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FROM SCALAR MCSHANE
INTEGRABILITY TO PETTIS

INTEGRABILITY

Abstract

A new concept of McShane-tightness is introduced to pass from
scalar (alias weak) McShane integrability to Pettis integrability. It is
used also to derive a scalar McShane version of the Vitali theorem.

1 Introduction

In [17], weak (scalar) McShane integrability, a weakening of Pettis integra-
bility, for functions defined on compact intervals in Rm into a Banach space
X is introduced. There, it is shown that these two notions (scalar McShane
integrability and Pettis integrability) are equivalent if and only if the Banach
space X contains no copy of c0. A similar result dealing with functions defined
on compact intervals in R can already be found in [6].

It is the aim of this paper to describe more deeply the relationship between
the scalar McShane integral and the Pettis integral. Our principal objective
is to determine precisely when a scalar McShane integrable function is also
Pettis integrable. For this purpose a necessary and sufficient tightness condi-
tion involving locally upper bounded McShane sums (namely SLM-tightness)
is introduced. The proof of our main result (Theorem 3.1) depends on an
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exhaustion-type lemma (Lemma 3.1), which may be useful elsewhere.

As application of our methods, we provide a convergence result for the
scalar McShane integral analogous to the one we have for the Pettis integral
(see [5] and [10]), based on a sequential version of the SLM-tightness condition
used in Theorem 3.1. For various Kurzweil-Henstock versions, one can look at
the contribution of L. Di Piazza ([13]).

2 Notations and preliminaries

Throughout this paper [0, 1] is the unit interval of the real line equipped with
the usual topology and the Lebesgue measure λ. The family of Lebesgue
measurable subsets of [0, 1] is denoted by L. For E ∈ L, we often consider
the collection L+(E) of all Lebesgue measurable subsets of E with (strictly)
positive measure and denote L+([0, 1]) by just L+. By L1

R(λ) we denote the
space (of classes) of Lebesgue-integrable functions defined on [0, 1]. Recall
that a subset H of L1

R(λ) is uniformly integrable ([12]) if

lim
a→∞

sup
h∈H

∫
{t∈[0,1]:|h(t)|≥a}

|h| dλ = 0.

It is well known ([12]) that H is uniformly integrable if and only if it is L1
R(λ)-

bounded (i.e. suph∈H
∫
[0,1]
|h| dλ is finite) and equi-continuous, i.e.

lim
λ(A)→0

sup
h∈H

∫
A

|h| dλ = 0.

Now let X be a Banach space, whose norm is denoted by ‖.‖. We denote by X∗

the topological dual of X and the closed unit ball of X∗ by BX∗ . A function
f : [0, 1] → X is said to be scalarly measurable (resp. scalarly integrable,
alias Dunford integrable) if for every x∗ ∈ X∗, the real-valued function 〈x∗, f〉
is measurable (resp. Lebesgue integrable). If f : [0, 1] → X is a scalarly
integrable function, then for each E ∈ L, there is x∗∗E ∈ X∗∗ such that

〈x∗, x∗∗E 〉 =

∫
E

〈x∗, f〉 dλ.

The vector x∗∗E is called the Dunford integral of f over E, and is denoted by
(D)-

∫
E
f dλ. In the case that (D)-

∫
E
f dλ ∈ X for all E ∈ L, then f is called

Pettis-integrable and we write (Pe)-
∫
E
f dλ instead of (D)-

∫
E
f dλ to denote

the Pettis integral of f over E. If f : [0, 1]→ X is a Pettis integrable function,
then the set {〈x∗, f〉 : x∗ ∈ BX∗} is relatively weakly compact in L1

R(λ) ([2],



From Scalar McShane Integrability to Pettis Integrability 447

Theorem II. 3.8) (see also [11]); equivalently it is uniformly integrable ([2],
Theorem III. 2.15). For an extensive study of Banach space-valued Pettis in-
tegral, the reader is referred to Musial ([11]).

A partial McShane partition (or simply a McShane partition) is a finite collec-
tion {(Ai, ti) : 1 ≤ i ≤ m}, where A1, ..., Am are pairwise disjoints measurable
subsets of [0, 1] and ti is a point of [0, 1] for each i ≤ m. Let E be a member of
L. If the union of all the elements Ai of the partition equals (resp. is contained
in) E, then it is a McShane partition of E (resp. in E). A gauge on [0, 1] is
a function δ : [0, 1]→]0,+∞[. For a given δ on [0, 1], we say that a McShane
partition {(Ai, ti) : 1 ≤ i ≤ m} is subordinate to δ if Ai ⊂ (ti− δ(ti), ti+ δ(ti))
for every 1 ≤ i ≤ m. Let f : [0, 1]→ X be a function. We set

σ(f,P) :=

i=m∑
i=1

λ(Ai)f(ti),

for each McShane partition P := {(Ai, ti) : 1 ≤ i ≤ m}.

Definition 2.1. A function f : [0, 1] → X is McShane integrable, with Mc-
Shane integral $, if for every ε > 0 there is a gauge δ on [0, 1] such that

‖σ(f,P)−$‖ < ε,

for every δ-fine McShane partition P of [0, 1] . We set $ := (M)-
∫ 1

0
f dλ.

Of course, the original definition of the McShane integrability involves parti-
tions into non-overlapping subintervals of [0, 1] rather that McShane (measur-
able) partitions, but the translation from one to the other is possible ([9] and
[14]). See also ([3]) and ([4]) for a more general setting.

It is known ([4]) that if a function f : [a, b] → X is McShane integrable on
[a, b], then it is Pettis integrable on [a, b] and the integrals are equals. When
X is separable, these two notions coincides ([7]).

Also, recall that a real-valued function is Lebesgue integrable on [a, b] if and
only if it is McShane integrable on [a, b] and the integrals are equals in both
cases (see [8]).

Lemma 2.1. (Saks-Henstock) Let f : [0, 1] → X be a McShane integrable
function and let ε > 0. Suppose that δ is a gauge on [0, 1] such that

‖σ(f,P)− (M)-

∫
[0,1]

f dλ‖ < ε
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whenever P is a McShane partition of [0, 1] that is subordinate to δ. If
{(Ai, ti) : i = 1, ...,m} is an arbitrary (partial) McShane partition subordi-
nate to δ, then

‖
i=m∑
i=1

[λ(Ai)f(ti)− (M)-

∫
Ai

f dλ]‖ ≤ ε.

Proof. It is a consequence of Lemma 2B in [3] or Lemma 2 in [15].

Definition 2.2. A function f : [0, 1] → X is said to be scalarly McShane
integrable (alias weakly McShane integrable [17]) on [0, 1] (SM-integrable for
short), if for each [a, b] ⊂ [0, 1] there exists $[a,b] ∈ X with the following
property: for every ε > 0 and for every x∗ ∈ X∗ there exists a gauge δ on
[a, b] such that

|〈x∗, σ(f,P)〉 − 〈x∗, $[a,b]〉| < ε

for every McShane partition P of [a, b] subordinate to δ.

We set

$[a,b] = (SM)-

∫
[a,b]

f dλ.

The function f is SM-integrable on a set E ∈ L if 1Ef is SM-integrable on
[0, 1].

In [17], the following equivalent formulation of scalar McShane integrability
is given.

Definition 2.3. A function f : [0, 1] → X is said to be SM-integrable on
[0, 1], if it is scalarly integrable and for each subinterval [a, b] of [0, 1], there
exists $[a,b] ∈ X such that

〈x∗, $[a,b]〉 =

∫
[a,b]

〈x∗, f〉 dλ for all x∗ ∈ X∗.

Before going further, we list below the properties of the Scalar McShane
integral ([17], Theorem 24). Taking into account Definition 2.3, the proofs are
virtually identical to the McShane integral of real valued functions (see [8]).

Theorem 2.1. Let f , g: [0, 1]→ X be two functions.

(1) If f is SM-integrable on [0, 1], then it is SM-integrable on every subin-
terval of [0, 1].
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(2) Let I1 and I2 be two non-overlapping subintervals of [0, 1]. If f is SM-
integrable on each of the intervals I1 and I2, then it is SM-integrable on I1∪I2
and

(SM)-

∫
I1∪I2

f dλ = (SM)-

∫
I1

f dλ+ (SM)-

∫
I2

f dλ.

(3) If f , g are SM-integrable and if α is a real number, then αf + g is SM-
integrable and

(SM)-

∫
[0,1]

αf + g dλ = α (SM)-

∫
[0,1]

f dλ+ (SM)-

∫
[0,1]

g dλ.

(4) If f is SM-integrable and if f = g λ-a.e., then the function g is SM-
integrable and

(SM)-

∫
[0,1]

g dλ = (SM)-

∫
[0,1]

f dλ.

The next proposition is an immediate consequence of the previous defini-
tions. See also ([17] and [18]).

Proposition 2.1. Let f : [0, 1]→ X be a function.

(1) If f is SM-integrable, then it is Dunford integrable and

(D)-

∫
[a,b]

f dλ = (SM)-

∫
[a,b]

f dλ for every [a, b] ⊂ [0, 1].

(2) If f is Pettis integrable, then it is SM-integrable and

(SM)-

∫
[a,b]

f dλ = (Pe)-
∫
[a,b]

f dλ for every [a, b] ⊂ [0, 1].

Clearly, these notions coincides when X is reflexive. When X is not reflexive,
this may not be the case.

Example 1. Define f : [0, 1]→ c0 by

f(t) := (1[0,1], 2.1[0, 12 ], ..., n.1[0,
1
n ]),

([2], p. 53). This function is scalarly integrable, but not SM-integrable, be-
cause (D)-

∫
[0,1]

f dλ ∈ `∞ \ c0.
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Example 2. For each n ≥ 1 let

I1n := (
1

n+ 1
,
n+ 1

2

n(n+ 1)
) and I2n := (

n+ 1
2

n(n+ 1)
,

1

n
)

and define the function f : [0, 1]→ c0 by

f(t) := (2n(n+ 1)(1I1n(t)− 1I2n(t))).

Then f is SM-integrable, but not Pettis integrable since if E := ∪nI1n we have∫
E
f dλ = 1 ∈ `∞ \ c0. See ([6] and [17]) for more details.

Remark 2.1. Thanks to Example 2 if each SM-integrable function is Pettis
integrable, then it is easy to see that X cannot contain a copy of c0. The
converse implication also holds as was shown by Gordon ([7], Theorem 18).
See ([17]) for the case of functions defined on compact intervals in Rm.

In order to pass from scalar McSchane integrability to Pettis integrability,
we introduce the following new concepts of local upper McShane-boundedness
and local McShane-tightness.

Definition 2.4. Let τ > 0. A function f : [0, 1] → R is said to be locally
τ -upper McShane-bounded if for each gauge δ on [0, 1] and for each set E in
L+, there is an F in L+(E) and a McShane partition P of F subordinate to
δ such that

mF (f,P) :=
1

λ(F )
σ(f,P) ≤ τ.

A function f : [0, 1] → X is said to be scalarly locally τ -upper McShane-
bounded if, for each x∗ ∈ BX∗ , 〈x∗, f〉 is locally τ -upper McShane-bounded.

Definition 2.5. A function f : [0, 1] → X is said to be scalarly locally
McShane-tight (SLM-tight for short) if for each ε > 0 there exist τε > 0
and ηε > 0 such that for every x∗ ∈ BX∗ , there exists a measurable set Lε
such that
(a) 〈x∗, 1Lε

f〉 is locally τε-upper McShane-bounded.
(b) Given any gauge δ on [0, 1] and any finite collection {Ii : i = 1, ..., p} of

non-overlapping sub-intervals of [0, 1] with
∑i=p
i=1 λ(Ii) ≤ ηε we have

〈x∗, σ(f,P)〉 ≤ ε,

for some McShane partition P of ∪i=pi=1Ii \ Lε subordinate to δ.
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Note that every scalarly locally τ -upper McShane-bounded function f : [0, 1]→
X is SLM-tight (take τε = τ and Lε = [0, 1] in Definition 2.5).

It is also interesting to introduce the following formulation of tightness for
scalarly integrable functions. It involves integrals instead of McShane sums.

Definition 2.6. A function f : [0, 1] → X is said to be scalarly locally tight
(SL-tight for short) if for each ε > 0 there exist τε > 0 and ηε > 0 such that
for every x∗ ∈ BX∗ , there exists a measurable set Lε such that

(a)′ For each set E in L+, there is an F in L+(E) such that

mF (〈x∗, 1Lε
f〉) :=

1

λ(F )

∫
F∩Lε

〈x∗, f〉 dλ ≤ τε.

(b)′
∫
E\Lε

〈x∗, f〉 dλ ≤ ε whenever E ∈ L and λ(E) ≤ ηε.

Proposition 2.2. Let f : [0, 1]→ X be a scalarly integrable function. If it is
SL-tight, then it is also SLM-tight.

Proof. Let τε and ηε be the positive real numbers corresponding to ε in
Definition 2.6, and take any gauge δ on [0, 1] and any x∗ in BX∗ . Then there
exists a measurable set Lε such that (a)′ and (b)′ hold. To see that (a) holds,
fix E ∈ L+ and, with the help of (a)′, choose an F in L+(E) such that

mF (〈x∗, 1Lε
f〉) ≤ τε.

Next, since 〈x∗, f〉 is Lebesgue integrable, 〈x∗, 1Lε
f〉 is also Lebesgue inte-

grable and so there exists a gauge δ0 on [0, 1] with δ0 ≤ δ such that

|〈x∗, σ(1Lε
f,P)〉 −

∫
[0,1]

〈x∗, 1Lε
f〉 dλ| < ελ(F ),

for every McShane partition P of [0, 1] subordinate to δ0. Now fix a McShane
partition P0 of F subordinate to δ0. Then, by the Henstock Lemma, one has

|〈x∗, σ(1Lε
f,P0)〉 −

∫
F

〈x∗, 1Lε
f〉 dλ| ≤ ελ(F ),

whence

〈x∗, σ(1Lε
f,P0)〉 ≤

∫
F

〈x∗, 1Lε
f〉 dλ+ ελ(F ).
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Thus
mF (〈x∗, 1Lεf〉,P0) ≤ mF (〈x∗, 1Lεf〉) + ε ≤ τε + ε.

Thus (a) holds. Let us prove (b). Invoking again the Lebesgue integrability
of 〈x∗, f〉, we find a gauge δ′0 of [0, 1] with δ′0 ≤ δ such that

|〈x∗, σ(f,Q)〉 −
∫
[0,1]

〈x∗, f〉 dλ| < ε,

for every McShane partition Q of [0, 1] subordinate to δ′0. Now let {Ii : i =
1, ..., p} be any finite collection of non-overlapping sub-intervals of [0, 1] such
that λ(E) ≤ ηε, where E := ∪i=pi=1Ii, and select a McShane partition Q0 of
E \ Lε subordinate to δ′0. Then, by (b)′, we have∫

E\Lε

〈x∗, f〉 dλ ≤ ε whenever E ∈ L and λ(E) ≤ ηε.

Further, applying once again the Henstock Lemma we get

|〈x∗, σ(f,Q0)〉 −
∫
E\Lε

〈x∗, f〉 dλ| ≤ ε,

whence

〈x∗, σ(f,Q0)〉 ≤
∫
E\Lε

〈x∗, f〉 dλ+ ε ≤ 2ε.

This gives (b). Thus f is SLM-tight.

Remark 2.2. Actually the converse of Proposition 2.2 also holds, using
Lemma 3.2 to come in Section 3 via the next corollary.

Corollary 2.1. Let f : [0, 1] → X be a scalarly integrable function. If the
set {〈x∗, f〉 : x∗ ∈ BX∗} is equi-continuous, then f is SL-tight, and hence
SLM-tight.

Proof. Let ε > 0. By hypothesis, there exists ηε > 0 such that∫
A

|〈x∗, f〉| dλ ≤ ε, for all x∗ ∈ BX∗ ,

whenever A ∈ L and λ(A) ≤ ηε. This shows that f is SL-tight by taking
in Definition 2.6 τε = 1 and Lε = ∅. The SLM-tightness then follows from
Proposition 2.2.

Corollary 2.2. Let f : [0, 1] → X be a function. If it is Pettis integrable,
then it is also SL-tight, and hence SLM-tight.
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Proof. If f is Pettis integrable then {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly inte-
grable (see Section 2), and hence f is SL-tight, in view of Corollary 2.1.

Example 3. A (SM)-integrable function that is not SL-tight.

Proof. Let f : [0, 1] → c0 be the function defined in Example 2. We have
already seen that f is SM-integrable, and now we want to prove that it is
not SL-tight. Proceeding by contradiction, assume that f is SL-tight. Let
0 < ε < 1 be fixed and let τε and ηε be the positive real numbers correspond-
ing to ε in Definition 2.6. Let (e∗n) be the nth unit vector in `1. Then to each
n ≥ 1 corresponds a measurable set Ln,ε such that

(2.1) For each n ≥ 1 and each set E in L+, there is an F in L+(E) (which
may depends on n) such that∫

F∩Ln,ε

〈e∗n, f〉 dλ ≤ τελ(F ).

(2.2)

∫
E\Ln,ε

〈e∗n, f〉 dλ ≤ ε whenever E ∈ L and λ(E) ≤ ηε.

We distinguish two cases.

Case 1). Suppose there exists n0 ≥ 1 such that λ(I1n ∩ Ln,ε) > 0 for all
n ≥ n0. Then applying (2.1) for each En := I1n ∩ Ln,ε we find Fn ⊂ I1n ∩ Ln,ε
with λ(Fn) > 0 such that∫

Fn∩Ln,ε

〈e∗n, f〉 dλ =

∫
Fn

〈e∗n, f〉 dλ = 2n(n+ 1)λ(Fn) ≤ τελ(Fn),

for every n ≥ n0, a contradiction. We turn now to the second case.

Case 2). Suppose now there exists a strictly increasing sequence (kn) of posi-
tive integers such that λ(I1kn ∩ Lkn,ε) = 0, for all n ≥ 1. We then have∫

I1kn
\Lkn,ε

〈e∗kn , f〉 dλ =

∫
I1kn

〈e∗kn , f〉 dλ = 2kn(kn + 1)
1

2kn(kn + 1)
= 1,

for every n ≥ 1. On the other hand, since λ(I1kn) tends to zero as n tends to
infinity, there exists an index m such that λ(I1km) ≤ ηε. Thus, by (2.2), we
have ∫

I1km
\Lkm,ε

〈e∗km , f〉 dλ ≤ ε < 1,
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which contradicts the last calculation.

Proposition 2.3. If f : [0, 1] → X is a scalarly integrable function, then for
every ε > 0, there exist τε > 0, and a measurable set Lε with λ([0, 1] \Lε) ≤ ε
such that

(a)′′ sup
x∗∈BX∗

mE(|〈x∗, 1Lε
f〉|) ≤ τε for all E ∈ L+.

Proof. Let ε > 0. For each ` ≥ 1, set

A` := {t ∈ [0, 1] : ‖f(t)‖ ≤ `}.

Then λ([0, 1] \ ∪`≥1A`) = 0 so there is an `ε ≥ 1 such that λ∗(A`ε) ≥ 1 − ε,
where λ∗ stands for the outer measure induced by λ. Let Lε ∈ L be such that
A`ε ⊂ Lε and λ(Lε) = λ∗(A`ε) (equivalently Lε is a measurable envelope of
A`ε , that is, A`ε ⊂ Lε and λ(E ∩ Lε) = λ∗(E ∩ A`ε) for every E ∈ L). Then,
as f is scalarly integrable and for t ∈ A`ε , |〈x∗, f(t)〉| ≤ `ε for all x∗ ∈ BX∗ ,
we have ∫

E∩Lε

|〈x∗, f〉| dλ ≤ `ελ(E ∩ Lε) ≤ `ελ(E) := τελ(E)

for every x∗ ∈ BX∗ and for every E ∈ L+, thereby proving (a)′′.

With the help of Proposition 2.3, Corollary 2.1 can be improved as follows.

Proposition 2.4. Let f : [0, 1] → X be a scalarly integrable function. If the
set {〈x∗, f〉 : x∗ ∈ BX∗} is equi-continuous, then the following property (which
is stronger than the SL-tightness condition) is satisfied.

For each ε > 0 there exist τε > 0 and a measurable set Lε with λ([0, 1]\Lε) ≤ ε
such that

(a)′′ sup
x∗∈BX∗

mE(|〈x∗, 1Lεf〉|) ≤ τε for all E ∈ L+.

(b)′′ sup
x∗∈BX∗

∫
[0,1]\Lε

|〈x∗, f〉| dλ ≤ ε.

Consequently, the set {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable.
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Proof. Fix ε > 0. By the equi-continuity of f , there exists 0 < ηε ≤ ε such
that for each E ∈ L with λ(E) ≤ ηε we have

sup
x∗∈BX∗

∫
E

|〈x∗, f〉| dλ ≤ ε.

On the other hand, by Proposition 2.3, there exist τε > 0, and a measurable
set Lε with λ([0, 1] \ Lε) ≤ ηε for which (a)′′ is satisfied. Moreover, it is plain
that property (b)′′ is also satisfied, in virtue of the inequality above. At last,
since (a)′′ and (b)′′ imply

sup
x∗∈BX∗

∫
[0,1]

|〈x∗, f〉| dλ <∞,

we conclude that the set {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable, since it
is equi-continuous by hypothesis.

3 From scalar McShane integrability to Pettis integra-
bility

The concept of SLM-tightness, introduced above, allows us to pass from scalar
McShane integrability to Pettis integrability as the following theorem shows.

Theorem 3.1. A function f : [0, 1]→ X is Pettis integrable if and only if
(i) f is SM-integrable
(ii) f is SLM-tight.

The proof of Theorem 3.1 involves the two following lemmas. The first one is
an exhaustion lemma. It is the key step in the proof that (i) and (ii) imply
the Pettis integrability of f . We need some extra definitions ([3]).

Given a measurable subset E of [0, 1], a generalized McShane partition of E
is a countable collection {(Ai, ti) : i ≥ 1} such that {(Ai, ti) : 1 ≤ i ≤ m} is
a partial McShane partition in E for each m ≥ 1, and λ(E \ ∪∞i=1Ai) = 0. A
generalized McShane partition {(Ai, ti) : i ≥ 1} is subordinate to a gauge δ
on [0, 1] if Ai ⊂ (ti − δ(ti), ti + δ(ti)) for every i ≥ 1.

Lemma 3.1. Let f : [0, 1]→ R be a locally τ -upper McShane-bounded function
for some τ > 0 and L be a member of L+. Then, given any gauge δ on [0, 1],
there exists a generalized McShane partition {(Ai, ti) : i ≥ 1} of L subordinate
to δ such that

f(ti) ≤ τ for all i ≥ 1.
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Proof. The proof is an exhaustion-type argument in the spirit of [16]. Fix a
gauge δ on [0, 1].

Let A1 denote the collection of subsets B ∈ L+(L) such that there is t ∈ [0, 1]
for which

B ⊂ (t− δ(t), t+ δ(t)) and f(t) ≤ τ.

Since f is locally τ -upper McShane-bounded, there is an F in L+(L) and a
McShane partition P := {(Bi, ui) : 1 ≤ i ≤ m} of F subordinate to δ such
that

1

λ(F )

i=m∑
i=1

λ(Bi)f(ui) ≤ τ.

So there exists i ∈ {1, ...,m} such that

Bi ⊂ (ui − δ(ui), ui + δ(ui)) and f(ui) ≤ τ.

Thus the collection A1 is not empty. If there is a set B ∈ A1 with λ(L\B) = 0,
then we are finished. Otherwise, let `1 be the smallest positive integer for
which there is a set A1 ∈ A1 with 1

`1
≤ λ(A1) < λ(L). Accordingly, there is

t1 ∈ [0, 1] such that

(†) A1 ⊂ (t1 − δ(t1), t1 + δ(t1)) and f(t1) ≤ τ.

Observe that necessarily `1 > 1, because 1
`1
< λ(L) ≤ 1.

Let A2 denote the collection of subsets B ∈ L+(L \ A1) such that there is
t ∈ [0, 1] for which

(††) B ⊂ (t− δ(t), t+ δ(t)) and f(t) ≤ τ.

Since f is locally τ -upper McShane-bounded, we see that A2 is not empty. If
there is a set B ∈ A2 with λ(L\(A1∪B)) = 0, then we are finished. For in this
case, the conclusion of the Lemma holds in view of (†) and (††). Otherwise,
let `2 be the smallest positive integer strictly greater than 1 for which there is
a set A2 ∈ A2 with 1

`2
≤ λ(A2) < λ(L \ A1). Accordingly, there is t2 ∈ [0, 1]

such that
A2 ⊂ (t2 − δ(t2), t2 + δ(t2)) and f(t2) ≤ τ.

Continue in this way. If the process stops in a finite numbers of steps then we
are finished. If the process does not stop, then we obtain a countable family
(Ai) of pairwise disjoint measurable subsets of L and a sequence (ti) in [0, 1]
such that

Ai ⊂ (ti − δ(ti), ti + δ(ti)),
1

`i
≤ λ(Ai) < 1 and
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f(ti) ≤ τ for all i ≥ 1.

(`i being the smallest positive integer strictly greater than 1 for which there
is a set B ∈ Ai with 1

`i
≤ λ(B) < λ(L)).

Set A∞ := ∪∞i=1Ai. We claim that λ(L \ A∞) = 0. Indeed, if λ(L \ A∞) > 0,
then the local τ -upper McShane-boundedness insures the existence of B ∈ L+

contained in L \A∞ and t ∈ [0, 1] such that

B ⊂ (t− δ(t), t+ δ(t)) and f(t) ≤ τ.

Since for each positive integer n

i=n∑
i=1

1

`i
≤ λ(∪i=ni=1Ai) ≤ 1

and `n > 1, we can choose an integer n ≥ 1 such that

1

`n − 1
≤ λ(B).

As

B ⊂ L \A∞ ⊂ L \ ∪i=n−1i=1 Ai,

we conclude that B is a member of An. This contradicts the definition of `n.
Thus λ(L \A∞) = 0 as claimed.

Lemma 3.2. Let f : [0, 1]→ X be a function. If it is scalarly integrable and
SLM-tight, then {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable.

Proof. Let τε and ηε be the positive real numbers corresponding to ε in Def-
inition 2.5, and x∗ ∈ BX∗ be arbitrary fixed. Then there exists a measurable
set Lε such that
(3.1) 〈x∗, 1Lεf〉 is locally τε-upper McShane-bounded.

(3.2) Given any gauge δ on [0, 1] and any finite collection {Ii : i = 1, ..., p} of

non-overlapping sub-intervals of [0, 1] with
∑i=p
i=1 λ(Ii) ≤ ηε we have

〈x∗, σ(f,P)〉 ≤ ε,

for some McShane partition P of ∪i=pi=1Ii \ Lε subordinate to δ.
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Next, as 〈x∗, 1Lεf〉 and 〈x∗, f〉 are Lebesgue integrable on [0, 1], we may select
a gauge δ0 on [0, 1] such that

(3.3) |〈x∗, σ(1Lε
f,P)〉 −

∫
[0,1]

〈x∗, 1Lε
f〉 dλ| < ε

16
and

(3.4) |〈x∗, σ(f,P)〉 −
∫
[0,1]

〈x∗, f〉 dλ| < ε

32
,

for every McShane partition P of [0, 1] subordinate to δ0. Now, in view of
(3.1), Lemma 3.1 insures the existence of a generalized McShane partition
{(Ai, ti) : i ≥ 1} of Lε subordinate to δ0 such that

(3.5) 〈x∗, 1Lεf(ti)〉 ≤ τε for all i ≥ 1.

Next, put ζε := min( ε
8τε
, ηε) and select a measurable set E of the form E :=

∪i=pi=1Ii such that λ(E) ≤ ζε, where {Ii : i = 1, ..., p} is a finite collection of
non-overlapping sub-intervals of [0, 1]. Then by (3.2), there exists a McShane
partition P ′ of E \ Lε adapted to δ0 such that

(3.6) 〈x∗, σ(f,P ′)〉 ≤ ε

32
.

Now taking into account (3.3) and (3.4), the Henstock-Saks Lemma applied
to the McShane partitions Pm := {(E ∩ Ai, ti) : 1 ≤ i ≤ m}, (m ≥ 1) and P ′
entails

|〈x∗, σ(1Lε
f,Pm)〉 −

∫
E∩∪i=m

i=1 Ai

〈x∗, 1Lε
f〉 dλ| ≤ ε

16
for all m ≥ 1 and

|〈x∗, σ(f,P ′)〉 −
∫
E\Lε

〈x∗, f〉 dλ| ≤ ε

32
.

Whence∫
E∩∪i=m

i=1 Ai

〈x∗, 1Lε
f〉 dλ ≤ 〈x∗, σ(1Lε

f,Pm)〉+
ε

16

≤ sup
i≥1
〈x∗, 1Lε

f(ti)〉
i=m∑
i=1

λ(E ∩Ai) +
ε

16

≤ τελ(E ∩ ∪i=mi=1 Ai) +
ε

16
(by (3.5))

≤ τελ(E) +
ε

16
≤ 3ε

16
,



From Scalar McShane Integrability to Pettis Integrability 459

(because λ(E) ≤ ε
8τε

) for every m ≥ 1 and∫
E\Lε

〈x∗, f〉 dλ ≤ 〈x∗, σ(f,P ′)〉+
ε

32
≤ ε

16
,

by (3.6). Adding the two previous inequalities, we get∫
E∩∪i=m

i=1 Ai

〈x∗, 1Lεf〉 dλ+

∫
E\Lε

〈x∗, f〉 dλ ≤ ε

4
.

This yields∫
E

〈x∗, f〉 dλ = lim
m→∞

∫
E∩∪i=m

i=1 Ai

〈x∗, 1Lε
f〉 dλ+

∫
E\Lε

〈x∗, f〉 dλ ≤ ε

4
,

since (∪i=mi=1 Ai) is an increasing sequence with union Lε λ-a.e. At last, recalling
that a measurable set is an Gσ set and that an open set is expressible as a
countable union of subintervals, it is easy to check that

|
∫
E

〈x∗, f〉 dλ| ≤ ε

4
whenever E ∈ L and λ(E) ≤ ζε,

and thus
∫
E
|〈x∗, f〉| dλ ≤ 4. ε4 = ε, by a standard inequality for scalar measures

(see for instance [1], p.97). Since this holds for all x∗ ∈ BX∗ , we conclude that
{〈x∗, f〉 : x∗ ∈ BX∗} is equi-continuous. In turn, by Proposition 2.4, the
desired conclusion follows.

Proof of Theorem 3.1. The implication in one direction follows from Propo-
sition 2.1 (2) and Corollary 2.2. As for the other direction, suppose that f
satisfies conditions (i) and (ii) of Theorem 3.1. Condition (i) and Proposition
2.1 give that f is Dunford integrable and (D)-

∫
[a,b]

f dλ ∈ X for every interval

[a, b] ⊂ [0, 1]. Further, since f is also SLM-tight (by (ii)), Lemma 3.2 shows
that {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable, therefore equi-continuous.
It follows that for every ε > 0, there is an η > 0 such that

‖(D)-

∫
E

f dλ‖ ≤
∫
E

|〈x∗, f〉| dλ ≤ ε for all x∗ ∈ X∗,

whenever λ(E) ≤ η. Consequently, it is possible to invoke Proposition 2B of
[4], which shows that f is Pettis integrable.

Every scalarly locally τ -upper McShane-bounded function is SLM-tight.
So we have the following.
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Corollary 3.1. Let f : [0, 1] → X be a function. If the following two condi-
tions holds
(i) f is SM-integrable
(ii)+ f is scalarly locally τ -upper McShane-bounded for some τ > 0,
then f is Pettis integrable.

4 A convergence theorem

In this section we provide a convergence result for the scalar McShane integral
analogous to the one we have for the Pettis integral (see [5] and [10]), based
on the following sequential version of the SLM-tightness.

Definition 4.1. A sequence (fn) of functions from [0, 1] into X is said to be
uniformly SLM-tight if for each ε > 0 there exist τε > 0 and ηε > 0 such that
for every x∗ ∈ BX∗ , there exists a measurable set Lε such that

(1) (〈x∗, 1Lεfn〉) is locally τε-upper McShane-bounded for each n ≥ 1.
(2) Given any sequence (δn) of gauges on [0, 1] and any finite collection {Ii :

1 ≤ i ≤ p} of non-overlapping sub-intervals of [0, 1] with
∑i=p
i=1 λ(Ii) ≤ ηε we

have
lim inf
n→∞

〈x∗, σ(fn,Pn)〉 ≤ ε,

for some sequence of McShane partitions (Pn) of ∪i=pi=1Ii \Lε adapted to (δn),
that is, Pn is subordinate to δn for each n ≥ 1.

Theorem 4.1. Let f : [0, 1]→ X be a scalarly integrable function. If there is
a sequence (fn) of SM-integrable functions from [0, 1] into X such that

(j) (fn) is uniformly SLM-tight, and
(jj) limn→∞

∫
I
〈x∗, fn〉 dλ =

∫
I
〈x∗, f〉 dλ for each x∗ ∈ BX∗ and each interval

I ⊂ [0, 1],

then f is Pettis integrable.

Corollary 4.1. Let τ > 0 and let f : [0, 1]→ X be a scalarly integrable func-
tion. If there is a sequence (fn) of SM-integrable functions from [0, 1] into X
such that

(j)+ fn is scalarly locally τ -upper McShane-bounded for each n ≥ 1, and
(jj) limn→∞

∫
I
〈x∗, fn〉 dλ =

∫
I
〈x∗, f〉 dλ for each x∗ ∈ BX∗ and each interval

I ⊂ [0, 1],
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then f is SM-integrable.

For the proof of Theorem 4.1 we need the following lemma.

Lemma 4.1. Let f : [0, 1] → X be a scalarly integrable function. Suppose
there exists a uniformly SLM-tight sequence (fn) of scalarly integrable func-
tions from [0, 1] to X such that

lim
n→∞

∫
I

〈x∗, fn〉 dλ =

∫
I

〈x∗, f〉 dλ

for each x∗ ∈ BX∗ and each interval I ⊂ [0, 1]. Then the set {〈x∗, f〉 : x∗ ∈
BX∗} is uniformly integrable.

Proof. Let τε and ηε be the positive real numbers corresponding to ε in
Definition 4.1 and x∗ ∈ BX∗ be arbitrary fixed. Then there exists a measurable
set Lε such that
(4.1) (〈x∗, 1Lεfn〉) is locally τε-upper McShane-bounded for each n ≥ 1.

(4.2) Given any sequence (δn) of gauges on [0, 1] and any finite collection

{Ii : 1 ≤ i ≤ p} of non-overlapping sub-intervals of [0, 1] with
∑i=p
i=1 λ(Ii) ≤ ηε

we have
lim inf
n→∞

〈x∗, σ(fn,Pn)〉 ≤ ε

for some sequence of McShane partitions (Pn) of ∪i=pi=1Ii \Lε adapted to (δn).

Next, as for each n ≥ 1 the functions 〈x∗, 1Lε
fn〉 and 〈x∗, fn〉 are Lebesgue

integrable on [0, 1], one can find a gauge δn on [0, 1] such that

(4.3) |〈x∗, σ(1Lε
fn,P)〉 −

∫
[0,1]

〈x∗, 1Lε
fn〉 dλ| <

ε

16
and

(4.4) |〈x∗, σ(fn,P)〉 −
∫
[0,1]

〈x∗, fn〉 dλ| <
ε

32

for every McShane partition P of [0, 1] subordinate to δn. Now, according to
(4.1), Lemma 3.1 provides, for each n ≥ 1, a generalized McShane partition
{(An,i, tn,i) : i ≥ 1} of Lε subordinate to δn such that

(4.5) 〈x∗, 1Lε
f(tn,i)〉 < τε, for all i ≥ 1.

Next, put ζε := min( ε
8τε
, ηε) and select a measurable set E of the form E :=

∪i=pi=1Ii such that λ(E) ≤ ζε, where {Ii : i = 1, ..., p} is a finite collection of
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non-overlapping sub-intervals of [0, 1]. Then, by (4.2), there exists a sequence
of McShane partitions (P ′n) of E \ Lε adapted to (δn) such that

(4.6) lim inf
n→∞

〈x∗, σ(fn,P ′n)〉 ≤ ε

32
.

Now, in view of (4.3) and (4.4), the classical Henstock-Saks Lemma applied
to the partial McShane partitions Pn,m := {(E ∩ An,i, tn,i) : 1 ≤ i ≤ m} and
P ′n (m,n ≥ 1) gives

|〈x∗, σ(1Lε
fn,Pn,m)〉 −

∫
E∩∪i=m

i=1 An,i

〈x∗, 1Lε
fn〉 dλ| ≤

ε

16
; and

|〈x∗, σ(fn,P ′n)〉 −
∫
E\Lε

〈x∗, fn〉 dλ| ≤
ε

32

for every m,n ≥ 1. Whence,∫
E∩∪i=m

i=1 An,i

〈x∗, 1Lε
fn〉 dλ ≤ 〈x∗, σ(1Lε

fn,Pmn )〉+
ε

16

≤ sup
i≥1
〈x∗, 1Lε

fn(ti)〉
i=m∑
i=1

λ(E ∩An,i) +
ε

16

≤ τελ(E ∩ ∪i=mi=1 An,i) +
ε

16
(by (4.5))

≤ τελ(E) +
ε

16
≤ 3ε

16
,

(because λ(E) ≤ ε
8τε

) and∫
E\Lε

〈x∗, fn〉 dλ ≤ 〈x∗, σ(fn,P ′n)〉+
ε

32

for every m,n ≥ 1. Adding the two previous inequalities, we get∫
E∩∪i=m

i=1 An,i

〈x∗, fn〉 dλ+

∫
E\Lε

〈x∗, fn〉 dλ ≤ 〈x∗, σ(fn,P ′n)〉+
7ε

32

for every m,n ≥ 1. This yields∫
E

〈x∗, fn〉 dλ =

∫
E∩Lε

〈x∗, fn〉 dλ+

∫
E\Lε

〈x∗, fn〉 dλ

= lim
m→∞

∫
E∩∪i=m

i=1 An,i

〈x∗, fn〉 dλ+

∫
E\Lε

〈x∗, fn〉 dλ

≤ 〈x∗, σ(fn,P ′n)〉+
7ε

32
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for every n ≥ 1. Since, by hypothesis, limn→∞
∫
E
〈x∗, fn〉 dλ =

∫
E
〈x∗, f〉 dλ,

it follows from the previous inequality and (4.6) that∫
E

〈x∗, f〉 dλ ≤ lim inf
n→∞

〈x∗, σ(fn,P ′n)〉+
7ε

32
≤ ε

4
.

Finally, to obtain the desired conclusion, it suffices to repeat the arguments
used at the end of the proof of Lemma 3.2.

Proof of Theorem 4.1. It is a direct consequence of Lemma 4.1 and the
following version for the SM-integral of a well known result of Geitz ([5],
Theorem 3). See also ([10], Theorem 1).

Theorem 4.2. Let f : [0, 1] → X be a function satisfying the following two
conditions

(j) {〈x∗, f〉 : x∗ ∈ BX∗} is uniformly integrable.
(jj) There exists a sequence (fn) of SM- integrable functions from [0, 1] into X
such that limn→∞

∫
I
〈x∗, fn〉 dλ =

∫
I
〈x∗, f〉 dλ for each subinterval I of [0, 1].

Then f is SM-integrable. Consequently, f is Pettis integrable.

Proof. Repeating mutatis mutandis the arguments of the proof of Theorem
3 in [5] (or Theorem 1 in [10]), we see that f is SM-integrable, therefore
Dunford integrable and (D)-

∫
[a,b]

f dλ ∈ X for every interval [a, b] ⊂ [0, 1].

Further, the set {〈x∗, f〉 : x∗ ∈ BX∗} is equi-continuous, since it is uniformly
integrable (by (j)). It follows that for every ε > 0, there is an η > 0 such that

‖(D)-

∫
E

f dλ‖ ≤
∫
E

|〈x∗, f〉| dλ ≤ ε for all x∗ ∈ X∗,

whenever λ(E) ≤ η. Consequently, according to Proposition 2B of [4], f is
Pettis integrable.
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