i+1}, a_{i}\right]\right\}<\min \left\{f(x), x \in\left[a_{i+1}, a_{i}\right]\right\}
\end{aligned}
$$

for each interval $\left[a_{i+1}, a_{i}\right]$ and that the same is true for each interval $\left[b_{i}, b_{i+1}\right]$.
Let $\left\{x_{n}\right\}_{n=0}^{\infty},\left\{y_{n}\right\}_{n=0}^{\infty}$ be arbitrary sequences of points $x_{n}, y_{n} \in C_{f}$,

$$
a \leftarrow \cdots<x_{2}<x_{1}<x_{0}=y_{0}<y_{1}<y_{2}<\cdots \rightarrow b
$$

Since $f-h \in l s c, h-g \in C$ and

$$
\forall x \in\left[x_{n+1}, x_{n}\right]: f(x)-h(x)>0 \wedge h(x)-g(x)>0
$$

then there exists $\varepsilon_{n}>0$, such that

$$
\forall x \in\left[x_{n+1}, x_{n}\right]: f(x)-h(x)>\varepsilon_{n} \wedge h(x)-g(x)>\varepsilon_{n} .
$$

The functions h and g are uniformly continuous on the interval $\left[x_{n+1}, x_{n}\right]$, so there exists $\delta_{n}>0$, such that for every $x, y \in\left[x_{n+1}, x_{n}\right]$ it holds

$$
|x-y|<\delta_{n} \Rightarrow|h(x)-h(y)|<\frac{1}{3} \varepsilon_{n} \wedge|g(x)-g(y)|<\frac{1}{3} \varepsilon_{n}
$$

Now we choose an arbitrary finite sequence of points $a_{i}^{n} \in C_{f}, i \in\left\{0,1,2, \ldots, k_{n}\right\}$,

$$
x_{n+1}=a_{k_{n}}^{n}<a_{k_{n}-1}^{n}<\ldots<a_{2}^{n}<a_{1}^{n}<a_{0}^{n}=x_{n}
$$

such that

$$
\left|a_{i+1}^{n}-a_{i}^{n}\right|<\delta_{n} \text { for every } i \in\left\{0,1,2, \ldots, k_{n}-1\right\}
$$

Let the function f attain its minimum on the interval $\left[a_{i+1}^{n}, a_{i}^{n}\right]$ at a point ξ_{i}^{n} and the function h at a point η_{i}^{n}, that is

$$
f\left(\xi_{i}^{n}\right)=\min \left\{f(x) ; x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]\right\} \wedge h\left(\eta_{i}^{n}\right)=\min \left\{h(x) ; x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]\right\}
$$

Every $x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]$ satisfies the condition $\left|x-a_{i}^{n}\right|<\delta_{n}$. Then

$$
h(x)<h\left(a_{i}^{n}\right)+\frac{1}{3} \varepsilon_{n}
$$

and because $\xi_{i}^{n} \in\left[a_{i+1}^{n}, a_{i}^{n}\right]$ then $\left|\xi_{i}^{n}-a_{i}^{n}\right|<\delta_{n}$. Therefore

$$
h\left(a_{i}^{n}\right)-\frac{1}{3} \varepsilon_{n}<h\left(\xi_{i}^{n}\right) .
$$

According to the definition of ε_{n}, we have $f\left(\xi_{i}^{n}\right)-h\left(\xi_{i}^{n}\right)>\varepsilon_{n}$. Consequently, using the foregoing inequalities, we have that $\forall x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]$,

$$
f\left(\xi_{i}^{n}\right)>h\left(\xi_{i}^{n}\right)+\varepsilon_{n}>h\left(a_{i}^{n}\right)-\frac{1}{3} \varepsilon_{n}+\varepsilon_{n}>h\left(a_{i}^{n}\right)+\frac{1}{3} \varepsilon_{n}>h(x) .
$$

That is,

$$
\max \left\{h(x) ; x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]\right\}<\min \left\{f(x) ; x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]\right\} .
$$

If we use the same arguments as in the previous procedure and if $\left(f, h, \xi_{i}^{n}\right)$ is replaced by $\left(h, g, \eta_{i}^{n}\right)$, we get that $\forall x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]$,

$$
h\left(\eta_{i}^{n}\right)>g\left(\eta_{i}^{n}\right)+\varepsilon_{n}>g\left(a_{i}^{n}\right)-\frac{1}{3} \varepsilon_{n}+\varepsilon_{n}>g\left(a_{i}^{n}\right)+\frac{1}{3} \varepsilon_{n}>g(x) .
$$

That is,

$$
\max \left\{g(x) ; x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]\right\}<\min \left\{h(x) ; x \in\left[a_{i+1}^{n}, a_{i}^{n}\right]\right\} .
$$

It is evident that the sequence $\left\{\left\{a_{i}^{n}\right\}_{i=0}^{k_{n}-1}\right\}_{n=0}^{\infty}$ converges to the point a from the right hand side and satisfies the inequalities from the preface of the proof. On the interval $\left[y_{0}, b\right)$ we proceed analogously.

We choose a perfect nowhere dense subset P of the interval $[a, b]$ such that the set $\left\{a_{i}, b_{i} ; i=1,2, \ldots\right\} \subset_{c} P$. Then Lemma 4 implies that there exists a continuous function h_{1} defined on the interval $[a, b]$, such that

$$
h_{1}(a)=h(a), h_{1}(b)=h(b),
$$

and

$$
\begin{gathered}
h_{1}\left(a_{i}\right)=h\left(a_{i}\right), h_{1}\left(b_{i}\right)=h\left(b_{i}\right), \\
\min \left\{h\left(a_{i}\right), h\left(a_{i+1}\right)\right\} \leq h_{1}(x) \leq \max \left\{h\left(a_{i}\right), h\left(a_{i+1}\right)\right\}
\end{gathered}
$$

hold for every $i=1,2, \ldots$ and every $x \in\left(a_{i+1}, a_{i}\right)$. In the same manner,

$$
\min \left\{h\left(b_{i}\right), h\left(b_{i+1}\right)\right\} \leq h_{1}(x) \leq \max \left\{h\left(b_{i}\right), h\left(b_{i+1}\right)\right\}
$$

for every $x \in\left(b_{i}, b_{i+1}\right)$. Moreover, the function h_{1} is constant on every contiguous interval of the set P. Naturally, since the set $\left\{a, b, a_{i}, b_{i} ; i=1,2, \ldots\right\} \subset_{c}$ C_{f}, according to Lemma 2 in [8] we can choose $P \subset C_{f}$. If we replace the function h by the function of type h_{1} on every contiguous interval of the set $A \cup K$, we obtain the assertion of Lemma 5 .

The class of strong Świątkowski functions was defined by T. Mańk and T. Świątkowski in [7].
Definition 6. We say that f is a strong S'wiatkowski function if, whenever $a<b$ and y is a number between $f(a)$ and $f(b)$, then there exists an $x_{0} \in$ $(a, b) \cap C_{f}$ such that $f\left(x_{0}\right)=y$.
Lemma 7. Suppose that a sequence of continuous functions $s_{1} \leq s_{2} \leq s_{3} \leq$ \ldots converges on $[0,1]$ to the function s. For a double sequence of positive real numbers $\left(\delta_{n}, \varepsilon_{n}\right), n=1,2, \ldots,\left(\delta_{n}, \varepsilon_{n}\right) \rightarrow(0,0)$ and a sequence of closed sets $F_{1} \subseteq F_{2} \subseteq F_{3} \subseteq \ldots$, we consider the following properties:
(i) $\left|x_{1}-x_{2}\right|<\delta_{n} \Rightarrow\left|s_{n}\left(x_{1}\right)-s_{n}\left(x_{2}\right)\right|<\varepsilon_{n}$
(ii) $x \in[0,1] \Rightarrow \operatorname{dist}\left(x, F_{n}\right)<\delta_{n}$
(iii) $s_{n+1} / F_{n}=s_{n} / F_{n}$, for every $n=1,2, \ldots$
(iv) $F=F_{1} \cup F_{2} \cup F_{3} \cup \cdots \subset C_{s}$
(v) if $x_{o} \in D_{s}$, there are sequences $x_{i}, y_{i} \in F, i=1,2, \ldots, x_{i} \uparrow x_{0}, y_{i} \downarrow x_{0}$, such that

$$
s\left(x_{i}\right) \leq s\left(x_{0}\right), s\left(y_{i}\right) \leq s\left(x_{0}\right) \text { and } s\left(x_{i}\right) \rightarrow s\left(x_{0}\right), s\left(y_{i}\right) \rightarrow s\left(x_{0}\right)
$$

We make the following inference about the function s :

1. From properties (i)-(iii), it follows that the function $s \in D l s c$,
2. From properties (i)-(iv) it follows that the function $s \in Q D l s c$, and
3. From properties (i)-(v) it follows that the function $s \in S^{*} l s c$.

Proof. Evidently $s \in l s c$. Let (i)-(iii) be satisfied. Then it is sufficient to show ([2]) that for an arbitrary $x_{0} \in[0,1]$, there exist sequences $x_{n} \uparrow x_{0}$ and $y_{n} \downarrow x_{0}$ such that

$$
\lim _{n \rightarrow \infty} s\left(x_{n}\right)=\lim _{n \rightarrow \infty} s\left(y_{n}\right)=s\left(x_{0}\right)
$$

Naturally, if $x_{0}=0$ or $x_{0}=1$, we consider only one of these. Given the assumptions of Lemma 7, for every $n=1,2 \ldots$ there exist $x_{n}<x_{0}<$ $y_{n}, x_{n}, y_{n} \in F_{n}$ such that $\left|x_{n}-x_{0}\right|<2 \delta_{n},\left|y_{n}-x_{0}\right|<2 \delta_{n}$ and $s\left(x_{n}\right)=$ $s_{n}\left(x_{n}\right), s\left(y_{n}\right)=s_{n}\left(y_{n}\right)$. Moreover $\left|s_{n}\left(x_{n}\right)-s_{n}\left(x_{0}\right)\right|<2 \varepsilon_{n}$ and $\left|s_{n}\left(y_{n}\right)-s_{n}\left(x_{0}\right)\right|<$ $2 \varepsilon_{n}$. Since $\left(\delta_{n}, \varepsilon_{n}\right) \rightarrow(0,0)$ and $s_{n}\left(x_{0}\right) \rightarrow s\left(x_{0}\right)$, the inequality

$$
\begin{aligned}
\left|s\left(x_{n}\right)-s\left(x_{0}\right)\right| & =\left|s_{n}\left(x_{n}\right)-s\left(x_{0}\right)\right| \leq\left|s_{n}\left(x_{n}\right)-s_{n}\left(x_{0}\right)\right|+\left|s_{n}\left(x_{0}\right)-s\left(x_{0}\right)\right| \\
& <2 \varepsilon_{n}+\left|s_{n}\left(x_{0}\right)-s\left(x_{0}\right)\right|
\end{aligned}
$$

implies that $s\left(x_{n}\right) \rightarrow s\left(x_{0}\right)$ and analogously $s\left(y_{n}\right) \rightarrow s\left(x_{0}\right)$.
Let (i)-(iv) be satisfied. Because in the sequences above $x_{n}, y_{n} \in C_{s}$, the assertion that $s \in Q l s c$ directly follows from Lemma 3.4. in [4].

Let $(i)-(v)$ be satisfied and let $a<b$ and y be a number between $s(a)$ and $s(b)$. We assume that $s(a)>y>s(b)$ and denote
$x_{0}=\min \{x \in[a, b] ; s(x) \leq y\}$. Such x_{0} exists, because the function $s \in l s c$, $y>s(b)$ and thus the set $\{x \in[a, b] ; s(x) \leq y\}$ is not empty and closed. Evidently $s\left(x_{0}\right)=y$, since opposite case leads to a contradiction with the Darboux property of the function s. The point $x_{0} \in C_{s}$. In the case $x_{0} \in D_{s}$, (v) implies the existence of a point $x_{1}<x_{0}$ such that $s\left(x_{1}\right) \leq s\left(x_{0}\right)=y$, which contradicts to $x_{0}=\min \{x \in[a, b] ; s(x) \leq y\}$. We proceed analogously when $s(a)<y<s(b)$.

Theorem 8. Let f be a lower semicontinuous function. Then there are strong S'wiatkowski lower semicontinuous functions g and h such that $f=g+h$.

Proof. The function $f \in l s c$. Without loss of generality we may consider $f>0$ and the existence of sequence of continuous functions $0<f_{1}^{0}<f_{2}^{0}<$ $f_{3}^{0}<\cdots \rightarrow f$. According to Lemma 5 , we can construct a sequence of nowhere dense perfect sets $P_{n} \subset C_{f}$ and a sequence of functions $f_{n} \in C K\left(P_{n}\right), n=$ $1,2, \ldots$ such that $f_{n}^{0}<f_{n}<f_{n+1}^{0}$ and $P_{n} \subset_{c} P_{n+1}$. Therefore, let

$$
P_{1} \subset_{c} P_{2} \subset_{c} P_{3} \subset_{c} \cdots \subset C_{f} \subset[0,1]
$$

to be a sequence of nowhere dense perfect sets and let

$$
0<f_{1}<f_{2}<f_{3}<\ldots, f_{n} \in C K\left(P_{n}\right), n=1,2, \ldots
$$

be a sequence of functions which converges on $[0,1]$ to the function f. Let

$$
D_{f}=\bigcup_{n=1}^{\infty} D_{n}, \text { where } D_{1} \subset D_{2} \subset D_{3} \subset \ldots
$$

are closed sets. We denote

$$
P=\bigcup_{n=1}^{\infty} P_{n}
$$

Let $\varepsilon_{n}, n=1,2, \ldots$ be a sequence of positive real numbers, $\varepsilon_{n} \rightarrow 0$.
In the first step we define

$$
f_{1}=f_{1}^{*}=h_{1}=h_{1}^{*}, g_{1}=g_{1}^{*}=0
$$

The functions h_{1}, g_{1} are uniformly continuous on $[0,1]$. Then for given $\varepsilon_{1}>0$, there exists $\delta_{1}>0$ such that for every $x_{1}, x_{2} \in[0,1]$ it holds

$$
\left|x_{1}-x_{2}\right|<\delta_{1} \Rightarrow\left|g_{1}\left(x_{1}\right)-g_{1}\left(x_{2}\right)\right|<\varepsilon_{1} \wedge\left|h_{1}\left(x_{1}\right)-h_{1}\left(x_{2}\right)\right|<\varepsilon_{1}
$$

Let $F_{1} \subset C_{f}$ be a finite set, such that

$$
\operatorname{dist}\left(x, F_{1}\right)<\delta_{1}, \text { for every } x \in[0,1]
$$

If $I_{1}^{k}, k=1,2, \ldots$ is the sequence of all contiguous intervals of the set P_{1}, only for a finite number of intervals I_{1}^{k} it holds that $I_{1}^{k} \cap D_{1} \neq \emptyset$. In the case $I_{1}^{k} \cap D_{1} \neq \emptyset$, we may choose a finite set F_{1} such that the boundary points of interval I_{1}^{k} are from the set F_{1}. Let K_{1} be a finite subset of the set $C_{f} \backslash P$, such that:

1. $K_{1} \cap F_{1}=\emptyset$ and $\operatorname{dist}\left(x, K_{1}\right)<\delta_{1}$, for every $x \in[0,1]$.
2. If $I_{1}^{k} \cap D_{1} \neq \emptyset$ then $K_{1} \cap I_{1}^{k} \neq \emptyset, \min \left(K_{1} \cap I_{1}^{k}\right)<\min \left(I_{1}^{k} \cap D_{1}\right)$ and $\max \left(I_{1}^{k} \cap D_{1}\right)<\max \left(K_{1} \cap I_{1}^{k}\right)$.

We continue to the second step. According to Lemma 5, there exist a nowhere dense perfect set P_{2}^{*} and a function $f_{2}^{*} \in C K\left(P_{2}^{*}\right)$ such that

$$
\begin{gathered}
F_{1} \cup P_{2} \subset_{c} P_{2}^{*} \subset C_{f} \backslash K_{1}, \\
f_{2}^{*}(x)=f(x) \text { for every } x \in F_{1}, \\
\max \left\{f_{1}^{*}(x), f_{2}(x)\right\}<f_{2}^{*}(x)<f(x) \text { for every } x \notin F_{1} .
\end{gathered}
$$

Denote $I_{2}^{k}, k=1,2, \ldots$ the sequence of all contiguous closed intervals of the set P_{2}^{*}. The sets F_{1}, K_{1} are finite, $F_{1} \cap K_{1}=\emptyset$. Because $F_{1} \subset_{c} P_{2}^{*}$ then $I_{2}^{k} \cap F_{1}=\emptyset$ for each $k=1,2, \ldots$. We know that $I_{2}^{k} \cap\left(D_{1} \cup K_{1}\right) \neq \emptyset$ holds only for finite number of intervals I_{2}^{k}. Let the set $\left\{I_{2}^{k_{1}}, I_{2}^{k_{2}}, \ldots, I_{2}^{k_{m}}\right\}$ consist of all of these intervals. The set F_{1} and the set $\bigcup I_{2}^{k_{i}}, i=1,2, \ldots, m$ are closed and disjoint. Then the function

$$
g_{2}^{*}(x)= \begin{cases}0 & \text { if } x \in \bigcup I_{2}^{k_{i}}, i=1,2, \ldots, m \\ f_{2}^{*}(x)-f_{1}^{*}(x) & \text { if } x \in F_{1}\end{cases}
$$

is continuous on the closed set $F_{1} \cup\left(\bigcup I_{2}^{k_{i}}, i=1,2, \ldots, m\right)$. According to the Tietze theorem there is a continuous extension of the function g_{2}^{*} on $[0,1]$. Since $f_{2}^{*}-f_{1}^{*}$ is a continuous function and $0 \leq f_{2}^{*}-f_{1}^{*}$ then there exists a
continuous extension g_{2}^{*} such that $0 \leq g_{2}^{*} \leq f_{2}^{*}-f_{1}^{*}$. Consequently, by Lemma 4 , there exists a continuous function $g_{2}^{*}, 0 \leq g_{2}^{*} \leq f_{2}^{*}-f_{1}^{*}$ such that

$$
\begin{gathered}
g_{2}^{*}\left(I_{2}^{k}\right)=0, \text { if } I_{2}^{k} \cap\left(D_{1} \cup K_{1}\right) \neq \emptyset, \\
g_{2}^{*} \in C K\left(P_{2}^{*}\right), \\
g_{2}^{*}(x)=f_{2}^{*}(x)-f_{1}^{*}(x) \text { for every } x \in F_{1} .
\end{gathered}
$$

We define the function h_{2}^{*} by the equation

$$
f_{2}^{*}-f_{1}^{*}=g_{2}^{*}+h_{2}^{*}
$$

and the functions g_{2} and h_{2} :

$$
g_{2}=g_{1}+g_{2}^{*}, h_{2}=h_{1}+h_{2}^{*} .
$$

The functions h_{2}, g_{2} are uniformly continuous on $[0,1]$, then for given $\varepsilon_{2}>0$, there exists $\delta_{2}>0$ such that for every $x_{1}, x_{2} \in[0,1]$ it holds

$$
\left|x_{1}-x_{2}\right|<\delta_{2} \Rightarrow\left|g_{2}\left(x_{1}\right)-g_{2}\left(x_{2}\right)\right|<\varepsilon_{2} \wedge\left|h_{2}\left(x_{1}\right)-h_{2}\left(x_{2}\right)\right|<\varepsilon_{2} .
$$

Let $F_{2} \subset C_{f} \backslash K_{1}$ be a finite set, $F_{1} \subset F_{2}$, such that for every $x \in[0,1]$

$$
\operatorname{dist}\left(x, F_{2}\right)<\frac{1}{2} \delta_{2} .
$$

Again, we may choose a set F_{2} such that if $I_{2}^{k} \cap D_{2} \neq \emptyset$, then the boundary points of the interval I_{2}^{k} are from the set F_{2}. Let $K_{2} \supset K_{1}$ be a finite subset of the set $C_{f} \backslash P \cup P_{2}^{*}$, such that:

1. $K_{2} \cap F_{2}=\emptyset$, and dist $\left(x, K_{2}\right)<\frac{1}{2} \delta_{2}$, for every $x \in[0,1]$.
2. If $I_{2}^{k} \cap D_{2} \neq \emptyset$ then $K_{2} \cap I_{2}^{k} \neq \emptyset, \min \left(K_{2} \cap I_{2}^{k}\right)<\min \left(I_{2}^{k} \cap D_{2}\right)$ and $\max \left(I_{2}^{k} \cap D_{2}\right)<\max \left(K_{2} \cap I_{2}^{k}\right)$.
By induction, for every $n=2,3,4, \ldots$ can be found nowhere dense perfect set $P_{n}^{*}, P_{n-1}^{*} \subset_{c} P_{n}^{*}$, a continuous function $f_{n}^{*} \in C K\left(P_{n}^{*}\right)$:

$$
\begin{gather*}
F_{n-1} \cup P_{n} \subset_{c} P_{n}^{*} \subset C_{f} \backslash K_{n-1}, \tag{1}\\
f_{n}^{*}(x)=f(x) \text { for every } x \in F_{n-1}, \tag{2}\\
\max \left\{f_{n-1}^{*}(x), f_{n}(x)\right\}<f_{n}^{*}(x)<f(x) \text { for every } x \notin F_{n-1}, \tag{3}
\end{gather*}
$$

and a continuous function $g_{n}^{*}, 0 \leq g_{n}^{*} \leq f_{n}^{*}-f_{n-1}^{*}$ such that

$$
\begin{gather*}
g_{n}^{*}\left(I_{n}^{k}\right)=0, \text { if } I_{n}^{k} \cap\left(D_{n-1} \cup K_{n-1}\right) \neq \emptyset, \tag{4}\\
g_{n}^{*} \in C K\left(P_{n}^{*}\right), \tag{5}\\
g_{n}^{*}(x)=f_{n}^{*}(x)-f_{n-1}^{*}(x) \text { for every } x \in F_{n-1} \tag{6}
\end{gather*}
$$

where $I_{n}^{k}, k=1,2, \ldots$ are contiguous intervals of the set P_{n}^{*}. We define the function h_{n}^{*} by the equation

$$
\begin{equation*}
f_{n}^{*}-f_{n-1}^{*}=g_{n}^{*}+h_{n}^{*} \tag{7}
\end{equation*}
$$

and the functions g_{n} and h_{n} :

$$
\begin{equation*}
g_{n}=g_{n-1}+g_{n}^{*}, h_{n}=h_{n-1}+h_{n}^{*} . \tag{8}
\end{equation*}
$$

For given $\varepsilon_{n}>0$, there exists $\delta_{n}, 1 \geq \delta_{n}>0$ such that for every $x_{1}, x_{2} \in[0,1]$ it holds

$$
\left|x_{1}-x_{2}\right|<\delta_{n} \Rightarrow\left|g_{n}\left(x_{1}\right)-g_{n}\left(x_{2}\right)\right|<\varepsilon_{n} \wedge\left|h_{n}\left(x_{1}\right)-h_{n}\left(x_{2}\right)\right|<\varepsilon_{n}
$$

Let $F_{n} \subset C_{f} \backslash K_{n-1}$ be a finite set, $F_{n-1} \subset F_{n}$, such that for every $x \in[0,1]$

$$
\operatorname{dist}\left(x, F_{n}\right)<\frac{1}{n} \delta_{n}
$$

Again, we may choose a set F_{n} such that if $I_{n}^{k} \cap D_{n} \neq \emptyset$, then the boundary points of interval I_{n}^{k} are from the set F_{n}. Let $K_{n} \supset K_{n-1}$ be a finite subset of the set $C_{f} \backslash P \cup P_{n}^{*}$, such that the following two conditions hold:

1. $K_{n} \cap F_{n}=\emptyset$ and $\operatorname{dist}\left(x, K_{n}\right)<\frac{1}{n} \delta_{n}$, for every $x \in[0,1]$.
2. If $I_{n}^{k} \cap D_{n} \neq \emptyset$, then $K_{n} \cap I_{n}^{k} \neq \emptyset, \min \left(K_{n} \cap I_{n}^{k}\right)<\min \left(I_{n}^{k} \cap D_{n}\right)$ and $\max \left(I_{n}^{k} \cap D_{n}\right)<\max \left(K_{n} \cap I_{n}^{k}\right)$.

We notice that the sequences of continuous functions g_{n} and $h_{n}, n=$ $1,2, \ldots$ are nondecreasing, $f_{n}^{*}=g_{n}+h_{n}$. From the inequalities $0<f_{n}<$ $f_{n}^{*} \leq f$, it follows that the sequence f_{n}^{*} converges to the function f. Evidently the sequences g_{n} and h_{n} are convergent too, $g_{n} \rightarrow g \in l s c, h_{n} \rightarrow h \in l s c$ and $g+h=f$. Moreover, we have sequences of closed sets

$$
F_{1} \subset F_{2} \subset F_{3} \subset \ldots \text { and } K_{1} \subset K_{2} \subset K_{3} \subset \ldots
$$

and the double sequence $\left(\frac{1}{n} \delta_{n}, \varepsilon_{n}\right) \rightarrow(0,0)$, such that:
(i.) If $\left|x_{1}-x_{2}\right|<\frac{\delta_{n}}{n}$ then

$$
\left|g_{n}\left(x_{1}\right)-g_{n}\left(x_{2}\right)\right|<\varepsilon_{n} \text { and }\left|h_{n}\left(x_{1}\right)-h_{n}\left(x_{2}\right)\right|<\varepsilon_{n}
$$

(ii.) If $x \in[0,1]$ then dist $\left(x, F_{n}\right)<\frac{1}{n} \delta_{n}$ and dist $\left(x, K_{n}\right)<\frac{1}{n} \delta_{n}$.

Evidently, from (4) it follows that $g_{n+1}^{*} / K_{n}=0$ and from (8) we see that $g_{n+1} / K_{n}=g_{n} / K_{n}+g_{n+1}^{*} / K_{n}$.
Moreover, from (7) and (6) it follows that

$$
h_{n+1}^{*} / F_{n}=f_{n+1}^{*} / F_{n}-f_{n}^{*} / F_{n}-g_{n+1}^{*} / F_{n}=0,
$$

and from (8) that $h_{n+1} / F_{n}=h_{n} / F_{n}+h_{n+1}^{*} / F_{n}$. Putting these together we conclude that:
(iii.) $g_{n+1} / K_{n}=g_{n} / K_{n}$ and $h_{n+1} / F_{n}=h_{n} / F_{n}$.

Because the double sequence $\left(\frac{1}{n} \delta_{n}, \varepsilon_{n}\right) \rightarrow(0,0)$, the functions h and g satisfy conditions (i)-(iii) of Lemma 7 and thus $g, h \in D l s c$. Since $f, g, h \in l s c$ and $f=g+h$ it is easy to show that the set C_{f} is the subset of the set $C_{g} \cap C_{h}$. Therefore,
(iv.)
$K=K_{1} \cup K_{2} \cup K_{3} \cup \cdots \subset C_{f} \subset C_{g}$, and $F=F_{1} \cup F_{2} \cup F_{3} \cup \cdots \subset C_{f} \subset C_{h}$.
Next we prove that the functions h and g are strong Świątkowski functions. Because conditions $(i)-(i v)$ are satisfied, it is sufficient to prove that the functions h and g satisfy the condition (v) in Lemma 7, too.

Let x_{0} be an arbitrary point of discontinuity of the function g. Because $D_{g} \subset D_{f}$, there exists n_{0} such that $x_{0} \in D_{n_{0}} \wedge x_{0} \notin D_{n}$, for $n<n_{0}$ and a sequence $\left\{I_{n}^{k_{n}}\right\}_{n=1}^{\infty}, I_{1}^{k_{1}} \supset I_{2}^{k_{2}} \supset I_{3}^{k_{3}} \supset \cdots \supset\left\{x_{0}\right\}$, where $I_{n}^{k_{n}}$ is a contiguous interval of the sets P_{n}^{*}. Each function $g_{n}^{*}, n \leq n_{0}$ is constant on the interval $I_{n}^{k_{n}}$, and according to (4), $g_{n}^{*} / I_{n}^{k_{n}}=0$, for $n>n_{0}$. If $n>n_{0}$ then $I_{n}^{k_{n}} \cap D_{n} \neq \emptyset$ and therefore for every $n>n_{0}$ we can choose points $x_{n}, y_{n} \in K_{n} \cap I_{n}^{k_{n}}, x_{n}<x_{0}<y_{n}$. We may demand $\operatorname{dist}\left(x_{n}, y_{n}\right)<\frac{2}{n} \delta_{n}$. Evidently $x_{n} \uparrow x_{0} \wedge y_{n} \downarrow x_{0}$ and

$$
\begin{gathered}
g\left(x_{n}\right)=g_{n_{0}}\left(x_{n}\right)=g_{n_{0}}\left(x_{0}\right)=g\left(x_{0}\right), \\
g\left(y_{n}\right)=g_{n_{0}}\left(y_{n}\right)=g_{n_{0}}\left(x_{0}\right)=g\left(x_{0}\right)
\end{gathered}
$$

and thus the function g satisfies the condition (v) from Lemma 7 .
Now let x_{0} be an arbitrary point of discontinuity of the function h. Again, because $D_{h} \subset D_{f}$, there exists n_{0} such that $x_{0} \in D_{n_{0}}$ with $x_{0} \notin D_{n}$ for $n<n_{0}$ and there exists a sequence of contiguous intervals

$$
I_{n_{0}} \supset I_{n_{0}+1} \supset I_{n_{0}+2} \supset \cdots \supset\left\{x_{0}\right\},
$$

and of perfect sets

$$
P_{n_{0}}^{*} \subset_{c} P_{n_{0}+1}^{*} \subset_{c} P_{n_{0}+2}^{*} \subset \ldots
$$

Let $I_{n_{0}+j}=\left(x_{j}, y_{j}\right), j=1,2, \ldots$. Because

$$
I_{n_{0}+j} \cap D_{n_{0}+j} \supset I_{n_{0}+j} \cap D_{n_{0}} \supset\left\{x_{0}\right\} \neq \emptyset
$$

the points $x_{j}, y_{j} \in F_{n_{0}+j}$. Using the same arguments as in the the paragraph above, $x_{j} \uparrow x_{0} \wedge y_{j} \downarrow x_{0}$. According to Remark 3, from (7), (8) it follows that the function $h_{n_{0}+j} \in C K\left(P_{n_{0}+j}^{*}\right)$. Then the function $h_{n_{0}+j}$ is constant on the interval $\left[x_{j}, y_{j}\right]$ and therefore

$$
h_{n_{0}+j}\left(x_{j}\right)=h_{n_{0}+j}\left(x_{0}\right)=h_{n_{0}+j}\left(y_{j}\right) .
$$

The point $x_{j} \in F_{n_{0}+j} \subset F_{n_{0}+j+1} \subset F_{n_{0}+j+2} \subset \ldots$. Then according to (iii.) we have

$$
h_{n_{0}+j}\left(x_{j}\right)=h_{n_{0}+j+1}\left(x_{j}\right)=h_{n_{0}+j+2}\left(x_{j}\right)=\cdots=h\left(x_{j}\right)
$$

and

$$
h\left(x_{j}\right)=h_{n_{0}+j}\left(x_{j}\right)=h_{n_{0}+j}\left(x_{0}\right) \leq h\left(x_{0}\right) .
$$

Based on the same reasoning

$$
h\left(y_{j}\right)=h_{n_{0}+j}\left(y_{j}\right)=h_{n_{0}+j}\left(x_{0}\right) \leq h\left(x_{0}\right)
$$

holds, too. The function h also satisfies the condition (v) from Lemma 7 and then by Lemma 7 the functions $g, h \in S^{*} l s c$.

References

[1] A. M. Bruckner, J. G. Ceder, R. Keston, Representations and Approximations by Darboux Functions in the first class of Baire, Rev. Roumaine Math. Pures Appl., 9 (1968), 1247-1254.
[2] A. M. Bruckner, Differentiation of Real Functions, Lecture notes in Math. 659 Springer-Verlag, Berlin, (1978).
[3] A. Lindenbaum, Annales de la Société Polonaise de Math., 6 (1927).
[4] A. Maliszewski, On the differences of upper semicontinuous quasicontinuous functions, Real Anal. Exchange, 21 (1995-96), 258-263.
[5] A. Maliszewski, Darboux Property and Quasi-continuity: A Uniform Approach, Wydaw. Uczelniane WSP, (1996).
[6] A. Maliszewski, On the sums of Darboux upper semicontinuous quasicontinuous functions, Real Anal. Exchange, 20 (1994/95), 244-249.
[7] T. Mańk, T. Swiątkowski, On some class of functions with Darboux's characteristic, Zeszyty Nauk. Politech. Lódzkiej Mat., 11(301) (1977), 5-10.
[8] R. Menkyna, On approximations of semicontinuous functions by Darboux semicontinuous functions, Real Anal. Exchange, 35(2) (2009/10), 423430.

[^0]: Mathematical Reviews subject classification: Primary: 26A15, 26A21
 Key words: the strong Świątkowski function, lower resp. upper semicontinuous functions Received by the editors August 31, 2012
 Communicated by: Brian Thomson
 *This work was partly supported by the Slovak Grant Agency under the project No.1/0853/13.

