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THE HAUSDORFF DIMENSION OF THE
GENERALIZED LEVEL SETS OF TAKAGI’S

FUNCTION

Abstract

In this note we prove that 1/2 is an upper bound for the Hausdorff
dimension of the intersection of the graph of Takagi’s function with any
line of integer slope.

1 Introduction

The existence of continuous nowhere differentiable functions was an open prob-
lem during a part of the 19th century until 1872 when Weierstrass gave the
first example. Three decades afterwards, in 1903, Takagi proposed one of the
simplest examples of a continuous nowhere differentiable function as follows:

T (x) =

+∞∑
k=0

d
(
2kx
)

2k
, for all x ∈ [0, 1],
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where d(t) is the distance from t to the nearest integer. For properties and a
wide list of references on T we refer the reader to [1, 4]. In the sequel τ :=
{(x, T (x)) : 0 ≤ x ≤ 1} will denote the graph of T . In the last years, the level
sets and the generalized level sets of T, respectively Ly := {x : T (x) = y, 0 ≤ x ≤ 1} ,
and Lm,r := {(x, y) ∈ τ : y = mx+ r} , with m ∈ Z and r ∈ R have been stud-
ied; and the following result has been recently proved.

Theorem 1 ([2, Th. 3.4]). The Hausdorff and upper box-counting dimensions
of the level sets Ly of Takagi’s function are, at most, 1/2.

This paper is a sequel to [2], which approaches the study of the Hausdorff
dimension of the sets Lm,r of the Takagi function via its self-affinity. We show
that Theorem 1 in [2] remains true for Lm,r.

Let us consider the following subsets of Lm,r:

L1
m,r : =

{
(x, y) ∈ τ : 0 ≤ x ≤ 1

2
, y = mx+ r

}
,

L2
m,r : =

{
(x, y) ∈ τ :

1

2
≤ x ≤ 1, y = mx+ r

}
,

L3
m,r : =

{
(x, y) ∈ τ :

1

4
≤ x ≤ 1

2
, y = mx+ r

}
,

2 The result

In order to prove our result, we will use the self-similarity property of the
graph of Takagi function together with the following auxiliary results.

Lemma 2. Let T be the Takagi function. Let us consider the maps A(x, y) =
(2x, 2(y − x)) and B(x, y) = (4x− 1, 4y − 2). Then we have:

i. A maps bijectively
{

(x, T (x)) : 0 ≤ x ≤ 1
2

}
onto τ.

ii. A maps the straight line y = mx+ r to y = (m− 1)x+ 2r.

iii. A is bi-Lipschitz.

iv. B−1 is a similarity that maps τ onto
{

(x, T (x)) : 1
4 ≤ x ≤

1
2

}
.

v. B−1 maps the straight line y = mx+ r to y = mx+ r−m+2
4 .

Theorem 3. The Hausdorff and upper box-counting dimensions of Lm,r are,
at most, 1/2.
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Proof. We proceed by induction on m. By Theorem 1 the result holds for
m = 0. Let us suppose that dimH (Lm−1,r) ≤ 1/2 for a positive integer m and
any real r. Because A is bi-Lipschitz (see Corollary 2.4 in [3]),

dimH

(
L1
m,r

)
= dimH (Lm−1,2r) ≤ 1/2.

If L2
m,r 6= ∅, then by arguments of self-similarity, applying B−1 to τ and

to the straight line y = mx+ r:

dimH

(
L2
m,r

)
= dimH

(
L3
m, r−m+2

4

)
≤ dimH

(
L1
m, r−m+2

4

)
≤ 1/2.

Since dimH

(
L1
m,r

)
≤ 1/2 and dimH

(
L2
m,r

)
≤ 1/2, we conclude that

dimH (Lm,r) ≤ 1/2.

By symmetry of T with respect to 1/2, the result follows for negative
integers m as well. The same argument applies to the upper box-counting
dimension.
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