Robert Menkyna, Institute of Aurel Stodola, Faculty of Electrical Engineering, University of Žilina, Liptovský Mikuláš, Slovakia. email: menkyna@lm.uniza.sk

ON REPRESENTATIONS OF BAIRE ONE FUNCTIONS AS THE SUM OF LOWER AND UPPER SEMICONTINUOUS FUNCTIONS

Abstract

According to the Vitali-Carathéodory theorem, the integral of a finite summable function f on a measurable set may be approximated by the integral of a sum of lower and upper semicontinuous functions. In the case, that f is a Baire one function, we give the answer to the following question: is there a lower semicontinuous function l and a upper semicontinuous function u such that f = l + u almost everywhere? The answer is in general negative.

We deal with the classes of real functions defined on the interval [0,1]. The symbols C, B_1 , D, lsc and usc stand for the class of continuous, Baire 1, Darboux, lower and upper semicontinuous functions, respectively. DB_1 denotes $D \cap B_1$ and f/F denotes the restriction of the function f on the set F. We use a notation $d(F, x_0)$ for the density of the set F at the point x_0 . Let $A \subset_d B$ denote $A \subset B$ and d(B, x) = 1 for all $x \in A$ and $A \subset_c B$ (A is billaterally c - dense in B) means that for each $x \in A$, the sets $(x, x + \delta) \cap B$, $(x - \delta, x) \cap B$ are nondenumerable for every $\delta > 0$.

Let $I = [0, 1], F_i, i = 1, 2, ...$ be perfect nowhere dense subsets of I,

$$F_1 \subset_d F_2 \subset_d F_3 \subset_d \ldots$$

such that the set $F = \bigcup_{i=1}^{\infty} F_i$ has the Lebesgue measure $\lambda(F) = 1$. Then we define the function f^* in the following way:

Mathematical Reviews subject classification: Primary: 26A15, 26A21 Key words: semicontinuity, Darboux property, function of Baire one class Received by the editors February 24, 2012 Communicated by: Brian S. Thomson

170 Robert Menkyna

$$f^{*}(x) = \begin{cases} 1, & x \in F_{1} \\ \frac{(-1)^{k-1}}{k}, & x \in F_{k} \setminus F_{k-1}, k = 2, 3, \dots \\ 0, & x \in I \setminus F \end{cases}$$

Lemma 1. The function $f^* \in B_1$.

PROOF. It is sufficient to show by [2], that for each $\alpha \in R$ the sets $\{f^* > \alpha\} = \{x \in I; f^*(x) > \alpha\}$ and $\{f^* < \alpha\} = \{x \in I; f^*(x) < \alpha\}$ are sets of type F_σ . It is easy to see that every open set is of F_σ type and closed set of G_δ type. Then the following statement can be made: if A and B are closed subsets of I, then the set $A \setminus B = A \cap (I \setminus B)$ is of type F_σ and G_δ as well as any finite union of such sets.

We show that the sets $\{f^* > \alpha\}$ and $\{f^* < \alpha\}$ are of type F_{σ} for each $\alpha \in R$.

If $\alpha > 1$, then the set $\{f^* > \alpha\} = \emptyset$ and $\{f^* < \alpha\} = [0, 1]$.

If $\alpha = 1$, then the set $\{f^* > \alpha\} = \emptyset$ and $\{f^* < \alpha\} = [0, 1] \setminus F_1$. All of these sets are of type F_{σ} .

If $0 < \alpha < 1$, then there exists an odd natural number k such that $\frac{1}{k+2} \le \alpha < \frac{1}{k}$. From the definition of the function f^* it follows that

$$\{f^* > \alpha\} = (F_k \setminus F_{k-1}) \cup (F_{k-2} \setminus F_{k-3}) \cup \cdots \cup (F_3 \setminus F_2) \cup F_1$$

and thus the set $\{f^* > \alpha\}$ is of type F_{σ} and G_{δ} too. Moreover, the same it holds for the set $\{f^* \leq \alpha\}$ and from there the set

$$\{f^* < \alpha\} = \begin{cases} f^* \le \frac{1}{k+2}, & \text{for } \frac{1}{k+2} < \alpha < \frac{1}{k}. \\ f^* \le \frac{1}{k+4}, & \text{for } \alpha = \frac{1}{k+2} \end{cases}$$

is again the set of type F_{σ} . The analogous assertion is valid for $\alpha < 0$. If $\alpha = 0$, then the sets

$$\{f^* > 0\} = \bigcup_{k=1}^{\infty} \left\{ f^* > \frac{1}{k} \right\} \ and \ \{f^* < 0\} = \bigcup_{k=1}^{\infty} \left\{ f^* < -\frac{1}{k} \right\}$$

are sets of type F_{σ} too thus the function $f^* \in B_1$.

We will say that a function $g \in lsc + usc$, iff there exist any functions $l \in lsc$ and $u \in usc$ such that g = l + u. W. Sierpiński in [5] constructed a bounded Baire one function which cannot be written as sum of lower and upper semicontinuous functions and A. Maliszewski in [4] proved that there is a bounded Darboux Baire one function which does not belong to lsc + usc. Additionally we find the following:

Proposition 2. There is a bounded function $f \in DB_1$ such that for arbitrary function $g \in lsc + usc$, the Lebesgue measure of the set $\{x \in I; f(x) \neq g(x)\}$ is positive.

PROOF. Let f^* be the real function defined above. According to Proposition 1 in [3] there exists a function $f \in DB_1$ such that the set $\{x \in I; f(x) \neq f^*(x)\}$ is a first category subset of the set $[0,1] \setminus F$. We prove that the function f satisfies the assertion of Proposition 2 by contradiction. Assume that there exist a lower semicontinuous function f and upper semicontinuous function f such that the function f and the Lebesgue measure f and f and f and f are defined on that f be a normal f and f and f are defined on the compact set f and f and f are defined on the compact set f and f are denote f and f are defined on the function f and f are defined on the function f and f are defined on the functional equation f and f are denote f and f are defined on the functional equation f and f are denote f and f are defined on the functional equation f are denote f and f are defined on the functional equation f are denote f and f are defined on the functional equation f and f are denote f and f are defined on the equation f are denoted as solution of the equation

$$l = q + d$$
,

where the functions $l \geq 0$, $d \geq 0$ are lower semicontinuous.

Let $J \subset I$ be an arbitrary open interval and let

$$\sum_{n=0}^{\infty} \alpha_n, \quad (\alpha_n > 0 \text{ for each } n = 0, 1, 2, \dots)$$

be any convergent series of positive real numbers and the set

$$A = \{x \in I; f(x) \neq q(x)\}.$$

From the definition of the function f follows the existence of $x_0 \in (J \cap F_{k_0}) \setminus A$, such that $f(x_0) = -\frac{1}{k_0}$ for some even natural number k_0 . Because $f(x_0) = g(x_0)$, by the assumption $l(x_0) \geq 0$ we have $d(x_0) \geq \frac{1}{k_0}$. Since the function $d \in lsc$ then there exists an open neighborhood $U_0 \subset J$ of the point x_0 such that

$$d(U_0) \ge \frac{1}{k_0} - \alpha_0 \qquad (0).$$

Again by the definition of the function f, because $F_{k_0} \subset_d F_{k_0+1}$, we choose $x_1 \in (U_0 \cap F_{k_0+1}) \setminus A$ such that

$$f(x_1) = g(x_1) = \frac{1}{k_0 + 1}.$$

Then from (0)

$$l(x_1) \ge \frac{1}{k_0} - \alpha_0 + \frac{1}{k_0 + 1}$$

and there exists an open neighborhood $U_1 \subset U_0$ of the point x_1 such that

$$l(U_1) \ge \frac{1}{k_0} - \alpha_0 + \frac{1}{k_0 + 1} - \alpha_1$$
 (1).

Repeating this cycle, we choose $x_2 \in (U_1 \cap F_{k_0+2}) \setminus A$ such that

$$f(x_2) = g(x_2) = -\frac{1}{k_0 + 2}.$$

From (1) follows

$$l(x_2) = g(x_2) + d(x_2) \ge \frac{1}{k_0} - \alpha_0 + \frac{1}{k_0 + 1} - \alpha_1$$

and consequently

$$d(x_2) \ge \frac{1}{k_0} - \alpha_0 + \frac{1}{k_0 + 1} - \alpha_1 + \frac{1}{k_0 + 2}.$$

There exists an open neighborhood $U_2 \subset U_1$ of the point x_2 such that

$$d(U_2) \ge \frac{1}{k_0} - \alpha_0 + \frac{1}{k_0 + 1} - \alpha_1 + \frac{1}{k_0 + 2} - \alpha_2 \qquad (2)$$

Next we choose $x_3 \in (U_2 \cap F_{k_0+3}) \setminus A$ such that

$$f(x_3) = g(x_3) = \frac{1}{k_0 + 3}.$$

From (2) we have

$$l\left(x_{3}\right) \geq \frac{1}{k_{0}} - \alpha_{0} + \frac{1}{k_{0} + 1} - \alpha_{1} + \frac{1}{k_{0} + 2} - \alpha_{2} + \frac{1}{k_{0} + 3}$$

and again we obtain the existence of an open neighborhood $U_3\subset U_2$ of the point x_3 such that

$$l(U_3) \ge \frac{1}{k_0} - \alpha_0 + \frac{1}{k_0 + 1} - \alpha_1 + \frac{1}{k_0 + 2} - \alpha_2 + \frac{1}{k_0 + 3} - \alpha_3$$
 (3).

It is necessary to note that the selection of such points x_0, x_1, x_2, x_3 is possible because the set F is dense in [0,1] and $f/F = f^*/F$.

Continuing this process, we construct a sequence of open sets

$$[0,1]\supset J\supset U_0\supset U_1\supset U_2\supset\ldots$$

associated with a sequence of points $x_0, x_1, x_2, x_3, \ldots, x_n \in F$, $n = 0, 1, 2, \ldots$, such that for every even n the following hold:

$$d(U_n) \ge \sum_{i=0}^{n} \left(\frac{1}{k_0 + i} - \alpha_i \right) \tag{n}$$

$$l(U_{n+1}) \ge \sum_{i=0}^{n+1} \left(\frac{1}{k_0 + i} - \alpha_i \right) \qquad (n+1).$$

The functions d and l are real functions defined on I = [0, 1], then

$$\bigcup_{M=1}^{\infty} \{d < M\} = \bigcup_{M=1}^{\infty} \{l < M\} = [0, 1].$$

The series

$$\sum_{i=0}^{\infty} \left(\frac{1}{k_0 + i} - \alpha_i \right)$$

diverges to $+\infty$. From the foregoing it follows that, for an arbitrary open interval $J \subset [0,1]$ and each M>0, there exists an open interval $U \subset J$ such that d(U)>M. That is, each of the sets $\{d< M\}, M=1,2,\ldots$, is nowhere dense in [0,1]. Therefore the closed interval [0,1] is a countable union of nowhere dense sets, which contradicts the Category Theorem of Baire. It was shown that the assumption $\lambda(\{x\in I; f(x)\neq g(x)\})=0$ is not true. \square

Let the class B_1 of Baire 1 functions defined on interval [0,1] be furnished with the sup norm. In the next theorem it will be shown that the class lsc+usc is dense in the class B_1 .

The authors of the article [1] define the class of functions [C] and prove the following Theorem 4.

Definition 3. $f \in [C]$ iff there exists a sequence of closed sets $A_n, n = 1, 2, ...$ such that $\bigcup A_n = R$ and f/A_n is continuous for every n = 1, 2,

Theorem 4. Let $f \in B_1$. Then there are $f_n \in [C]$, n = 1, 2, ... such that $f_n \to f$ uniformly.

Lemma 5. $[C] \subset lsc + usc$.

174 Robert Menkyna

PROOF. Let a function $f \in [C]$. According to Definition 3 there exists a sequence of closed sets $A_n, n = 1, 2, \ldots$ such that $\bigcup A_n = [0, 1]$ and f/A_n is continuous for every $n = 1, 2, \ldots$. The function f/A_n is bounded. Therefore there exists an increasing sequence of real numbers $\beta_n, n = 1, 2, \ldots$ such that

$$|f(x)| \le \beta_n$$
, for each $x \in \bigcup_{i=1}^n A_i$.

We define the functions u and l:

$$u(x) = f^{-}(x) - \beta_{1}$$

 $l(x) = f^{+}(x) + \beta_{1}$, for $x \in A_{1}$

$$\begin{array}{rcl} u\left(x\right) & = & f^{-}\left(x\right) - n\beta_{n} \\ l\left(x\right) & = & f^{+}\left(x\right) + n\beta_{n} \end{array}, \ for \ x \in A_{n} \setminus \bigcup_{i=1}^{n-1} A_{i} \end{array}$$

where as usually

$$f^- = \min\{0, f\} \land f^+ = \max\{0, f\}.$$

We prove that $l \in lsc$. Let $x_0 \in [0,1]$ and let $x_n, n = 1, 2, ...$ to be any sequence of points, $x_n \to x_0$. There exists n_0 such that

$$x_0 \in A_{n_0} \setminus \bigcup_{i=1}^{n_0 - 1} A_i$$

and $l(x_0) = f^+(x_0) + n_0\beta_{n_0}$. Because $\bigcup A_i, 1 \le i \le n_0 - 1$ is a closed set, it is sufficient to consider

$$x_n \in [0,1] \setminus \bigcup_{i=1}^{n_0-1} A_i.$$

If $x_n \in A_{n_0}$ for every n = 1, 2, ..., then from continuity of f^+/A_{n_0} we have

$$l(x_n) = f^+(x_n) + n_0 \beta_{n_0} \to f^+(x_0) + n_0 \beta_{n_0} = l(x_0).$$

If $x_n \in A_{k_n}, k_n > n_0$ for every n = 1, 2, ... then

$$l(x_n) = f^+(x_n) + k_n \beta_{k_n} \ge \beta_{k_n} + (k_n - 1) \beta_{k_n} \ge \beta_{n_0} + n_0 \beta_{n_0} \ge f^+(x_0) + n_0 \beta_{n_0} = l(x_0).$$

Consequently

$$\liminf_{x_n \to x_0} l(x_n) \ge l(x_0),$$

which means $l \in lsc$ and analogically $u \in usc$. The function $f \in lsc + usc$, since f = l + u.

The assertion of Theorem 6 is an immediate consequence of Theorem 4 and Lemma 5.

Theorem 6. Let $f \in B_1$. Then there are $f_n \in lsc + usc, n = 1, 2, ...$ such that $f_n \to f$ uniformly.

References

- S. J. Agronsky, R. Biskner, A. M. Bruckner, J. Mařík, Representations of Functions by Derivatives Trans. Amer. Math. Soc., Volume 261, Number 2, (1980), 493-500.
- [2] A. M. Bruckner, *Differentiation of Real Functions* Lecture notes in Math. 659 Springer-Verlag, Berlin, (1978).
- [3] , A. M. Bruckner, J. G. Ceder, R. Keston Representations and Approximations by Darboux Functions in the first class of Baire Rev. Roum. Math. Pures et Appl., 9, p. 1247-1254 (1968).
- [4] A. Maliszewski On the differences of Darboux upper semicontinuous functions Real Anal. Exch., Vol. 21 (1), 1995-1996, 258-263
- [5] W. Sierpiński Sur les fonctions développables en séries absolument convergentes de fonctions continues Fund. Math. 2 (1921), p. 15-27