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AN EXTENSION OF THE
HERMITE-HADAMARD INEQUALITY FOR
CONVEX SYMMETRIZED FUNCTIONS

Abstract

In this work, we extend the Hermite-Hadamard inequality to a new
class of functions which do not satisfy the convex property. This result
will be applied to both Haber and Fejér inequalities.

1 Introduction

In all what follows, we denote by I the closed real interval [a, b].

Definition 1. A real-valued function f is said to be convex on I if f(Ax +
1=Ny) <Af(z)+ (1 =N f(y) for all z,y € I and 0 < XA < 1. Conversely,

if the opposite inequality holds, the function is said to be concave on I.

A function f that is continuous on I and twice differentiable on (a,b) is
convex on [ if and only if f (z) > 0 for all z € (a,b). (f is concave if and only
if f (x) <0 for all z € (a,b)).

Mathematical Reviews subject classification: Primary: 52A40, 52A41

Key words: convex function, Hermite-Hadamard integral inequality, Haber inequality,
Fejér inequality

Received by the editors September 12, 2012

Communicated by: Alexander Olevskii

467



468 A. EL FArissi, M. BENBACHIR, AND M. DAHMANE

Proposition 2. Let f : I — R, be a convex function, then the Hermite-
Hadamard inequality [9]

holds.

It is obvious that the Hermite-Hadamard inequality gives us an estimate
of the mean value of the convex function. Note that the first inequality in (1)
was proved by Hadamard in 1893 [1]. The Hermite-Hadamard inequality is
well-known but for more details on historical considerations, one can consult
[3, 10, 11]. Generalizations, developments and refinements can be found in
(2, 3,5, 6, 7].

In [6], A.El Farissi, proved the following theorem for a convex function.

Theorem 3. Assume that f : I — R is a convex function on I. Then for all
A € [0,1], we have

f(a;ub><lm< f(a)+ f(b)

2 bl

b
o [ f@de<L <

I(\) =S (W)+(1_A>f<<1“>b;(1—A)a>

and
L) = 5 (FOb+ (1= N a) + Af (@) + (1= ) £ (8).

Corollary 4. Assume that f : I — R is a convex function on I. Then we
have the following inequality

1 b
f<a+b>< sup () < /f(sc)dx< inf L(A\)<
2 A€[0,1] b—al,

where L (), L (\) are defined in Theorem (3).

2 Main results

The aim of our work is to extend these results to a new class of function, not
necessarily convex. The following lemma will be used.
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Let f: I — R be an arbitrary function, we define the new function:
F:la,b)) — R
x— F(z)= fla+b—z)+ f(x).

Definition 5. A real-valued function f is said to be with convex symmetriza-
tion on I if F is conver.

Theorem 6 (properties of F). Suppose that the function F is convex, then
we have:

1. If f is a convex function then the function F is convex too. The converse
is false.

2. The function F is symmetric to a7+b in the sense for all x on I, we have

Vz € [a,b], F (a+b—x) = F(z).

a+b

3. Vz € [a,b], F ( ) < F(z) < F(a) = F(b) = f(a) + f(b).

LH?]_

4. The function F is increasing on [%£2,b] and decreasing on [a, %%

PRrOOF. The proof is left to the reader or one can consult [4] O

Example 7. The function f : [a,b] — R: 2 — f(z) = azz®+ a2’ +a1r+aq
such that a <0 < b, az,o3 >0 and a +b > 0 is not necessarily convex on I,
but F(z) = fla+b—z) + f(2) is convex. (F > 0).

Example 8. The function f : [a,b] — R :z — f(z) = shx = % such
that a < 0 < b and a+b > 0 is not convex on I, but F(z) = f(a+b—x)+ f(x)

1 b b
is convex, (F' (r) = 2sh (CH_ ) ch <a+ — :v) > 0.

2 2

In Theorem 9, we establish the Hermite-Hadamard inequality for a class
of functions, which are not necessarily convex.

Theorem 9. Let f be an integrable function defined on I with convex sym-
metrization F, then the function [ satisfies Hermite-Hadamard inequality.

PRrROOF. Hermite-Hadamard inequality holds for F:

() et o<
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substituting F

Flavo- ") ar (0) < o2 [ Gtas o)+ sy < O

using simple techniques of integration in particular fab fla+b—x)dr =
f: f(z)dz, we obtain

O

Theorem 10. Let f be an integrable function defined on I with conver sym-
metrization F, then for all A € [0,1], we have

() <cnm <t [Twarcnn <O g

B = % {f<(2—)\;b+)\a> +f<>\b+(22—)\)a>]

+(1;» [f<(1+x)a;<1—m) +f<(1—)\)a—2k(1+)\)b>]

N

and
1
4

PROOF. Let F' be a convex function on I. Applying (1) on the subinterval
[a, \b+ (1 — ) a], with A # 0, we get

HA) =7 [f(@) + f(0) + f A+ (1 =N a) + f (ha+ (1 = A)D)].

F (Ab+ 2- AW) < A(bl_ J /AW_MF(QC) da (3)
o F(a)—i—FZAb—%—(l—A)a)
< : .

Applying (1) again on [Ab+ (1 — ) a, b], with X # 1 we get

(1+Nb+(1-Na 1 b
F ( 2 ) ST N0 /M(l_mF (@)de (4)

_F®)+FQb+(1-Na)
< . .
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Multiplying (3) by A, (4) by (1 — ), and adding the resulting inequalities, we
get

b
h()\)<bia/GF(x)dx<H()\). (5)

Using the fact that F' is a convex function, we obtain

F(a;—b) F<>\()\b+(22—)\)a)+(1)\) (1+A)b—;(1—A)a>

g)\F(/\b—F(l—)\)cH-a)+(1_)\)F<>\b+(1—)\)a+b>

2 2
g%(F(Ab+(1f)\)a)+/\F(a)+(1f)\)F(b))<w. (6)
Then by (5) and (6) we get (2). O

The following Theorem is a generalization of Theorem 3 to a large class
of integrable functions with convex symmetrization. The calculus result is
inspired by [6].

Corollary 11. Assume that f : I — R is an integrable function defined on I
with conver symmetrization F, then we have the following inequality

atb (e 1 f(a)+ f(b)
f( ><AZ?0?1}h(A)<b—aAf(x)dx<H<2)<2’

where h (X), H (%) are defined in Theorem 10.

In the following theorem we will extend the Fejér inequality to the new
class of functions. In what follows we assume that the function f: I — R is
an integrable function defined on I with convex symmetrization F'. Suppose

b
that g : I — [0, +o0[ is integrable and symmetric to ath

Theorem 12. Let f,g be two functions defined on I as above. Then we have

(4 [s@ar< [[swrwa< OO yga @
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PROOF. The Fejér inequality was established for f : I — R convex and

. Here we have the same

b
g : I — [0, +0o0] integrable and symmetric to ot
conditions with F' and g, so we obtain

F(‘ljb) /:g<x>dx</abg<x>F<x>dx< F(“)‘;W/abg(x)dx.

Substituting F' in the above formulae transforms the inequality into
b b b
2
2f (a;b> / g(z)dr < / g(x)F (z) dz M/ g (z)dz.

The change of variable z = a + b — = transforms f; g(z)f (a+b—z)dx into

N

bglatb—= f (z)dz. The fact that g is symmetric to a——’—b, ives
I, 9 g is sy 58

b b
/ gla+b—2)f (z)dx :/ g(z) f(z)dw.

Using the last identity, we derive (7). O

3 Applications
1. Let a,b be two real numbers such that a + b > 0. The function

fnila,b) — R

z— z"

is in general not convex for all integers, but the function F' is convex

F, :a,b)) — R
= fula+b—x)+ fo(z).

This can be proved by induction on n.

According to the Theorem 9, we have.

a+b\" 1 b a™ 4+ o
< n < .
( 5 ) _b_a/axdx_ 5 (8)

We mentioned here that we can obtain this inequalities using Theorem
2.2 of [2].
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2. We can verify easily the following identity
k=n
b — " = (b—a) Y dfbn R (9)
k=0
Replacing the identity (9) in inequality (8), we derive
n k=n
a+b 1 kin_p o @t +b"
< " <
( 2 ) St Z:: “ ="

which is a generalization of Haber inequality [8]

n k=n
a+b 1 ym—k
< n
( 2 ) DL

k=0

for n € N and a, b two positive real numbers.
3. Let a,b € R be such that a + b > 0. The function
fia,b) — R
z = ap+azt + ...+ apa”
where a; > 0, for k£ > 1, is not necessarily convex, but the function
F:la,b] — R
= fla+b—2x)+ f(z)
is convex.

According to Theorem 9 and in the case where all the coefficients are
equal to 1 (ax = 1), we have:

k=n k k=n b k=n
a+b 1 & 1 k &
_ < < — .
E ( 5 ) _bagzo/axdx_2g:0(a +b%)

k=0

Remark 13. The particular case where a < 0, n = 5, is an example where
the result of [2] does not apply.
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