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A GENERALIZED MAXIMUM PRINCIPLE
FOR CONVOLUTION OPERATORS IN

BOUNDED REGIONS

Abstract

Dealing with the technically motivated concept of convolution op-
erators in bounded regions of RN with an underlying nearby boundary
condition we extend a formerly proved result about the existence and
uniqueness of suitable solutions for dimension N ≤ 2 to arbitrary di-
mensions N . Thus, a first substantial result in a sufficiently generalized
form, beyond the very specific case of rectangular regions, is established
in this field. The result can also be seen as a generalized maximum
principle for so called k-harmonic functions where k is the kernel of the
given convolution operator.

1 Introduction

In [1] a specific type of Dirichlet problems for convolution operators in bounded
regions was introduced. There, especially for kernels in certain Sobolev-spaces,
which can be seen as kernels of generalized smoothing operators, substantial
results for the very specific case of rectangular regions were proved. Moreover,
due to [2], in [1] a generalization of these results for rectangular regions to
general regions was mentioned, but only for dimension 1 and 2, and the proof
in [2] cannot be extended to higher dimensions by slight modification. So,
the result for arbitrary dimension was unproved and remained as an unsolved
problem.
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In this paper we will give a proof for arbitrary dimensions N ∈ N. Thus,
a first substantial result in a sufficiently generalized form, beyond the very
specific case of rectangulars, is established in this field.

There are two possible views on the presented theory. First, the concept
is technically motivated by a measurement of a field f in the interior of some
bounded region Ω with the aid of a sensor ω moving around in Ω such that
the motion is completely inside Ω. More precisely, the measurement will be
a weighted measurement, done with the aid of a weight-function k defined on
ω. The task is to detect the original field f with the additional knowledge of
the (maybe disturbed) values of the field near the boundary of the region Ω.

Another, more mathematical view to the theory, is dealing with the set
of so called k-harmonic functions f ∈ Lp(Ω) which are defined by Tkf = 0
for a convolution operator Tk with convolution kernel k working inside Ω.
The question is, if there exists some kind of maximum principle, which means
that any such k-harmonic function can be controlled by their values near the
boundary of Ω.

However, both views are essentially equivalent and the result of this paper
gives an understanding of both topics.

2 Basics

In the following we use the notation of [1]. For a better understanding, we
briefly introduce the relevant terms which are used throughout the paper.

All functions in the text have values in K where K = R or K = C. Further,
let N ∈ N and ω :=]0, 1[N . (In [1] general, nonempty bounded regions ω were
discussed, but since our main result in the present paper only deals with the
case ω =]0, 1[N we restrict ourselves to this case.)

Let Ω ⊆ RN be a nonempty bounded region (i.e. open set) such that

Ωω := {x ∈ RN | x+ ω ⊆ Ω}

is not empty. Note that Ωω is open and Ωω + ω ⊆ Ω.

For k ∈ L1(ω), k 6≡ 0, and p ∈ [1,∞] define the convolution operator

Tk : Lp(Ω)→ Lp(Ωω)

by

Tkf(x) :=

∫
x+ω

k(t− x)f(t)dt, x ∈ Ωω.
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Note that Tk is a linear bounded operator with kernel k. Moreover, Tk is not
injective (cf. [3, p. 140], [2, p. 14], [1, p. 177]).

Furthermore, let

∂ωΩ := Ω ∩
⋃
x/∈Ωω

(x+ ω) = Ω ∩
⋃

x/x+ω 6⊆Ω

(x+ ω).

This means that ∂ωΩ is the intersection of Ω with all translates of ω which
closures are not completely inside Ω. For example, if Ω is a rectangular region
(or cuboid)

∏N
i=1]ai, bi[ with a,b ∈ RN , |bi − ai| > 2 then

∂ωΩ := Ω \
N∏
i=1

[ai + 1, bi − 1].

Note that ∂Ω ⊆ ∂ωΩ (cf. Lemma 4), thus ∂ωΩ can be seen as a specific kind
of an extended N -dimensional boundary of Ω near the regular boundary ∂Ω.
Clearly ∂ωΩ is an open nonempty subset of Ω.

Note also that the ”boundary” ∂ωΩ is a suitable set for fixing solutions of
the convolution equation ”Tkf = g”, which means that for any given function
g ∈ Lp(Ωω) and f0 ∈ Lp(∂ωΩ) there exists at most one solution f ∈ Lp(Ω)
such that Tkf = g and f|∂ωΩ = f0 (cf. [1, p. 179]) due to Titchmarsh’s
convolution theorem (e.g. [4, p. 107]).

Nevertheless, in general there does not exist an exact solution f ∈ Lp(Ω)
such that Tkf = g and f|∂ωΩ = f0 and therefore, we are looking in such cases
for best approximating solutions.

For this, and for more generality, let U be a measurable subset of Ω of
positive N -dimensional measure. Assuming f0 ∈ Lp(U) and g ∈ Lp(Ωω), we
call f ∈ Lp(Ω) a best approximation solution of (Tkf = g, f|U = f0) if

Tkf = g

and

||f|U − f0|| ≤ ||h|U − f0||

for any h ∈ Lp(Ω) with Tkh = g.

Defining

Nk := {f ∈ Lp(Ω)|Tkf = 0},

Nk,U := {f|U |f ∈ Nk}
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and the trace operator
Rk,U : Nk → Nk,U

by
Rk,Uf := f|U

and assuming 1 < p < ∞, the existence of a unique best approximating
solution of (Tkf = g, f|U = f0) for each f0 ∈ Lp(U) and each g ∈ Tk(Lp(Ω))
is equivalent to the existence of a bounded inverse of the trace operator Rk,U
(cf. [1, p. 180]). Note that in this case the best approximating solution
depends continuously on the boundary value f0 ∈ Lp(U) (cf. [1, p. 181]). In
particular, if Tkf = g, f|U = f0 and (hn)n ⊆ Lp(U) with hn → f0 then the
best aproximating solutions of (Tkf = g, f|U = hn) converges to f , which is the
exact solution of (Tkf = g, f|U = f0) (and therefore is the best approximating
solution of (Tkf = g, f|U = f0)).

Functions in Nk we call also k−harmonic functions. Obviously, the trace
operator Rk,U is bounded invertible if and only if there exists C > 0 such that
for all k-harmonic functions f ∈ Lp(Ω) the relation ||f || < C · ||f|U || holds.
This relation we call also the maximum principle for k-harmonic functions
with respect to the boundary U .

In the following we restrict ourselves to special kernel functions k in an
appropriate Sobolev-space. For any arbitrary nonempty region G in RN let

S
~1
pW (G) := {f ∈ Lp(G)|Dαf ∈ Lp(G), α ∈ {0, 1}N}

(endowed with the usual norm for Sobolev-spaces) and herewith

S
~1
1,1W (ω) := {f ∈ L1(ω)|f − 1 ∈ S~11,0W (ω)}

where S
~1
1,0W (ω) is the closure of C∞0 (ω) in S

~1
1W (ω) (cf. [1, p. 181-182]).

Spaces of these types are called Nikol’skij-Sobolev spaces and were firstly
introduced by Nikol’skij (cf. [5, 6]). By standard methods (e.g. [7] or [2,

p. 28]) it can be seen that S
~1
1W (ω) is boundedly imbedded into C(ω). Thus,

any k ∈ S~11,1W (ω) coincides a.e. with a function k′ ∈ C(ω) with value 1 on the
boundary of ω. By this definition Tk can be seen as a generalized or disturbed
version of the smoothing operator Tk0 with kernel k0 ≡ 1.

Note that for k ∈ S~11,1W (ω) the operator Tk maps Lp(Ω) boundedly into

S
~1
pW (Ωω) (cf. [1, p. 183]). Moreover, the range of Tk consists of all functions

g ∈ S
~1
pW (Ωω) where there exists an extension g ∈ S

~1
pW (RN ) of g (cf. [1,

p. 192]). Note also that for 1 < p < ∞ Džabrailov constructed a class of
domains G for which there exists a (linear and bounded) extension operator
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L : S
~1
pW (G) → S

~1
pW (RN ) (cf. [8, p. 192], for examples see also [2, p. 68]).

Therefore, if Ωω is in this class, the range of Tk is even equal to S
~1
pW (Ωω).

Finally, for the case of cuboids, another ”boundary” plays an important
role: If Q =

∏N
i=1]ai, bi[ with a,b ∈ RN , |bi − ai| > 1, let

∂lωQ := Q \
N∏
i=1

[ai + 1, bi[.

This notation follows the idea as ∂lωQ were the left part of ∂ωQ in case of
rectangular regions Q (= Ω).

The importance of ∂lωQ is given by the result that in case of rectangular

regions Q mentioned above for k ∈ S
~1
1,1W (ω) the trace operator Rk,∂l

ωQ
is

boundedly invertible (cf. [1, p. 192]).

3 Main result

The following theorem is a result of [1, p. 192] resp. [2]. But there, the result
was only proved for dimension ≤ 2. The validity for any dimension remained
as an unsolved problem. The proof in [2] uses a covering of Ω \ U by suitable
subsets of Ω. But the used direct construction method for the covering is not
applicable for higher dimensions because of the unmanageable complexity of
Ω.

It is nearby to consider a technique by induction, but there, it is the dif-
ficulty to find a method to get a covering of Ω \ U in the next dimension on
the basis of supposed coverings in lower dimensions at all. Moreover, it is
necessary to ensure that the covering of Ω \U fulfilled all required properties.
In the proof in this paper we solve these problems by sharpening the required
properties, but for which an approach by induction is possible. So, proving
the stronger properties, we get the original properties which finally leads to
the validity of the theorem.

Theorem 1. Let k ∈ S~11,1W (ω) and U a measurable subset of Ω such that

Ω \ U ∩ ∂ωΩ = ∅.

Then there exists C > 0 such that for any k-harmonic function f ∈ Lp(Ω)

||f || < C · ||f|U ||.

Thus, for k-harmonic functions f ∈ Lp(Ω) the maximum principle with respect
to the boundary U does hold.
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Theorem 2. Let k ∈ S~11,1W (ω) and U a measurable subset of Ω such that

Ω \ U ∩ ∂ωΩ = ∅

and let furthermore 1 < p < ∞. Then there exists for each f0 ∈ Lp(U) and
each g ∈ Tk(Lp(Ω)) a best approximating solution of (Tkf = g, f|U = f0).
The best approximating solution depends continuously on the boundary value
f0 ∈ Lp(U).

Theorem 2 follows immediately by Theorem 1 since under the given con-
ditions the trace operator Rk,U is then bounded invertible. So, it is sufficient
to prove Theorem 1.

Remark 1. If U is an open subset of Ω then

Ω \ U ∩ ∂ωΩ = ∅

is equivalent to
∂ωΩ ⊆ U

(relative closure in Ω).

Remark 1 was proved in [2, p. 48], for completeness we give the proof here.

Proof of Remark 1. Let U ⊆ Ω be open.

a) Let ∂ωΩ ⊆ U . We show that (Ω \ U) is closed. Herewith, we get

∂ωΩ ∩ Ω \ U = ∂ωΩ ∩ (Ω \ U) = ∂ωΩ ∩ (Ω ∩ {U)

= (∂ωΩ ∩ Ω) ∩ {U ⊆ U ∩ {U = ∅.
The closedness of (Ω\U) can be seen as follows. We have {(Ω \ U) = {Ω∪U =
({Ω ∪ ∂Ω) ∪ U = ({Ω ∪ U) ∪ ∂Ω. First ({Ω ∪ U) is open. But let x ∈ ∂Ω, w
any point in ω and z := x−w. Then we have x ∈ z+ω and there exists ε > 0
such that Bε(x) ⊆ z+ω. Since x /∈ Ω we have (z+ω) 6⊆ Ω, hence z /∈ Ωω and
therefore

Bε(x) ⊆ z + ω ⊆
⋃
y/∈Ωω

(y + ω).

Thus
Ω ∩Bε(x) ⊆ Ω ∩

⋃
y/∈Ωω

(y + ω) = ∂ωΩ.

This implies Ω ∩Bε(x) ⊆ Ω ∩ ∂ωΩ ⊆ U . Finally, there holds

Bε(x) = (Bε(x) ∩ Ω) ∪ (Bε(x) ∩ {Ω) ⊆ U ∪ {Ω = {(Ω \ U).
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Thus {(Ω \ U)) is open.

b) Ω \ U ∩ ∂ωΩ = ∅ ⇒ (Ω \ U) ∩ ∂ωΩ = ∅ ⇒ (Ω ∩ ∂ωΩ) ∩ {U = ∅ ⇒

Ω ∩ ∂ωΩ ⊆ U.

As mentioned above Theorem 1 was proved in ([2, p. 46-55]) only for
dimension N ≤ 2 and there, moreover, with the additional restriction Ωω+ω =
Ω. Since we work without this additional restriction we have to prove Theorem
1 also for dimension 1 (and then of course for all other dimensions).

As in ([2]) we use the following definition.

Definition 1. A subset U of Ω is called cuboid-regular if there exist finitly
many cuboids Qi ⊆ Ω, Qi =

∏N
j=1]ai,j , bi,j [ with |bi,j−ai,j | > 1, i ∈ {1, . . . ,M}

such that

Ω \ U ⊆
M⋃
n=1

Qn

and for all i ∈ {1, . . . ,M}

∂lωQi ∩ (Ω \ U) ⊆
i−1⋃
n=0

Qn, (Q0 := ∅).

Lemma 1. Let k ∈ S~11,1W (ω) and U a cuboid-regular measurable subset of Ω.
Then there exists C > 0 such that for any k-harmonic function f ∈ Lp(Ω)

||f || < C · ||f|U ||.

The proof of Lemma 1 follows [2, p. 55], but we use here a technique that
aims directly at the maximum principle.

Proof of Lemma 1. Let (Qi)i∈{1,...,M} the finite family of cuboids men-
tioned in Definition 1. Thus, there exists C1, . . . , CM > 0 such that

||f|Qi
|| ≤ Ci · ||f|∂l

ωQi
||

for all f ∈ Lp(Ω) with Tkf = 0.

Let

Ωi := U ∪
i⋃

j=1

Qi, i ∈ {1, . . . ,M}.
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We prove by induction
||f|Ωi

|| ≤ Bi · ||f|U ||

for all f ∈ Lp(Ω) with Tkf = 0, with certain Bi > 0.

For i = 1 we have
||f|U∪Q1

|| ≤ ||f|U ||+ ||f|Q1
||

≤ ||f|U ||+ C1||f|∂l
ωQ1
|| ≤ B1||f|U ||

where B1 := 1 + C1.

Now, suppose for i0, 1 ≤ i0 < M

||f|Ωi0
|| ≤ Bi0 · ||f|U ||

for all f ∈ Lp(Ω) with Tkf = 0. Then we get for any such f

||f|Ωi0+1
|| ≤ ||f|Ωi0

||+ ||f|Qi0+1
|| ≤ ||f|Ωi0

||+ Ci0+1||f|∂l
ωQi0+1

||.

Since

∂lωQi0+1 = (∂lωQi0+1 ∩ (Ω \ U)) ∪ (∂lωQi0+1 ∩ U) ⊆
i0⋃
i=1

(Qi ∩ Ω) ∪ U

we have
||f|Ωi0+1

||

≤ ||f|Ωi0
||+ Ci0+1||f|⋃i0

i=1(Qi∩Ω)∪U ||

= ||f|Ωi0
||+ Ci0+1||f|Ωi0

||

≤ Bi0(1 + Ci0+1)||f|U ||.

Hence Bi0+1 := Bi0(1 + Ci0+1) satisfies the required condition. By this way
there exists BM > 0 such that for all f ∈ Lp(Ω) with Tkf = 0

||f|ΩM
|| ≤ BM · ||f|U ||.

By assumption we have Ω ⊆
⋃M
n=1Qn ∪ U which finally implies

||f|Ω|| = ||f|ΩM
|| ≤ BM · ||f|U ||

for all f ∈ Lp(Ω) with Tkf = 0.
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Theorem 1 is now proved by

Lemma 2. Every subset U of Ω with

Ω \ U ∩ ∂ωΩ = ∅

is cuboid-regular.

The main result of this paper is the proof of this Lemma for all dimensions
N . It remains in [2] as an open problem. The used technique in [2] cannot
be extended to arbitrary dimensions. In the present paper we use a newly
developed induction method. Instead of proving the cuboid-regularity of U
directly, we prove an even stronger property of U for which this induction
method is applicable. Herewith, we get the validity of Lemma 2.

So, we will prove the following result.

Lemma 3. Let U ⊆ Ω, U 6= Ω with

Ω \ U ∩ ∂ωΩ = ∅.

Then for any ε > 0 there exist finitly many cuboids Qi ⊆ Ω, Qi =
∏N
j=1]ai,j , bi,j [

with |bi,j − ai,j | > 1, i ∈ {1, . . . ,M} such that

Ω \ U ⊆
M⋃
n=1

Qn

and for all i ∈ {1, . . . ,M}

∂lωQi ∩ (Ω \ U) ⊆
i−1⋃
n=0

Qn, (Q0 := ∅)

and with Ri :=
∏N
j=1[ai,j + 1, bi,j [

Ri ∩ (Ω \ U) 6= ∅

and
length(Ri) < ε

where length(Ri) := max{|bi,j − (ai,j + 1)| : j ∈ {1, . . . , N}}.

Clearly, Lemma 2 holds if Lemma 3 is true, at least for the case U 6= Ω.
But for U = Ω Lemma 2 is trivially true: Because of Ωω 6= ∅ there exists
some x ∈ RN with x + ω ⊆ Ω. Since Ω is open, there exists also a cuboid
Q =

∏N
i=1]ai, bi[ with |bi−ai| > 1 and x+ω ⊆ Q ⊆ Ω. Q satisfies the required

conditions in this case.



362 Jörg Reißinger

Proof of Lemma 3. (Hint: The proof is quite elementary and very techni-
cally already for dimension N = 1. Nevertheless, particularly for dimension
N > 1, the proof is of complex nature and nontrivial.)

Case N = 1: Let U ⊆ Ω, U 6= Ω, Ω \ U ∩ ∂ωΩ = ∅ and ε > 0. For x ∈ Ω
define

Jx :=]xl, xr[

with
xl := inf{y | (y < x)∧]y, x] ⊆ Ω},

xr := sup{y | (y > x) ∧ [x, y[⊆ Ω}.

We have Jx ⊆ Ω and for x 6= y either Jx = Jy or Jx ∩ Jy = ∅. Further, we
have

Ω =
⋃
x∈Ω

Jx

=
⋃
x∈Ω
|Jx|>1

Jx ∪
⋃
x∈Ω
|Jx|≤1

Jx.

For x0 ∈ Ω with Jx0 =]x0l, x0r[ and |Jx0 | ≤ 1 we have Jx0 ⊆ x0l+]0, 1[. Clearly
x0l /∈ Ω, hence x0l + ω 6⊆ Ω, but Jx0

⊆ (x0l + ω) ∩ Ω. Thus Jx0
⊆ ∂ωΩ.

Consequently

Ω̃ :=
⋃
x∈Ω
|Jx|≤1

Jx ⊆ ∂ωΩ.

Let moreover
Ω̂ :=

⋃
x∈Ω
|Jx|>1

Jx.

Since Ωω 6= ∅ there exists at least one x ∈ Ω where |Jx| > 1, so, Ω̂ is not
empty.

For ξ ∈ Ω̂ there holds Jξ ⊆ Ω̂, because of ξ ∈ Jx for some x ∈ Ω with

|Jx| > 1, and since ξ ∈ Jξ ∩ Jx 6= ∅ there holds Jξ = Jx ⊆ Ω̂. Furthermore

Ω̂ ⊆ Ω implies that Ω̂ is bounded.
Now, we construct a (finite) sequence (xk)k ⊆ Ω̂ as follows: Choose any

x1 ∈ Ω̂. If Ω̂ \ Jx1
6= ∅ choose any x2 ∈ Ω̂ \ Jx1

. Then we have Jx1
6= Jx2

therefore Jx1
∩ Jx2

= ∅. If Ω̂ \ (Jx1
∪ Jx2

) 6= ∅ choose any x3 ∈ Ω̂ \ (Jx1
∪ Jx2

).
Then we have Jx1 6= Jx3 and Jx2 6= Jx3 therefore Jx1∩Jx3 = ∅ and Jx2∩Jx3 =

∅. By this we get a sequence (Jxk
)k ⊆ Ω̂ with pairwise disjoint Jxk

. Since Ω̂
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is bounded the construction of the Jxk
must abort. This implies Ω̂ =

⋃n
i=1 Ii

with pairwise disjoint intervals Ii =]ai, bi[, bi − ai > 1. Herewith, we get

Ω =

n⋃
i=1

]ai, bi[ ∪ Ω̃

and

∂ωΩ =

n⋃
i=1

(]ai, ai + 1[ ∪ ]bi − 1, bi[) ∪ Ω̃.

Further Ω \ U ∩ ∂ωΩ = ∅ implies (Ω \ U) ∩ Ω̃ = ∅ hence Ω \ U ⊆ Ω̂.

Now, let be Iik , k ∈ {1, . . . , s}, ik ∈ {1, . . . , n} those ascending ordered in-
tervals Ii for which Ii ∩ (Ω \ U) 6= ∅ holds. Because of U 6= Ω there exists at
least one such interval. Let Λk := Iik , hence Λk =]αk, βk[ with βk − αk > 1,
k ∈ {1, . . . , s} and (Λk)k pairwise disjoint, ascending ordered.

For k ∈ {1, . . . , s} choose Nk ∈ N such that

δk :=
βk − (αk + 1)

Nk
< ε

hence αk + 1 +Nk · δk = βk.

For fixed k ∈ {1, . . . , s} define now

Dk
j :=]αk + (j − 1) · δk, αk + 1 + j · δk[, j ∈ {1, . . . , Nk}.

Moreover, let be Dk

j
(k)
m

(with m ∈ {1, . . . , rk} and j
(k)
m ∈ {1, . . . , Nk}) those

ascending ordered intervals Dk
j for which

V kj ∩ (Ω \ U) 6= ∅

where
V kj := [αk + 1 + (j − 1) · δk, αk + 1 + j · δk[

holds. Such V kj exists. This is because since Λk ∩ (Ω \ U) 6= ∅, there ex-
ists some x ∈ Λk ∩ (Ω \ U) and thus both x ∈ Λk and x 6= ∂ωΩ; therefore
x ∈ [αk + 1, βk[ ∩ (Ω \ U).

Finally, let
Q1 := D1

j
(1)
1

, . . . , Qr1 := D1

j
(1)
r1
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and if s > 1:
Qr1+1 := D2

j
(2)
1

, . . . , Qr1+r2 := D2

j
(2)
r2

,

·

·

·

Q(
∑s−1

l=1 rl)+1 := Ds

j
(s)
1

, . . . , Q∑s
l=1 rl

:= Ds

j
(s)
rs

.

Then the family (Qi)i∈{1,...,M} with M :=
∑s
l=1 rl possesses the required prop-

erties in Lemma 3. This can be seen as follows.

First, we have Ω ⊇ Qi =]γi, ηi[, |ηi − γi| > 1 with certain γi, ηi. Further,
we get ∂lωQi =]γi, γi + 1[.

We show

∂lωQi ∩ (Ω \ U) ⊆
i−1⋃
n=0

Qn, (Q0 := ∅).

For ∂lωQi∩(Ω\U) = ∅ there is nothing to show. But let for any i0 ∈ {1, . . . ,M}

x ∈ ∂lωQi0 ∩ (Ω \ U)

hence x ∈ Qi0 = Dk

j
(k)
m0

for some k ∈ {1, . . . , s} and m0 ∈ {1, . . . , rk}. Then we

get
x ∈]αk + (j(k)

m0
− 1) · δk, αk + 1 + j(k)

m0
· δk[

and since x ∈ ∂lωQi0 we get even

x ∈]αk + (j(k)
m0
− 1) · δk, αk + 1 + (j(k)

m0
− 1) · δk[.

Furthermore x ∈ Ω \ U implies

x /∈ ∂ωΩ =

n⋃
i=1

(]ai, ai + 1[ ∪ ]bi − 1, bi[) ∪ Ω̃

hence x /∈]αk, αk + 1[, thus x ∈ [αk + 1, αk + 1 + (j
(k)
m0 − 1) · δk[ (therefore

j
(k)
m0 > 1). Consequently

x ∈
j(k)
m0
−1⋃

i=1

[αk + 1 + (i− 1) · δk, αk + 1 + i · δk[ =

j(k)
m0
−1⋃

i=1

V ki .
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Hence

x ∈
j(k)
m0
−1⋃

i=1

(V ki ∩ (Ω \ U))

thus x ∈ V ki′ ∩ (Ω \ U) 6= ∅ with some i′ ∈ {1, . . . , j(k)
m0 − 1} which implies

x ∈ Dk
i′ and i′ ∈ {j(k)

1 , . . . , j
(k)
m0−1} (in particular m0 > 1). Therefore, we get

x ∈
⋃

m<m0

Dk

j
(k)
m
⊆
i0−1⋃
i=1

Qi (in particular i0 > 1).

Next we show

Ω \ U ⊆
M⋃
n=1

Qn.

There is

Ω \ U ⊆
s⋃

k=1

Λk =

s⋃
k=1

]αk, βk[

and since (Ω \ U) ∩ ∂ωΩ = ∅ we get even

Ω \ U ⊆
s⋃

k=1

[αk + 1, βk[=

s⋃
k=1

Nk⋃
i=1

V ki .

Thus, we have

x ∈ Ω \ U ⇒ x ∈
s⋃

k=1

Nk⋃
i=1

(V ki ∩ (Ω \ U))⇒ x ∈ V ki0 ∩ (Ω \ U) 6= ∅

for some k ∈ {1, . . . , s} and i0 ∈ {1, . . . , Nk}. Hence x ∈ Dk
i0

and i0 ∈
{j(k)

1 , . . . , j
(k)
rk } and we get

x ∈
s⋃

k=1

rk⋃
m=1

Dk

j
(k)
m

=

M⋃
n=1

Qn ⊆
M⋃
n=1

Qn.

Finally, for any i0 ∈ {1, . . . ,M} there is Qi0 = Dk

j
(k)
m0

for some k ∈ {1, . . . , s}
and m0 ∈ {1, . . . , rk} hence

Qi0 =]αk + (j(k)
m0
− 1) · δk, αk + 1 + j(k)

m0
· δk[
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and
Ri0 = [αk + 1 + (j(k)

m0
− 1) · δk, αk + 1 + j(k)

m0
· δk[

which implies length(Ri0) = δk < ε. Moreover, because of Ri0 = V k
j
(k)
m0

and

V k
j
(k)
m0

∩ (Ω \U) 6= ∅ we get Ri0 ∩ (Ω \ U) 6= ∅ which completes the proof for the

case N = 1.

Before treating the case N > 1 we need some additional tools.

Lemma 4. The boundary ∂Ω is contained in ∂ωΩ.

Lemma 4 was proved in [2, p. 17], for completeness we give the proof here.
The proof also holds for any nonempty bounded region ω.

Proof of Lemma 4. Let z ∈ ∂Ω. Choose any x0 ∈ ω. Then z ∈ (z−x0)+ω.
Since z ∈ ∂Ω there exists (zn)n ⊆ Ω ∩ ((z − x0) + ω) and zn → z. Because of
z ∈ (z − x0) + ω we have (z − x0) + ω 6⊆ Ω and therefore (zn)n ⊆ ∂ωΩ, hence
z ∈ ∂ωΩ.

Lemma 5. Let U and V bounded subsets of RN . Then

U ⊕ V :=
⋃

y∈{t∈RN |(t+V )∩U 6=∅}

(y + V )

is compact. If V 6= ∅ then U ⊆ U ⊕ V does hold.

Lemma 5 was proved in [2, p. 49], for completeness we give the proof here.

Proof of Lemma 5. Let (xn)n ⊆ U ⊕ V, hence xn = yn + vn with yn ∈
RN , vn ∈ V and (yn + V ) ∩ U 6= ∅. Then (vn)n and also (yn)n are bounded
and there exists a subsequence (xnk

)k ⊆ U ⊕ V, xnk
= ynk

+ vnk
with ynk

→
y ∈ RN , vnk

→ v ∈ V , thus xnk
→ x := y + v. We show (y + V ) ∩ U 6= ∅ :

For all k ∈ N it exists zk ∈ (ynk
+ V ) ∩ U . Hence, there exists a subsequence

(zkl)l ⊆ U with zkl → z ∈ U . Since ynkl
→ y we get zkl − ynkl

→ z − y and

because of zkl − ynkl
∈ V this implies z − y ∈ V , thus z ∈ (y + V ) ∩ U 6= ∅.

So, we get x ∈ U ⊕ V .
If V 6= ∅ choose v0 ∈ V . Then for any x ∈ U we have x ∈ (x− v0) + V . Thus
x ∈ ((x− v0) + V ) ∩ U 6= ∅ which implies x ∈ U ⊕ V .

Lemma 6. Let G be any subset of Ω with

G ∩ ∂ωΩ = ∅.

Then G⊕ ω ⊆ Ω does hold.
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Lemma 6 was proved in [2, p. 49], for completeness we give the proof here.
The proof also holds for any nonempty bounded region ω.

Proof of Lemma 6. Let G be as required. Suppose there exists z ∈ G⊕ ω
with z /∈ Ω. Thus, there exists y ∈ RN with z ∈ y+ω and (y+ω)∩G 6= ∅ and
since z /∈ Ω we have y + ω 6⊆ Ω thus y /∈ Ωω. This implies (y + ω) ∩Ω ⊆ ∂ωΩ.
Because of G ∩ ∂ωΩ = ∅ we get

(y + ω) ∩ Ω ∩G = ∅.

But we have G ⊆ Ω because otherwise we would have G ∩ ∂Ω 6= ∅ hence
G ∩ ∂ωΩ 6= ∅ (cf. Lemma 4) in contradiction to G ∩ ∂ωΩ = ∅. Hence, since
(y + ω) ∩ G 6= ∅, there exists x ∈ (y + ω) ∩ G and x ∈ Ω. But then, there
exists also (xn)n ⊆ y + ω with xn → x and (xn)n ⊆ Ω. Consequently, we
get x ∈ (y + ω) ∩ Ω. Since also x ∈ G this implies (y + ω) ∩ Ω ∩ G 6= ∅ in
contradiction to (y + ω) ∩ Ω ∩ G = ∅. Thus, the assumption of the existence
of z ∈ G⊕ ω with z /∈ Ω cannot hold.

Now, we continue the proof of Lemma 3 for the case N > 1 by induction.
So, let Lemma 3 be true for dimension N − 1 ∈ N. We prove the validity of
Lemma 3 for dimension N . For this, let again U ⊆ Ω ⊆ RN , U 6= Ω, Ω \ U ∩
∂ωΩ = ∅ and ε > 0 and let now

Ψ := Ω \ U.

Then Ψ ⊕ ω is compact (cf. Lemma 5) and nonempty. Moreover, we have
Ψ ⊆ Ψ⊕ω ⊆ Ω (cf. Lemma 6)and since Ψ⊕ω is compact even Ψ ⊆ Ψ⊕ω ⊆ Ω
does hold. Define now

∆ := dist(Ψ⊕ ω, {Ω) > 0

and let

δ := min(
∆

2
√
N
,
ε

2
)

and

z0 := inf{x1 | (x1, . . . , xN ) ∈ Ψ},

η := sup{x1 | (x1, . . . , xN ) ∈ Ψ}

and

zk := z0 + k · δ, k ∈ {1, . . . ,K}
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where K ∈ N is defined by z0 + (K − 1) · δ ≤ η but z0 +K · δ > η.
Further, let i1, . . . , im be those ascending ordered i ∈ {1, . . . ,K} for which

Zi := ([zi−1, zi]× RN−1) ∩Ψ 6= ∅.

Because of the definition of z0 particularly Z1 is not empty, which implies
i1 = 1.

Let now i ∈ {i1, . . . , im} be fixed and let P be the projection operator

P : RN → RN−1,

(x1, . . . , xN )→ (x2, . . . , xN )

and define
Ωi := P (Ω ∩ ([zi−1, zi]× RN−1)) ⊆ RN−1.

Finally, define ω′ :=]0, 1[N−1.

With respect to the choice of i1, . . . , im we get Ωi 6= ∅ (note that Ψ ⊆
Ω). Further Ωi is open: If ξ = (ξ2, . . . , ξN ) ∈ Ωi then there exists x =
(x1, ξ2, . . . , ξN ) ∈ Ω with x1 ∈ [zi−1, zi]. Since Ω is open there exists a neigh-
borhood of (ξ2, . . . , ξN ) such that for any y in this neighborhood (x1, y) ∈ Ω
holds. Thus y ∈ Ωi for any such y. In addition, obviously, Ωi is bounded.
Moreover, because of Zi 6= ∅ there exists x ∈ Ψ ⊆ Ω with x1 ∈ [zi−1, zi]. Let
now w = (w1, . . . , wN ) any element in ω. With t := x − w we get x ∈ t + ω
thus (t + ω) ∩ Ψ 6= ∅. Hence t + ω ⊆ Ψ ⊕ ω ⊆ Ω which implies in partic-
ular (x1, t2 + w′2, . . . , tN + w′N ) ⊆ Ω for all (w′2, . . . , w

′
N ) ∈ [0, 1]N−1. Thus

(t2, . . . , tN ) + ω′ ⊆ Ωi and therefore (Ωi)ω′ 6= ∅.

Define now
Wi := P (Zi).

Then Wi is not empty and since Ψ ⊆ Ω there is Wi ⊆ Ωi. Furthermore Wi is
closed since Zi is compact. In addition, let now

Ui := Ωi \Wi (6= Ωi).

We will apply the induction hypothesis to Ui and Ωi. For this, it is sufficient
to show

Ωi \ Ui ∩ ∂ω′Ωi = ∅.

To do this, we assume there holds Wi ∩ ∂ω′Ωi 6= ∅ and show that this leads
to a contradiction. So, let be ξ ∈Wi ∩ ∂ω′Ωi, ξ = (ξ2, . . . , ξN ) ∈ RN−1. Then
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there exists (ξ(k))k ⊆ ∂ω′Ωi with ξ(k) → ξ. Since

∂ω′Ωi =
⋃

t/∈(Ωi)ω′

(t+ ω′) ∩ Ωi

there exists vk ∈ {(Ωi)ω′ and wk ∈ ω′ with ξ(k) = vk + wk. Since (wk)k and
(ξ(k))k are bounded this also holds for (vk)k. By the closedness of {(Ωi)ω′ this
implies the existence of subsequences (vkl)l and (wkl)l with

vkl → v ∈ {(Ωi)ω′

and
wkl → w ∈ ω′.

Therefore, we get
ξ = v + w ∈ {(Ωi)ω′ + ω′.

On the other hand, we have ξ ∈Wi = Wi and hence, there exists x1 ∈ [zi−1, zi]
with x := (x1, ξ2, . . . , ξN ) ∈ Zi ⊆ Ψ. With

V := (x1, v) + ω

we get x ∈ V , therefore V ∩Ψ 6= ∅ and thus V ⊆ Ψ⊕ω, which implies V ⊆ Ω.
In particular, we have

(x1, v) + ({0} × ω′) ⊆ Ω

hence v + ω′ ⊆ Ωi which finally leads to v ∈ (Ωi)ω′ in contradiction to
v ∈ {(Ωi)ω′ .

By this the conditions for applying the induction hypothesis to (Ui,Ωi) are
fulfilled (for any i ∈ {i1, . . . , im}). Choose now

ε′ := min(
∆

2
√
N
,
ε

2
).

Thus, for any i ∈ {i1, . . . , im}, there exist by the induction hypothesis cuboids

Q
(i)
l ⊆ Ωi, Q

(i)
l =

∏N−1
j=1 ]a

(i)
l,j , b

(i)
l,j [, |b

(i)
l,j − a

(i)
l,j | > 1, l ∈ {1, . . . ,M(i)} such that

Ωi \ Ui ⊆
M(i)⋃
n=1

Q
(i)
l

and for all l ∈ {1, . . . ,M(i)}

∂lω′Q
(i)
l ∩ (Ωi \ Ui) ⊆

l−1⋃
n=0

Q
(i)
n , (Q

(i)
0 := ∅)
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and (with R
(i)
l :=

∏N−1
j=1 [a

(i)
l,j + 1, b

(i)
l,j [)

R
(i)
l ∩ (Ωi \ Ui) 6= ∅

and
length(R

(i)
l ) < ε′.

For i ∈ {i1, . . . , im} and l ∈ {1, . . . ,M(i)} define now

G
(i)
l :=]zi−1 − 1, zi[×Q(i)

l

and finally

D1 := G
(i1)
1 , . . . , DM(i1) := G

(i1)
M(i1)

and if m > 1

DM(i1)+1 := G
(i2)
1 , . . . , DM(i1)+M(i2) := G

(i2)
M(i2)

·

·

·

D(
∑m−1

j=1 M(ij))+1 := G
(im)
1 , . . . , D∑m

j=1M(ij) := G
(im)
M(im).

Then the family (Ds)s ⊆ RN , s ∈ {1, . . . ,
∑m
j=1M(ij)} possesses the required

properties in Lemma 3. This can be seen as follows.

i) We show Ds ⊆ Ω. There is Ds =]zi−1−1, zi[×Q(i)
l for some i ∈ {i1, . . . , im}

and l ∈ {1, . . . ,M(i)}. Let x ∈ Ds, x = (x1, . . . , xN ), hence

x1 ∈]zi−1 − 1, zi[

and

(x2, . . . , xN ) ∈
N∏
j=2

]a
(i)
l,j−1, b

(i)
l,j−1[.

Furthermore, by the induction hypothesis we have R
(i)
l ∩Wi 6= ∅. Since Wi =

Wi this implies the existence of y := (y1, . . . , yN ) ∈ Ψ such that

y1 ∈ [zi−1, zi]

and

(y2, . . . , yN ) ∈ R(i)
l .



A Generalized Maximum Principle 371

Define now x∗ ∈ RN , x∗ = (x∗1, . . . , x
∗
N ) by

x∗j :=


yj − 1, if xj < yj − 1,

xj , if yj − 1 ≤ xj ≤ yj ,
yj , if yj < xj .

Then we get

x∗j − xj =


yj − 1− xj , if xj < yj − 1,

0, if yj − 1 ≤ xj ≤ yj ,
yj − xj , if yj < xj .

But for xj < yj − 1 there is

0 < yj − 1− xj ≤

{
zi − 1− (zi−1 − 1) = zi − zi−1 = δ ≤ ∆

2
√
N
, if j = 1,

b
(i)
l,j−1 − 1− a(i)

l,j−1 < ε′ ≤ ∆
2
√
N
, if j > 1,

and for xj > yj there is

0 > yj − xj ≥

{
zi−1 − zi = −δ ≥ − ∆

2
√
N
, if j = 1,

a
(i)
l,j−1 + 1− b(i)l,j−1 > −ε′ ≥ −

∆
2
√
N
, if j > 1.

Hence, for any j we get |x∗j − xj | ≤ ∆
2
√
N

which implies

|x∗ − x| ≤ ∆

2
.

Let now t ∈ RN , t = (t1, . . . , tN ) by

tj :=


−1, if xj < yj − 1,

−1, if yj − 1 ≤ xj ≤ yj ,
0, if yj < xj .

Then we have

x∗j − (yj + tj) =


yj − 1− yj + 1 = 0, if xj < yj − 1,

xj − yj + 1 ∈ [0, 1], if yj − 1 ≤ xj ≤ yj ,
yj − yj = 0, if yj < xj ,

thus
x∗ ∈ (y + t) + ω.
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Obviously, we also have y ∈ (y+ t)+ω and since y ∈ Ψ we get (y+ t)+ω ⊆
Ψ⊕ ω and therefore

x∗ ∈ Ψ⊕ ω.

Because of |x∗ − x| ≤ ∆
2 and dist(Ψ⊕ ω, {Ω) = ∆ this implies x ∈ Ω.

ii) We show

∂lωDs ∩ (Ω \ U) ⊆
s−1⋃
n=0

Dn, (D0 := ∅)

for s ∈ {1, . . . ,
∑m
j=1M(ij)}. For this, let s be fixed, thus

Ds =]zi−1 − 1, zi[×Q(i)
l =]zi−1 − 1, zi[×

N−1∏
j=1

]a
(i)
l,j , b

(i)
l,j [

for some i ∈ {i1, . . . , im} and l ∈ {1, . . . ,M(i)}.

Let now

Es := [zi−1, zi[×
N−1∏
j=1

[a
(i)
l,j + 1, b

(i)
l,j [

so that

∂lωDs = Ds \ Es.

Now, for ∂lωDs ∩ (Ω \ U) = ∅ there is nothing to show.
But suppose x ∈ ∂lωDs ∩ (Ω \ U), x = (x1, . . . , xN ), hence x1 ∈]zi−1 − 1, zi[.

Case 1: x1 ∈]zi−1 − 1, zi−1[. Since x ∈ Ω \ U there is x1 ∈ [zj−1, zj ] for
some j with 1 ≤ j < i. Thus x ∈ Zj and j ∈ {i1, . . . , im}. Now, we have
P (x) ∈ Ωj and even P (x) ∈ Ωj \Uj . But by the induction hypothesis there is

P (x) ∈ Q(j)
r for some r ∈ {1, . . . ,M(j)} and because j < i this implies

x ∈ [zj−1 − 1, zj ]×Q(j)
r ⊆

s−1⋃
n=0

Dn.

Case 2: x1 ∈ [zi−1, zi[. Since x /∈ Es there is

P (x) /∈
N−1∏
j=1

[a
(i)
l,j + 1, b

(i)
l,j [
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hence

P (x) ∈ ∂lω′Q
(i)
l .

Like in Case 1 we have P (x) ∈ Ωi \ Ui and with the induction hypothesis we
get

P (x) ∈
l−1⋃
n=0

Q
(i)
n

and therefore x ∈ [zi−1 − 1, zi]×Q(i)
n′ with some n′ < l. Thus

x ∈
s−1⋃
n=0

Dn.

iii) We show

Ω \ U ⊆

∑m
j=1M(ij)⋃
s=1

Ds.

Let x ∈ Ω \ U . Then there is x1 ∈ [zi−1, zi[ for some i ∈ {1, . . . ,K}, hence
Zi 6= ∅ and i ∈ {i1, . . . , im}. Therefore, we get P (x) ∈ Ωi \ Ui which implies
by the induction hypothesis

P (x) ∈
M(i)⋃
l=1

Q
(i)
l .

Thus

x ∈
M(i)⋃
l=1

([zi−1 − 1, zi]×Q(i)
l ) ⊆

∑m
j=1M(ij)⋃
s=1

Ds.

iv) We show

([zi−1, zi]×
N−1∏
j=1

[a
(i)
l,j + 1, b

(i)
l,j ]) ∩ Ω \ U 6= ∅

for any i ∈ {i1, . . . , im} and l ∈ {1, . . . ,M(i)}. By the induction hypothesis
there holds for any i ∈ {i1, . . . , im} and l ∈ {1, . . . ,M(i)}

(

N−1∏
j=1

[a
(i)
l,j + 1, b

(i)
l,j ]) ∩ Ωi \ Ui 6= ∅.
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Now, if we take for any such fixed i, l some

ξ ∈ (

N−1∏
j=1

[a
(i)
l,j + 1, b

(i)
l,j ]) ∩ Ωi \ Ui

then there exists x1 ∈ [zi−1, zi] with

x := (x1, ξ) ∈ Ω \ U

and therefore

x ∈ ([zi−1, zi]×
N−1∏
j=1

[a
(i)
l,j + 1, b

(i)
l,j ]) ∩ Ω \ U 6= ∅.

Moreover, for any i ∈ {i1, . . . , im} and l ∈ {1, . . . ,M(i)} we also get by the
induction hypothesis

length([zi−1, zi[×
N−1∏
j=1

[a
(i)
l,j + 1, b

(i)
l,j [) ≤ max(δ, ε′) ≤ max(

ε

2
,
ε

2
) =

ε

2
< ε

which finally completes the proof.

4 Concluding remarks

Obviously, the condition
Ω \ U ∩ ∂ωΩ = ∅

in Theorem 1 implies ∂ωΩ ⊆ U . This leads to the question, if Theorem 1 is
even true for U = ∂ωΩ. As mentioned before, this holds for cuboids, i.e. for
the special case

Ω =

N∏
i=1

]ai, bi[

with a,b ∈ RN , |bi−ai| > 1 (cf. [1, p. 192], note that in this case ∂lωΩ ⊆ ∂ωΩ).
For general Ω this remains as an open problem.

Note, moreover, that Theorem 1 is in general not true for subsets U where
∂ωΩ ⊆ U does not hold (cf. [1, p. 180]).

The presented topic could also be extended to the case of general k ∈ L1(ω)
and general nonempty bounded regions ω. For this, basic concepts were given
in [1]. But any result about the validity of the maximum principle in this
general case remains open.
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