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ON REPRESENTATIONS OF BAIRE ONE
FUNCTIONS AS THE SUM OF LOWER AND

UPPER SEMICONTINUOUS FUNCTIONS

Abstract

According to the Vitali-Carathéodory theorem, the integral of a finite
summable function f on a measurable set may be approximated by
the integral of a sum of lower and upper semicontinuous functions. In
the case, that f is a Baire one function, we give the answer to the
following question: is there a lower semicontinuous function l and a
upper semicontinuous function u such that f = l+u almost everywhere?
The answer is in general negative.

We deal with the classes of real functions defined on the interval [0, 1].
The symbols C, B1, D, lsc and usc stand for the class of continuous, Baire
1, Darboux, lower and upper semicontinuous functions, respectively. DB1

denotes D ∩ B1 and f/F denotes the restriction of the function f on the
set F . We use a notation d (F, x0) for the density of the set F at the point
x0. Let A ⊂d B denote A ⊂ B and d (B, x) = 1 for all x ∈ A and A ⊂c
B (A is billateraly c − dense in B) means that for each x ∈ A, the sets
(x, x+ δ) ∩B, (x− δ, x) ∩B are nondenumerable for every δ > 0.

Let I = [0, 1], Fi, i = 1, 2, . . . be perfect nowhere dense subsets of I,

F1 ⊂d F2 ⊂d F3 ⊂d . . . ,

such that the set F =
∞⋃
i=1

Fi has the Lebesgue measure λ (F ) = 1. Then we

define the function f∗ in the following way:
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f∗ (x) =


1, x ∈ F1

(−1)k−1

k , x ∈ Fk \ Fk−1, k = 2, 3, . . .
0, x ∈ I \ F

Lemma 1. The function f∗ ∈ B1.

Proof. It is sufficient to show by [2], that for each α ∈ R the sets {f∗ > α} =
{x ∈ I; f∗ (x) > α} and {f∗ < α} = {x ∈ I; f∗ (x) < α} are sets of type Fσ .
It is easy to see that every open set is of Fσ type and closed set of Gδ type.
Then the following statement can be made: if A and B are closed subsets of
I, then the set A \B = A ∩ (I \B) is of type Fσ and Gδ as well as any finite
union of such sets.

We show that the sets {f∗ > α} and {f∗ < α} are of type Fσ for each
α ∈ R.

If α > 1, then the set {f∗ > α} = ∅ and {f∗ < α} = [0, 1].
If α = 1, then the set {f∗ > α} = ∅ and {f∗ < α} = [0, 1]\F1. All of these

sets are of type Fσ.
If 0 < α < 1, then there exists an odd natural number k such that 1

k+2 ≤
α < 1

k . From the definition of the function f∗ it follows that

{f∗ > α} = (Fk \ Fk−1) ∪ (Fk−2 \ Fk−3) ∪ · · · ∪ (F3 \ F2) ∪ F1

and thus the set {f∗ > α} is of type Fσ and Gδ too. Moreover, the same it
holds for the set {f∗ ≤ α} and from there the set

{f∗ < α} =


{
f∗ ≤ 1

k+2

}
, for 1

k+2 < α < 1
k .{

f∗ ≤ 1
k+4

}
, for α = 1

k+2

is again the set of type Fσ. The analogous assertion is valid for α < 0. If
α = 0, then the sets

{f∗ > 0} =
∞⋃
k=1

{
f∗ >

1

k

}
and {f∗ < 0} =

∞⋃
k=1

{
f∗ < −1

k

}
are sets of type Fσ too thus the function f∗ ∈ B1.

We will say that a function g ∈ lsc + usc, iff there exist any functions
l ∈ lsc and u ∈ usc such that g = l + u. W. Sierpiński in [5] constructed
a bounded Baire one function which cannot be written as sum of lower and
upper semicontinuous functions and A. Maliszewski in [4] proved that there
is a bounded Darboux Baire one function which does not belong to lsc+ usc.
Additionally we find the following:



On Representations of Baire One Functions 171

Proposition 2. There is a bounded function f ∈ DB1 such that for arbitrary
function g ∈ lsc + usc, the Lebesgue measure of the set {x ∈ I; f (x) 6= g (x)}
is positive.

Proof. Let f∗ be the real function defined above. According to Proposition 1
in [3] there exists a function f ∈ DB1 such that the set {x ∈ I; f (x) 6= f∗ (x)}
is a first category subset of the set [0, 1]\F.We prove that the function f satis-
fies the assertion of Proposition 2 by contradiction. Assume that there exist a
lower semicontinuous function l and upper semicontinuous function u such that
the function g = l+u and the Lebesgue measure λ({x ∈ I; f (x) 6= g (x)}) = 0.
Without loss of generality we may assume that l ≥ 0 and u ≤ 0. Otherwise
there exists a positive real number K such that l ≥ −K and u ≤ K, because
the functions l and u are defined on the compact set [0, 1] . Then the function
l can be replaced by l + K and u can by replaced by u − K. If we denote
d = −u, then the solution of the functional equation g = l + u on interval
I = [0, 1] is equivalent to a solution of the equation

l = g + d,

where the functions l ≥ 0, d ≥ 0 are lower semicontinuous.
Let J ⊂ I be an arbitrary open interval and let

∞∑
n=0

αn, (αn > 0 for each n = 0, 1, 2, . . . )

be any convergent series of positive real numbers and the set

A = {x ∈ I; f (x) 6= g (x)} .

From the definition of the function f follows the existence of x0 ∈ (J∩Fk0)\A,
such that f (x0) = − 1

k0
for some even natural number k0. Because f (x0) =

g (x0) , by the assumption l (x0) ≥ 0 we have d (x0) ≥ 1
k0
. Since the function

d ∈ lsc then there exists an open neighborhood U0 ⊂ J of the point x0 such
that

d (U0) ≥
1

k0
− α0 (0) .

Again by the definition of the function f , because Fk0 ⊂d Fk0+1, we choose
x1 ∈ (U0 ∩ Fk0+1) \A such that

f (x1) = g (x1) =
1

k0 + 1
.
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Then from (0)

l (x1) ≥
1

k0
− α0 +

1

k0 + 1

and there exists an open neighborhood U1 ⊂ U0 of the point x1 such that

l (U1) ≥
1

k0
− α0 +

1

k0 + 1
− α1 (1) .

Repeating this cycle, we choose x2 ∈ (U1 ∩ Fk0+2) \A such that

f (x2) = g (x2) = −
1

k0 + 2
.

From (1) follows

l (x2) = g (x2) + d (x2) ≥
1

k0
− α0 +

1

k0 + 1
− α1

and consequently

d (x2) ≥
1

k0
− α0 +

1

k0 + 1
− α1 +

1

k0 + 2
.

There exists an open neighborhood U2 ⊂ U1 of the point x2 such that

d (U2) ≥
1

k0
− α0 +

1

k0 + 1
− α1 +

1

k0 + 2
− α2 (2) .

Next we choose x3 ∈ (U2 ∩ Fk0+3) \A such that

f (x3) = g (x3) =
1

k0 + 3
.

From (2) we have

l (x3) ≥
1

k0
− α0 +

1

k0 + 1
− α1 +

1

k0 + 2
− α2 +

1

k0 + 3

and again we obtain the existence of an open neighborhood U3 ⊂ U2 of the
point x3 such that

l (U3) ≥
1

k0
− α0 +

1

k0 + 1
− α1 +

1

k0 + 2
− α2 +

1

k0 + 3
− α3 (3) .

It is necessary to note that the selection of such points x0, x1, x2, x3 is possible
because the set F is dense in [0, 1] and f/F = f∗/F .
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Continuing this process, we construct a sequence of open sets

[0, 1] ⊃ J ⊃ U0 ⊃ U1 ⊃ U2 ⊃ . . .

associated with a sequence of points x0, x1, x2, x3, . . . , xn ∈ F, n = 0, 1, 2, . . . ,
such that for every even n the following hold:

d (Un) ≥
n∑
i=0

(
1

k0 + i
− αi

)
(n)

l (Un+1) ≥
n+1∑
i=0

(
1

k0 + i
− αi

)
(n+ 1) .

The functions d and l are real functions defined on I = [0, 1], then

∞⋃
M=1

{d < M} =
∞⋃
M=1

{l < M} = [0, 1] .

The series
∞∑
i=0

(
1

k0 + i
− αi

)
diverges to +∞. From the foregoing it follows that, for an arbitrary open
interval J ⊂ [0, 1] and each M > 0, there exists an open interval U ⊂ J such
that d (U) > M. That is, each of the sets {d < M}, M = 1, 2, . . . , is nowhere
dense in [0, 1]. Therefore the closed interval [0, 1] is a countable union of
nowhere dense sets, which contradicts the Category Theorem of Baire. It was
shown that the assumption λ({x ∈ I; f (x) 6= g (x)}) = 0 is not true.

Let the class B1 of Baire 1 functions defined on interval [0, 1] be furnished
with the sup norm. In the next theorem it will be shown that the class lsc+usc
is dense in the class B1.

The authors of the article [1] define the class of functions [C] and prove
the following Theorem 4.

Definition 3. f ∈ [C] iff there exists a sequence of closed sets An, n = 1, 2, . . .
such that ∪An = R and f/An is continuous for every n = 1, 2, . . . .

Theorem 4. Let f ∈ B1. Then there are fn ∈ [C] , n = 1, 2, . . . such that
fn → f uniformly.

Lemma 5. [C] ⊂ lsc+ usc.
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Proof. Let a function f ∈ [C]. According to Definition 3 there exists a
sequence of closed sets An, n = 1, 2, . . . such that

⋃
An = [0, 1] and f/An is

continuous for every n = 1, 2, . . . . The function f/An is bounded. Therefore
there exists an increasing sequence of real numbers βn, n = 1, 2, . . . such that

| f (x) |≤ βn, for each x ∈
n⋃
i=1

Ai.

We define the functions u and l:

u (x) = f− (x)− β1
l (x) = f+ (x) + β1

, for x ∈ A1

u (x) = f− (x)− nβn
l (x) = f+ (x) + nβn

, for x ∈ An \
n−1⋃
i=1

Ai

where as usually

f− = min {0, f} ∧ f+ = max {0, f} .

We prove that l ∈ lsc. Let x0 ∈ [0, 1] and let xn, n = 1, 2, . . . to be any
sequence of points, xn → x0. There exists n0 such that

x0 ∈ An0 \
n0−1⋃
i=1

Ai

and l (x0) = f+ (x0) + n0βn0
. Because

⋃
Ai, 1 ≤ i ≤ n0 − 1 is a closed set, it

is sufficient to consider

xn ∈ [0, 1] \
n0−1⋃
i=1

Ai.

If xn ∈ An0 for every n = 1, 2, . . . , then from continuity of f+/An0 we have

l (xn) = f+ (xn) + n0βn0 → f+ (x0) + n0βn0 = l (x0) .

If xn ∈ Akn , kn > n0 for every n = 1, 2, . . . then

l (xn) = f+ (xn)+knβkn ≥ βkn+(kn − 1)βkn ≥ βn0
+n0βn0

≥ f+ (x0)+n0βn0
= l (x0) .

Consequently
lim inf
xn→x0

l (xn) ≥ l (x0) ,

which means l ∈ lsc and analogically u ∈ usc. The function f ∈ lsc + usc,
since f = l + u.
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The assertion of Theorem 6 is an immediate consequence of Theorem 4
and Lemma 5.

Theorem 6. Let f ∈ B1. Then there are fn ∈ lsc + usc, n = 1, 2, . . . such
that fn → f uniformly.
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