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Abstract

We investigate the multi-fractal analysis of (large) convolution pow-
ers of probability measures on R. If the measure µ satisfies (N) suppµ =
[0, N ] for some N , then under weak assumptions there is an isolated
point in the multi-fractal spectrum of µn for sufficiently large n. A for-
mula is found for the limiting behaviour (as n→∞) of the Lq-spectrum
of µn and this is related to the limit of the energy dimension of µn when
q ≥ 1.

1 Introduction

For a probability measure µ, by the local dimension of µ at x in its support,
we mean the value

dimµ(x) := lim
r→0+

logµ(B(x, r))

log r
,

provided this limit exists. For measures that are not ‘uniform’ it is of interest
to determine which values arise as local dimensions, the so-called multi-fractal
spectrum, and to calculate fµ(α) = dimH{x : dimµ(x) = α}, the dimension
spectrum. These spectra have been calculated for many classes of measures,
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including self-similar measures which satisfy the open set condition and p-
Cantor measures on central Cantor sets which satisfy an analogous separation
condition (c.f. [2], [4], [12], [16]). For these classes of measures the multi-
fractal spectrum is a closed interval and the function fµ(α) is the Legendre
transform of the Lq-spectrum, τµ(q), defined as

τµ(q) := lim inf
r→0+

log(Sr,µ(q))

log r
with Sr,µ(q) := sup

∑
µ(B(xi, r))

q,

where {B(xi, r)}i is a countable family of disjoint balls centred at xi ∈ suppµ
(we call this a centred r -packing of suppµ) and the supremum is taken over
all such families. This is known as the multi-fractal formalism.

In surprising contrast, Hu and Lau in [13] discovered that the multi-fractal
spectrum of the three-fold convolution of the classical Cantor measure (a self-
similar measure not satisfying the OSC) is not an interval, but the union of
an interval and an isolated point, the local dimension at 0. Further examples
of self-similar measures exhibiting this phenomena were given by Shmerkin in
[18], while in [8] it was shown that for quite general Cantor measures µ, defined
on Cantor sets with ratios of dissection bounded away from zero, dimµn(0)
is isolated in the multi-fractal spectrum provided n is sufficiently large. An
important ingredient in the proof was the fact that such Cantor sets C have
the property that (N)C = [0, N ] for sufficiently large N . In the first theorem
of this paper we will show that this is the salient feature by proving that
dimµn(0) is always an isolated point in the multi-fractal spectrum of µn for
sufficiently large n, provided that µ is a continuous, probability measure on
[0, 1] with (N)suppµ = [0, N ] for some N , dimµ(0) > 0 and sup dimµ(x) <∞.

For self-similar measures which do not satisfy the OSC determining the Lq-
spectrum is quite difficult. This has been done in [7], [14] and [18] for the three-
fold convolution of the Cantor measure and small numbers of convolutions of
certain other examples of self-similar measures.

Here we investigate what happens when the number of convolution powers
is very large. We show that if µ is any compactly supported, probability
measure on R and q ≥ 0, then limn→∞ τµn(q) exists. When q ≥ 1, this limit
is equal to K(q − 1) where K is the limit of the energy dimensions of µn.
All values of K ∈ [0, 1] are possible and K = 1 in many important examples,
including the Cantor measure and the self-similar measures studied in [18].
If q < 0, the results are not as complete. However we do show that if µ is
a probability measure whose support is [0, 1], then for q ≤ −1, the limit of
τµn(q)−nq dimµ(0) exists, and equals 0 for the standard Cantor measure and
other similar examples.
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2 Isolated points in the multi-fractal spectrum of convo-
lutions of measures

By a measure we mean a compactly supported, finite, positive measure on R.
Given a measure µ, we write µn to denote the n ’th convolution power of µ. As
the functions of interest to us are unchanged under rescaling of the measure,
there is no loss in assuming the measures are probability measures. In some
cases we assume the measure is continuous, meaning non-atomic.

Definition 1. The upper local dimension of a measure µ at x ∈ suppµ is
defined as

dimµ(x) = lim sup
r→0+

logµ(B(x, r))

log r
.

The lower local dimension is defined similarly. If the upper and lower local
dimensions are equal we write dimµ(x) and call this the local dimension of µ
at x.

We begin by proving that many measures have the property that suffi-
ciently large convolutions of the measure has isolated points in the set of its
upper local dimensions. By the notation (N)suppµ we mean the N -fold sum
of suppµ.

Theorem 1. Suppose µ is a continuous, probability measure supported on
[0, 1] with sup{dimµ(x) : x ∈ suppµ} < ∞ and dimµ(0) > 0. In addition,
assume that 0, 1 ∈ suppµ and (N)suppµ = [0, N ] for some N .

(i) There exists a positive integer N0 such that for all n ≥ N0, dimµn(0)
is isolated in the set of upper local dimensions of µn.

(ii) There exist N0 ∈ N and q0 < 0 such that if q < q0, n ≥ N0 and δ > 0,
then

τµn(q) = lim inf
r→0+

log(S′r(q))

log r
with S′r(q) = sup

∑
µn(B(xi, r))

q,

where {B(xi, r)}i is a centred r-packing of [0, δ] ∪ [n− δ, n].

We begin with a lemma.

Lemma 1. Suppose µ, ν are measures with suppν = [0, n] and 0, 1 ∈ suppµ ⊆
[0, 1].

(i) If dimν(x) ≤ λ < ∞ for all x ∈ [0, n], then dimν ∗ µ(z) ≤ λ for all
z ∈ (0, n+ 1).

(ii) If, in addition, µ is a continuous measure, the same conclusion holds
under the weaker assumption that dimν(x) ≤ λ for all x ∈ (0, n).
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Proof. (i) Fix z ∈ (0, n + 1) and let I = [0, 1] ∩ [z − n, z]. Note that if
x ∈ I, then z − x ∈ [0, n] and (at least) one of 0, 1 ∈ I. Since z 6= 0, n + 1, I
has non-empty interior. We have µ(I) = δ > 0 since both 0, 1 belong to the
support of µ.

Fix ε > 0. Since dimν(z−x) ≤ λ for every x ∈ I, by continuity of measure
there exists A ⊆ I and r0 such that µ(A) ≥ δ/2 and

log ν(B(z − x, r))
log r

≤ λ+ ε

for all r ≤ r0 and for all x ∈ A. Equivalently, ν(B(z − x, r)) ≥ rλ+ε for all
r ≤ r0 and x ∈ A. Thus, for all r ≤ r0,

ν ∗ µ(B(z, r)) =

∫
ν(B(z − x, r))dµ(x) ≥

∫
A

ν(B(z − x, r))dµ(x)

≥
∫
A

rλ+εdµ(x) ≥ rλ+εδ/2.

This clearly implies dimν ∗µ(z) ≤ λ+ ε and as ε > 0 was arbitrary, the result
follows.

(ii) The same conclusion holds for a continuous measure µ under the weaker
assumption that dimν(x) ≤ λ for all x ∈ (0, n) because∫

A

ν(B(z − x, r))dµ(x) =

∫
A\{z−n,z}

ν(B(z − x, r))dµ(x).

Here is another useful general fact.

Lemma 2. If ν is a measure supported on [0, 1], then dimνm(0) = mdimν(0).

Proof. Since x1+· · ·+xm ∈ B(0, r) whenever xj ∈ B(0, r/m), it follows that
νm(B(0, r)) ≥ (ν(B(0, r/m)))m. Conversely, since suppν ⊆ [0, 1], x1 + · · · +
xm ∈ B(0, r) only if xj ∈ B(0, r) for all j. Thus νm(B(0, r)) ≤ (ν(B(0, r)))

m

and so

m log(ν(B(0, r))

log r
≤ log νm(B(0, r))

log r
≤ m log ν(B(0, r/m))

log r
.

Now take the lim sup as r → 0+.
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Proof of Theorem. (i) It is shown in [8] that if xj ∈ suppµ and x =∑n
j=1 xj , then dimµn(x) ≤

∑n
j=1 dimµ(xj). Consequently, if dimµ(x) ≤ λ

for all x ∈ suppµ, then dimµN (x) ≤ Nλ for all x ∈ [0, N ].
As µ is a positive measure, the hypothesis (N)suppµ = [0, N ] implies

suppµN = [0, N ]. An application of Lemma 1 shows that dimµN+1(x) ≤ Nλ
for all x ∈ (0, N + 1).

Moreover, suppµN+1 = [0, N + 1]. Because µ is a continuous measure, this
is enough to again apply the lemma, and by repeated application we deduce
that dimµN+m(x) ≤ Nλ for all positive integers m and for all x ∈ (0, N +m).

Since Lemma 2 implies dimµn(0) → ∞ as n → ∞, the first part of the
theorem holds.

(ii) Let α = dimµ(0) and sup{dimµ(x) : x ∈ suppµ} = λ. Choose N0 > N
and s such that N0α > s > Nλ. Given any fixed n ≥ N0, let

Aj = {x : min{µn(B(x, r)), µn(B(n− x, r))} ≥ rs for all r < 1/j} .

The sets Aj are nested and symmetric about n/2. As explained in the first
part of the proof, dimµn(x) ≤ Nλ < s for all x ∈ (0, n), thus ∪jAj ⊇ (0, n).
Consequently, we can find sets Aj ⊆ [0, n] whose Lebesgue measures are arbi-
trarily close to n. Standard arguments imply there is a choice of j such that
Aj +Aj contains an interval I ⊆ [0, 2n], centred at n, with measure as close to
2n as we desire. In particular, given any δ > 0, there is such a choice j with
(δ, 2n− δ) ⊆ I.

This ensures that if x ∈ (δ, 2n − δ), then there exist y1, y2 ∈ Aj with
x = y1 + y2. If r/2 < 1/j, then

µ2n(B(x, r)) ≥ µn(B(y1, r/2))µn(B(y2, r/2)) ≥ 2−2sr2s.

Let {B(xi, r)} be any r-packing with centres in (δ, 2n− δ) and let q < 0. For
small r, there are at most 2n/r+ 1 ≤ 3n/r balls in any such r-packing, hence∑(

µ2n(B(xi, r))
)q ≤ 3n

r
2−2sqr2sq ≤ Cr2sq−1.

As 2nα = dimµ2n(0), if ε > 0 is fixed and r is sufficiently small,(
µ2n(B(0, r))

)q ≥ C ′r(α−ε)2nq.
If ε > 0 is chosen so that n(α − ε) > s, then for sufficiently negative q,
r2sq−1 << r(α−ε)2nq. This shows that the points in (δ, 2n−δ) do not contribute
to the Lq-spectrum of µ2n.

To handle odd convolution powers, observe that

µ2n+1(B(x, r)) ≥ µ2n(B(x, r/2))µ(B(0, r/2)) ≥ Cr2srα+ε

and argue similarly.



396 C. Bruggeman and K. E. Hare

Remark 1. We remark that q0 → 0 as N0 →∞.

Example 1. Let 0 < rk < 1/2. We call the set C{rk} a central Cantor set
with ratios of dissection {rk} if C{rk} =

⋂
Ck where C0 = [0, 1] and if Ck−1

is the union of 2k−1 closed intervals of length Rk−1 = r1 · · · rk−1, then Ck is
constructed by removing the middle open subintervals of length (1−2rk)Rk−1
from each of those intervals. The classical middle-third Cantor set is C{1/3}.

It is known that a central Cantor set C{rk} satisfies (N)C{rk} = [0, N ]
for some N if inf rk > 0 [3]. If µ is a p-Cantor measure with p 6= 1/2,
then dimµ(0) = (ln p)/c where c = lim inf( 1

k lnRk). Moreover, dimµ(x) ≤
max(ln p/c, ln(1− p)/c) for all x ∈ suppµ. As µ is a continuous measure, the
theorem implies that if inf rk > 0, then dimµn(0) is isolated in the set of upper
local dimensions of µn for sufficiently large n.

One might ask if the weaker assumption, inf Rk
1/k > 0 (which is equivalent

to saying C{rk} has positive Hausdorff dimension) would still guarantee the
existence of an isolated point in the spectrum of µn for large enough n. This is
not true. The central Cantor set C with rn = 3−k if n = k3 and 1/3 otherwise
is such an example. The details of this are omitted. We remark that this
Cantor set C also has the property that dimH(C + C) = 1.

3 The Lq-spectrum for convolutions of measures

3.1 Positive q

In this subsection we study the asymptotic behaviour of the Lq-spectrum of
µn for q ≥ 0. Intuitively, one would expect the Lq -spectrum to be controlled
by the balls of large measure when q ≥ 0. This leads us to introduce the
following notation:

κµ = lim inf
r→0+

(
log (supx µ(B(x, r)))

log r

)
.

As µ(B(x, r)) ≤ 1 for all probability measures µ, it is obvious that κµ ≥ 0.
Moreover, it is easy to see that κµ = 0 if µ is not continuous. More generally, if
suppµ ⊆ [−N,N ], then the ballsB(−N+jr, r), for j = 0, 1, . . . , [2N/r]+1 = J ,
cover suppµ. At least one of these balls must have µ-measure at least 1/J and
this implies κµ ≤ 1.

Theorem 2. Suppose µ is a compactly supported, probability measure and
q ≥ 0. Then

Lµ(q) := lim
n→∞

τµn(q)
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exists. If q ≥ 1, then Lµ(q) = Kµ(q − 1) ≤ q − 1, where the constant Kµ =
Lµ(2) is given by Kµ = limn κµ4n .

The proof requires several preliminary results. We will frequently write τn
or κn in place of τµn or κµn if µ is clear.

Lemma 3. If q ≥ 0, then −1 ≤ qκµ − 1 ≤ τµ(q) ≤ qκµ ≤ q.

Proof. Suppose suppµ ⊆ [−N,N ] and {B(xi, r)} is any centred r-packing.
Then

sup
i
µ(B(xi, r))

q ≤
∑

µ(B(xi, r))
q ≤ sup

x
µ(B(x, r))q(2N/r + 1).

Consequently, qκµ − 1 ≤ τµ(q) ≤ qκµ. The outer inequalities follow from the
comments preceding the statement of the theorem.

It is helpful to identify equivalent ways to define the Lq-spectrum when
q ≥ 0. Let

S(1)
r,µ(q) = sup

∑
i

µ(B(xi, r))
q and S(2)

r,x,µ(q) =
∑
i

µ(B(x+ ir, r))q,

where in the first case the supremum is taken over all countable r-packings
{B(xi, r)}i, but with xi not necessarily in suppµ. One can readily check that
following inequalities hold for any x: (note we suppress the dependence on µ
in the notation)

Sr(q) ≤ S(1)
r (q) ≤ 4S2r(q) and

S(2)
r,x(q) ≤ 2S(1)

r (q) ≤ 2q+1S(2)
r,x(q).

Consequently, the limiting behaviours of

log(Sr(q))

log r
,

log(S
(1)
r (q))

log r
and

log(S
(2)
r,x(q))

log r

are the same and any of these functions can be used to calculate τµ(q) for
q ≥ 0.

Lemma 4. Suppose µ and ν are probability measures. If q ≥ 1, then τµ∗ν(q) ≥
τµ(q). If 0 < q < 1, then τµ∗ν(q) ≤ τµ(q).
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Proof. Fix r > 0 and any r-packing {B(xi, r)}. If q ≥ 1, then an application
of Holder’s inequality shows that∑

i

µ ∗ ν(B(xi, r))
q =

∑
i

(∫
µ(B(xi − y, r))dν(y)

)q
≤
∑
i

(∫
µ(B(xi − y, r))qdν(y)

)
≤
∫
S(1)
r,µ(q)dν(y) = S(1)

r,µ(q).

Hence S
(1)
r,µ∗ν(q) ≤ S(1)

r,µ(q) and that proves the first inequality.

The second inequality is similar, but using S
(2)
r,x . The inequality is reversed

because we apply Holder’s inequality with exponent 1/q (and its dual index)
to
∫
µ(B(x+ ir, r))qdν(y).

Lemma 5. If µ is a symmetric probability measure, then κµ∗µ = dimµ ∗µ(0).

Proof. Fix r > 0 and define

Ij =


[−r, r], if j = 0,

(2jr − r, 2jr + r], if j > 0,

−I−j , if j < 0.

For notational ease, put zj = µ(Ij). As µ is symmetric, zj = z−j . We claim
that for any k and x ∈ Ik,

µ ∗ µ(B(0, 4r)) ≥
∑

zjz−j

≥ 1

5

(∑
zj+kz−j + zj+k−1z−j + zj+k+1z−j

+ zj+k+2z−j + zj+k−2z−j
)

≥ 1

5
µ ∗ µ(B(x, r)).

The second inequality is simply Cauchy Schwartz together with the fact that
zj = z−j . For the first, consider µ as the probability distribution of the
random variable X. Then µ ∗ µ is the probability distribution of X1 + X2,
where X1, X2 are independent random variables with the same distribution
as X. The collection {Ij} is a partition of R into disjoint intervals of length
2r. If X1 ∈ Ij and X2 ∈ I−j , then X1 + X2 ∈ B(0, 2r) ⊆ B(0, 4r), and this
happens with probability zjz−j . Summing gives the first inequality.
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For the third inequality, suppose x ∈ Ik. Then B(x, r) ⊆ Ik ∪ Ik−1 ∪ Ik+1.
Moreover, if X = X1 +X2, X1 ∈ Im and X ∈ Ij , then X2 ∈ Ij−m−1 ∪ Ij−m ∪
Ij−m+1. Thus if X ∈ Ik ∪ Ik−1∪ Ik+1, then for each choice of m with X1 ∈ Im
there are only five possible intervals to which X2 can belong.

From the claim we see that

1

5
sup
x
µ ∗ µ(B(x, r)) ≤ µ ∗ µ(B(0, 4r)) ≤ sup

x
µ ∗ µ(B(x, 4r)),

and that inequality establishes the lemma.

Corollary 1. If µ is a symmetric probability measure, then κµ4 = τµ∗µ(2).

Proof. Let ν = µ ∗µ. As ν is a symmetric probability measure, the previous
lemma implies it is enough to show that τν(2) = dimν ∗ ν(0). It is convenient
to use the integral formulation for the Lq-spectrum with q ≥ 0 ([6]):

τν(q) = lim inf
r→0+

log
(∫
ν(B(x, r))qdx

)
log r

− 1. (3.1)

By symmetry and similar reasoning to the proof of the first inequality of
the claim in the previous lemma,∫

ν(B(x, r))2dx =

∫
ν(B(x, r))v(B(−x, r))dx

=
∑
j

∫ r

−r
v(B(y + 2jr, r)ν(B(−y − 2jr, r))dy

≤
∫ r

−r
ν ∗ ν(B(0, 2r)dy = 2rν ∗ ν(B(0, 2r)).

Thus
log
(∫
ν(B(x, r))2dx

)
log r

− 1 ≥ log 2ν ∗ ν(B(0, r))

log r
.

Passing to the lim inf as r → 0+ shows τν(2) ≥ dimν ∗ ν(0).
On the other hand, if x1 ∈ B(y+ jr, r/2), then x1 + x2 ∈ B(0, r/2) only if

x2 ∈ B(−y−jr, r). Hence
∑
j v(B(y+jr, r)ν(B(−y−jr, r)) ≥ ν∗ν(B(0, r/2)).

The usual arguments then give the required equality.

Proof of Theorem. Lemmas 3 and 4 imply that for each q ≥ 0, τµn(q) is a
bounded monotonic sequence, and hence converges pointwise. It only remains
to verify that when q ≥ 1, then Lµ(q) = Kµ(q − 1), for Kµ as specified.

First, we argue it is enough to prove this for µ symmetric. To see this,
assume µ is an arbitrary, compactly supported, probability measure and put
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µ′(E) = µ(−E). Then ν = (µ + µ′)/2 is a symmetric, probability measure
and νn = 2−n

∑n
j=0

(
n
j

)
µj ∗ µ′n−j . Since aq + bq ∼ (a+ b)q when q is positive,

it is not hard to see that

τµ1+µ2(q) = min(τµ1(q), τµ2(q)) for q ≥ 0.

Lemma 4 implies that

τµj∗µ′n−j (q) ≥ max(τµj (q), τµ′n−j (q)) ≥ τµn/2(q).

Since also νn ≥ 2−nµn, we have τµn/2 ≤ τνn ≤ τµn . As τµn(q) and τµn/2(q)
converge to the same limit, so does τνn(q).

Hence we may assume µ is symmetric. It follows from Cor. 1 that

Lµ(2) = lim
n
τ2n(2) = lim

n
κ4n = Kµ.

Lemma 3 implies qKµ − 1 ≤ Lµ(q) ≤ qKµ.

Being a limit of concave functions, Lµ(q) is concave and hence has right
and left-hand derivatives everywhere. Let L′µ denote the right hand derivative.
If there exists q0 such that L′µ(q0) < Kµ, then by concavity L′µ(q) < Kµ for
all q > q0, and eventually Lµ(q) < Kµq − 1. Thus L′µ(q) ≥ Kµ for all q ≥ 0.

As τµ(1) = 0 for all probability measures µ, Lµ(2) − Lµ(1) = Kµ. If
L′µ(1) > Kµ, then L′µ(x) < Kµ for some x ∈ (1, 2) and that’s a contradiction.
Hence L′µ(1) = Kµ and since L′ is decreasing, L′µ(q) = Kµ for all q ≥ 1. One
can similarly argue that the left-hand derivatives of Lµ are also identically Kµ

at all q ≥ 1, hence Lµ is the linear function Lµ(q) = Kµ(q − 1).

That Lµ(q) ≤ q − 1 now follows from the fact that κν ≤ 1 for all ν.

Here is one class of examples where Lµ(q) = q − 1 for q ≥ 1. The multi-
fractal analysis of these measures is studied in detail in [1] and [18].

Proposition 1. Let d ≥ 3 be an integer. Suppose µ is the self-similar prob-
ability measure associated with the IFS {x/d + i/d, pi}i∈A where A ⊆ N is a
finite set that is not a singleton, and the probabilities pi are strictly positive
for i ∈ A. Then Lµ(q) = q − 1 for all q ≥ 1.

Proof. There is no loss of generality in assuming 0 ∈ A. Furthermore, re-
placing µ if necessary by the compressed measure that maps E 7−→ µ(r−1E)
for r = gcd(A), there is no loss in assuming gcd(A) = 1.

The measure µn is the self-similar measure arising from the IFS {x/d +

i/d, p
(n)
i }, for suitable probabilities p

(n)
i . For each n, let Zn = maxk

∑
j p

(n)
k+jd.
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Let X be a random variable with P (X = i) = pi and let X1, . . . , Xn be
independent random variables with the same distribution as X. Then

p
(n)
i = P (X1 + · · ·+Xn = i)

and ∑
j

p
(n)
k+jd = P (X1 + · · ·+Xn ≡ k mod(d).

Let Yn = X1 + · · · + Xnmod(d). Then (Yn)∞n=1 is an irreducible, aperiodic
Markov chain and hence it approaches a steady distribution. As the random
variables Yn+1− Yn are independent of Yn, this steady state is uniform. Thus
for each i = 0, . . . , d − 1, P (Yn = i) → 1/d and therefore Zn = P (Yn = k) →
1/d ([9, Thm. 11.7, 8])

Using the arguments of [1] it is not difficult to see that µn(B(x, d−k)) ≤
cnZ

k
n for an appropriate constant cn. Thus τµn(q) ≥ −q logZn/ log d − 1 for

q ≥ 0 and therefore Lµ(q) ≥ q− 1. But always Lµ(q) ≤ q− 1 for all q ≥ 1 and
therefore we have equality.

3.2 Lq-spectrum and energy dimension

In this subsection we will establish another formula for Kµ and investigate
when it equals one. First, note that it is clear from the integral formulation
of the Lq-spectrum (3.1) that for any measure µ,

τµ(2) = sup

{
a : lim sup

t→0

1

t1+a

∫
R

(µ(B(x, t)))2dx = 0

}
.

A Fourier transform formula can be deduced from this and Parseval’s theorem.

Proposition 2. If µ is any probability measure on supported on [0, 1], then
for 0 ≤ a < 1,

lim sup
t→0+

1

t1+a

∫ 1

0

(µ(B(x, t)))2dx ∼ lim sup
N→∞

1

N1−a

∫
|x|≤N

|µ̂(x)|2 dx

∼ lim sup
N→∞

1

N1−a

∑
|n|≤N

|µ̂(n)|2 ,

where in the first case µ is viewed as a measure on R and its Fourier transform
has domain R, and in the second case µ is viewed as a measure on the torus,
[0, 1], where 0 and 1 are identified, and its Fourier transform is defined on Z.
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Proof. The first relation is proven in [14] for the more general case of a
measure on Rn. Here we use a similar, but simpler, strategy to prove the
second. (The same methods give a simpler proof of the first relation for n = 1.)

Since µ(B(x, t)) = µ ∗ 1(−t,t)(x), where 1(−t,t) denotes the characteristic
function of the interval (−t, t), Parseval’s theorem implies

1

t1+a

∫ 1

0

(µ(B(x, t)))2dx =
1

t1+a

∞∑
n=−∞

|µ̂(n)|2
∣∣∣1̂(−t,t)(n)

∣∣∣2

= Ct1−a

∑
n6=0

|µ̂(n)|2
∣∣∣∣ sin 2πnt

nt

∣∣∣∣2 + |µ̂(0)|2


≥ C

N1−a

∑
|n|≤N

|µ̂(n)|2

when N = [1/t] and the constant C may change from one line to another.
Taking the lim sup as t → 0+, equivalently N → ∞, proves one inequality.
For the other, let

Aj =
1

2j(1−a)

2j∑
|n|=1

|µ̂(n)|2 .

If 2−(k+1) ≤ t < 2−k, then

t1−a
∑
n 6=0

|µ̂(n)|2
∣∣∣∣ sin 2πnt

nt

∣∣∣∣2 ≤ Ct1−a 2k∑
|n|=1

|µ̂(n)|2 +
1

t1+a

∞∑
j=k

2j+1∑
|n|=2j+1

|µ̂(n)|2

|n|2

≤ C

Ak + 2k(1+a)
∞∑
j=k

2−j(1+a)Aj+1


≤ C sup

j≥k
Aj .

Again, take the lim sup.

Suppose µ is any compactly supported measure on R. We denote by [µ]
its quotient measure on [0, 1], the measure defined by

[µ] (E) =
∑
n∈Z

µ(E + n) for E ⊆ [0, 1].

Since the sum is over a bounded number of integers n, (µ(B(x, r)))q ∼ ([µ](B(x, r)))q

for any q ≥ 0. Thus, τµ(q) = τ[µ](q) for positive q. As ̂[µm](n) = µ̂(n)m, this
observation yields the following corollary.
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Corollary 2. If µ is any probability measure on [0, 1], then

τµm(2) = sup

a : lim sup
N→∞

1

N1−a

∑
|n|≤N

|µ̂(n)|2m = 0

 .

The energy dimension, defined as

dime µ = sup

{
a :

∫
R

∫
R

dµ(x)dµ(y)

|x− y|a
<∞

}
,

is another way to quantify the singularity of a measure. The energy dimension
is always a lower bound for the Hausdorff dimension of the measure and has
been shown to be equal to

sup

a :
∑
n 6=0

|µ̂(n)|2

|n|1−a
<∞

 or sup

{
a :

∫
R

|µ̂(x)|2

|x|1−a
dx <∞

}
,

depending on whether µ is viewed as a measure on the torus or on R ([4],
[10]). Using these formulas and the previous proposition, it is straightforward
to verify the following.

Corollary 3. Suppose µ is any compactly supported, probability measure.
Then τµ(2) = dime µ. Moreover, Lµ(q) = q − 1 for all q ≥ 1 (equivalently,
Lµ(2) = 1) if and only if limn dime µ

n = 1 (where the convolution can be
understood either on R or [0, 1].)

Corollary 4. Suppose µ is a probability measure on the torus. If Lµ(2) = 1,
then any Borel subgroup of the torus on which µ is concentrated has Hausdorff
dimension one.

Proof. If µ is concentrated on E, then dimH E ≥ dime µ. Since µn is concen-
trated on En ⊆ Grp(E), it follows that dimH Grp(E) ≥ dime µ

n → Lµ(2) =
1.

Example 2. A measure µ defined on [0, 1] is said to be Lp-improving if
for some p > 2, the operator Tµ : L2[0, 1] → Lp[0, 1], given by Tµ(f) =
f ∗ µ, is bounded. The classical Cantor measure is an example of an Lp-
improving measure [15]. It is known that if µ is an Lp-improving measure,
then dime[µ

n]→ 1 [11]. Thus every Lp-improving measure has Lµ(q) = q− 1.
In [17] a construction is given of a random Cantor measure, supported on

a set of Hausdorff dimension s for any given 0 < s < 1, with the property that
µ̂ ∈ lp for some p <∞. Such a measure is known to be Lp-improving.
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We conjecture that the self-similar measure associated with the IFS {x/d+
i/d, pi}mi=0 with integer d and pi > 0 for at least two indices i (see Prop. 1) is
Lp-improving.

Example 3. A measure µ is said to belong to Lip(α) if there is a constant
C such that µ(x, x + h] ≤ Chα for all h > 0 and all x. It is known that if
µ ∈ Lip(α), then dime µ ≥ α [11]. Thus, if for every α < 1 there is some n
such that [µn] ∈ Lip(α), then Lµ(q) = q − 1.

To conclude this subsection, we prove that for each 0 < a < 1 there
is a probability measure µ such that τµn(2) = a for all n. Consequently,
Lµ(q) = a(q − 1). Our method is constructive.

Example 4. Fix 0 < a < 1 and put s = (1−a)/a. Inductively define positive
integers nj and dj such that dj >> 2j , nj = dsj and dj+1 >> njdj . Let KN

denote theN ’th Fejer kernel and put Fj(x) = Knj
(djx). Let µ =

∑
j Fj(x)/j2.

Note that µ ≥ 0 and as ‖Fj‖1 = 1, µ is an absolutely continuous, finite measure
supported on [0, 1].

Fix positive integer m. For each 0 ≤ b < 1, let

AbN =
1

N1−b

∑
0<n|≤N

|µ̂(n)|2m .

We will use the criterion τµm(2) = sup
{
b : lim supN→∞AbN = 0

}
.

As suppF̂j = {0,±dj , ...,±njdj}, we have suppF̂j∩suppF̂k = {0} for j 6= k.
Thus µ̂(n) 6= 0 for n 6= 0 if and only if there exists some integer j such that

µ̂(n) = F̂j(n)/j2. Since 0 ≤ F̂j(n) ≤ 1 and F̂j(n) ≥ 1/2 for at least nj integers

n,
∑
n 6=0 F̂j(n)2m ∼ nj . If N = nkdk, then

AbN =
1

(nkdk)1−b

k∑
j=1

1

j4m

∑
n6=0

∣∣∣F̂j(n)
∣∣∣2m ≥ C 1

(nkdk)1−b
nk
k4m

.

Suppose b > a. Since nb−ak ≥ k4m for large k and nak = d1−ak , it is easily
seen that AbN → ∞ as N → ∞. Thus τµm(2) ≤ b for all b > a and hence
τµm(2) ≤ a.

One can similarly show that if b < a, then AbN ≤ C/d1−b−sbk → 0 as
N = nkdk → ∞. Of course, if N ∈ (nkdk, dk+1), then AbN = Abnkdk,m

. If,
instead, N ∈ [Jdk+1, (J + 1)dk+1) for 1 ≤ J < nk+1, then again one can check
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that

AbN =
1

N1−b

 ∑
0<n|<dk+1

|µ̂(n)|2m +

N∑
|n|=dk+1

|µ̂(n)|2m


≤ C

(
nk + nbk+1

d1−bk+1

)
→ 0.

Thus lim supN→∞AbN = 0 for any b < a. Together these observations prove
τµm(2) = a.

3.3 Negative q

Finally, we consider the case q < 0. Here we expect the balls of small measure
to control the behaviour of the Lq-spectrum. This leads to introducing

βµ = lim sup
r→0+

log (infx∈suppµ µ(B(x, r)))

log r
.

Throughout the subsection, let αµ = dimµ(0). Assuming 0 ∈ suppµ, then
βµn ≥ dimµn(0) = nαµ. As sup

∑
µ(B(xi, r))

q ≥ infx∈suppµ µ(B(x, r))q, it
also follows that τµ(q) ≤ qβµ.

In general, τµn(q) does not converge for q < 0. Instead, we consider the
asymptotic behaviour of

δµn(q) := τµn(q)− nαµq
γµn := βµn − nαµ.

Again, we write βn, δn, γn for βµn etc., provided µ is clear.

Proposition 3. Assume suppµ = [0, 1] and that dimµ(0) ≥ dimµ(1). For
q ≤ −1,

2q lim
n
γn ≤ lim

n
δn(q) ≤ q lim

n
γn. (3.2)

Proof. Note that

µn+1(B(x, r)) ≥ µn(B(x, r/2))µ(B(0, r/2)) if x ∈ [0, n],

while

µn+1(B(x, r)) ≥ µn(B(x− 1, r/2))µ(B(1, r/2)) if x ∈ [n, n+ 1].

Thus βn+1 ≤ βn + αµ and hence {γn} is a decreasing sequence.
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If we consider
(
µn+1(B(x, r))

)q
instead, the inequalities reverse and there-

fore τn+1(q) ≥ τn(q) + qα, showing {δn} is increasing.
Since

sup
∑

µn(B(xi, r))
q ≥ µn(B(0, r))q ≥ µ(B(0, r))qn,

we have τn(q) ≤ qnα. Thus δn(q) ≤ 0 for all q < 0. Further, δn(q) ≤
qβn − nαq = qγn, so {γn} is bounded above. Thus both sequences, {δn} and
{γn}, converge and the right side of (3.2) holds.

By the definition of βn, given any ε > 0 there exists r0 such that for all
r ≤ r0, infx µ

n(B(x, r)) ≥ rβn+ε. Thus for any x ∈ [0, 2n],

µ2n(B(x, 2r)) ≥
[x/r]∑
k=0

µn(B(x− kr, r))µn(B(kr, r)) ≥ x

r
r2(βn+ε).

If {B(xi, 2r)} is any centred r-packing of suppµ2n, then if q < −1,∑
i

µ2n(B(xi, 2r))
q ≤

∑
i

(xi
r

)q
r2q(βn+ε)

≤
∑

k≤2n/r

(
kr

r

)q
r2q(βn+ε) ≤ Cqr2q(βn+ε),

while
∑
i µ

2n(B(xi, 2r))
−1 ≤ C |log r| r2q(βn+ε). Taking the supremum over

all centred r-packings, then log-limits and letting ε → 0 gives τ2n(q) ≥ 2qβn.
Thus δ2n(q) = τ2n(q) − 2nαq ≥ 2qγn and that establishes the left side of
(3.2).

Corollary 5. If γn → 0, then δn(q)→ 0 for q ≤ −1.

Corollary 6. If µ(B(0, r)) = infx∈suppµ µ(B(x, r)), then δn → 0.

Proof. In this case µn(B(0, r)) = infx∈suppµn µn(B(x, r)), so γn = 0 for all
n.

Example 5. The three-fold convolution of the standard Cantor measure,
compressed to be supported on [0, 1], is an example of such a measure.
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