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THE ASYMPTOTIC BEHAVIOR OF
INTEGRABLE FUNCTIONS

Abstract

Given a density d defined on the Borel subsets of [0,∞), the limit
in density of a function f : [0,∞) → R is zero (abbreviated, (d)-
limx→∞ f(x) = 0) if there exists a set S of zero density such that
f(x) → 0 as x runs to ∞ outside S. It is proved that the behavior
at infinity of every Lebesgue integrable function f ∈ L1(0,∞) satisfies

the relations (d(n))-limx→∞

(∏n
k=0 ln(k) x

)
f(x) = 0, where (d(n))n is a

scale of densities including the usual one, d(0)(A) = limr→∞
m(A∩[0,r))

r
.

The analogy between convergent series and integrals over the positive semi-
axis is an interesting topic from classical real analysis that flows continuously
from the old days of mathematics to contemporary research. However, there
is a fundamental property of convergent series in regard to which this analogy
fails. Precisely, if

∑
an is a convergent series then an → 0, but it is not always

true, even when f : [0,∞) → R is positive, that if
∫∞
0
f(x)dx is convergent

then f(x)→ 0 as x→∞. An example is provided by the function

f(x) =

{
1 for x ∈ [n, n+ 1/2n], n ∈ N
0 otherwise.

This example makes clear that in order to re-establish the analogy between
series and integrals is necessary to consider a more general concept of limit at
infinity that leaves off certain subsets of R+.
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In order to put this in an abstract setting we will start with a family I
of measurable subsets of R+ considered to be ”small” or ”negligible”, that
verifies the following four conditions:

PI1) I is closed under finite unions;

PI2) I is hereditary (A ⊂ B ∈ I and A measurable imply A ∈ I);

PI3) I contains all bounded measurable subsets of R+;

PI4) R+ /∈ I.

Such a family is called a proper ideal. We say that ` ∈ R is the limit at
infinity of a function f : [a,∞)→ R modulo the proper ideal I, abbreviated,

` = (I)- lim
x→∞

f(x), (1)

if for every ε > 0 there exists a subset Fε ∈ I outside which |f(x)− `| < ε.
Due to the property of heredity, the above concept of limit is equivalent to

the fact that each of the sets {x : |f(x)− `| ≥ ε} belongs to I whenever ε > 0.
One can consider also the limit at infinity leaving a set S in I,

` = lim
x→∞
x/∈S

f(x), (2)

with the meaning that f(x)→ ` as x runs to ∞, outside S.
The usual limit at infinity corresponds to the case where I is the proper

ideal Mb of all bounded measurable sets included in R+. In this case the two
concepts of limit at infinity (1) and (2) are equivalent. In general only one
implication works: the existence of limit (2) implies the limit (1).

Our problem mentioned above makes use of the ideal Mf , consisting of all
measurable subsets of R+ with finite measure.

The sum of a convergent series
∑

n∈N an is precisely the integral of the
sequence of its terms with respect to the counting measure,

c(A) = number of elements in A.

Indeed, ∑
n∈N

an =

∫
N
andc(n).

The bounded subsets of N (endowed with the discrete metric) are the finite
sets and thus they are the same with the subsets of N of finite measure. In the
continuous case (that is, of R endowed with the Lebesgue measure m), there
are sets of finite measure that are not bounded. It is precisely this fact that
makes the difference between the behavior of series and integrals.
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Theorem 1. If f : [a,∞) → R is a Lebesgue integrable function, then for
every δ > 0 there exists a measurable subset S of [a,∞) such that m(S) < δ
and

lim
x→∞
x/∈S

f(x) = 0.

Proof. Since f is integrable, one can choose an increasing sequence (an)n of
positive numbers such that ∫ ∞

an

|f(x)| dx < 1

n3

for every natural number n. Then the sets

Sn =

{
x ∈ [an, an+1) : |f(x)| ≥ 1

n

}
are measurable and their union has finite measure because

m(Sn) = n

∫ ∞
an

1

n
χSn(x)dx ≤ n

∫ ∞
an

|f(x)| dx ≤ 1

n2
.

Therefore,
lim
x→∞

m(S ∩ [x,∞)) = 0,

and thus by replacing S by S ∩ [aN ,∞) for N large enough we may assume
that m(S) < δ.

Given ε > 0, we denote by n(ε) the smallest integer not less than max {1/ε,N} .
Then for every x in the set [an(ε),∞)\S we have

|f(x)| < 1

n(ε)
< ε,

and the proof is done.

A consequence of Theorem 1 is Barbălat’s Lemma, an important tool for
the analysis of the asymptotic behavior of nonlinear second order equations
with forcing. See [6].

Corollary 2. (Barbălat’s Lemma [1]). If f ∈ L1([0,∞)) and f is uniformly
continuous, then f(x)→ 0 as x→∞.

Proof. Since f is uniformly continuous, for ε > 0 arbitrarily fixed there is
δ(ε) > 0 such that

x, y ∈ [0,∞), |x− y| < δ(ε)⇒ |f(x)− f(y)| < ε

2
.
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According to Theorem 1, there is a measurable subset S with m(S) < δ(ε)/2
outside which f(x)→ 0 as x→∞. This gives us an xε such that |f(x)| < ε/2
for every x ∈ [xε,∞)\S.

As S has finite measure, it admits a covering (In)n consisting of pairwise
disjoint open intervals such that

∑
nm(In) < δ(ε).

Therefore, if x ∈ [xε,∞) ∩ S, then necessarily x belongs to an interval
[xε + kδ(ε), xε + (k + 1)δ(ε)) for some k ∈ N. Since the length of this interval
is precisely δ(ε), it must contain elements y ≥ xε not in S. Then

|f(x)| ≤ |f(x)− f(y)|+ |f(y)| < ε

2
+
ε

2
= ε,

and the proof is done.

It is worth to notice that while Barbălat’s Lemma remains valid in the
context of improper Riemann integrability, the conclusion of Theorem 1 fails
such an extension. An example is provided by the zigzag function f : [0,∞)→
R joining the points (0, 0), ( 1

2 , 1), (1, 0), (1 + 1
4 ,−1), (1 + 1

2 , 0), and so on. A
series representation of this function can be obtained by considering the tent
function of base [a, b] :

T[a,b](x) =
2

b− a
min {x− a, b− x}χ[a,b](x), x ∈ R.

Indeed,

f(x) = T[0,1](x)− T[1,1+ 1
2 ]

(x) + T[1,1+ 1
2 ]

(x)− T[1+ 1
2 ,1+

1
2+

1
3 ]

(x) + · · · .

Theorem 1 is just the top of the iceberg. In our recent paper [7] we were able
to deepen the similarity between series and integrals by considering weighted
limits associated to a scale of proper ideals

I(0) ⊂ I(1) ⊂ I(2) ⊂ · · · ,

each of them consisting of the sets where a certain density vanishes. The den-
sities are aimed to measure how thin are the various Borel subsets of R+. The
concept of set of zero density was first considered by B. O. Koopman and J. von
Neumann [4] in a famous paper dedicated to weakly mixing transformations.

The purpose of the present note is to improve the main result in [7] and to
offer a much simpler argument.

In order to smooth our presentation we will adopt the convention used in
dynamical system theory for the iterates of a function f = f(x) :

f (0)(x) = x and f (n)(x) = (f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸)
n times

(x) for n ≥ 1.
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The density of order 0 (the usual density) is defined by the formula

d(0)(A) = lim
r→∞

1

r

∫
A∩[0,r)

dt

= lim
r→∞

m (A ∩ [0, r))

r
.

This corresponds to the limiting relative frequency in probability theory. The
next density in our scale, the density of order 1, is nothing but the continuous
analogue of harmonic density from number theory,

d(1)(A) = lim
x→∞

1

lnx

∫
A∩[1,x)

dt

t
.

See [3], p. 241. Sometimes d(0) is denoted as d, and d(1) as dh. These two
densities are the first terms of the following scale of densities,

d(n)(A) = lim
x→∞

1

ln(n) x

∫
A∩[exp(n−1) 1,x)

dαn, n ≥ 0,

where exp−1(1) = 0, and

dα0 = dt and dαn =
dt∏n−1

k=0 ln(k) t
for n ≥ 1.

Given a real-valued function f defined on an interval [a,∞), its limit in
density of order n at infinity,

` = (d(n))- lim
x→∞

f(x),

is defined as the limit modulo the proper ideal of all sets of zero density of
order n.

Lemma 3. d(n)(A) = 0 implies d(n+1)(A) = 0, and thus the existence of limit
in density of order n implies the existence of limit in density of order n+ 1.

Proof. We will consider here the case where n ≥ 1. The case where n = 0
can be treated similarly.

Let ε > 0. Since d(n)(A) = 0 one can choose a number s ≥ exp(n−1) 1 such
that

1

ln(n) x

∫
A∩[exp(n−1) 1,x)

dt∏n−1
k=0 ln(k) t

<
ε

3
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for every x ≥ s. Then for x > max
{
s, exp(n) 1, exp(n)

(
3
ε ln(n+1) s

)}
we have

0 ≤ 1

ln(n+1) x

∫
A∩[exp(n) 1,x)

dt∏n
k=0 ln(k) t

=
1

ln(n+1) x

∫
A∩[exp(n) 1,s)

dt∏n
k=0 ln(k) t

+
1

ln(n+1) x

∫
A∩[s,x)

dt∏n
k=0 ln(k) t

≤ ln(n+1) s

ln(n+1) x
+

1

ln(n+1) x

∫ x

s

1

ln(n) t

d

dt

(∫ t

s

χA∩[s,x)(t)dτ∏n−1
k=0 ln(k) τ

)
dt

<
ε

3
+

1

ln(n+1) x

(
1

ln(n) x

∫ x

s

χA∩[s,x)(t)dτ∏n−1
k=0 ln(k) τ

+

+

∫ x

s

1(
ln(n) t

)2∏n−1
k=0 ln(k) t

(∫ t

s

χA∩[s,x)(t)dτ∏n−1
k=0 ln(k) τ

)
dt


<
ε

3
+

ε

3 ln(n+1) x
+

ε

3 ln(n+1) x

∫ x

s

dt∏n
k=0 ln(k) t

<
2ε

3
+

ε

3 ln(n+1) x

(
ln(n+1) x− ln(n+1) s

)
< ε

and the proof is done.

Another notable fact is the equivalence of limit in density of order n with
that of limit at infinity leaving a set of zero density of order n.

Theorem 4. For every measurable function f : [a,∞)→ R the following two
conditions are equivalent:

i) (d(n))-limx→∞ f(x) = 0;
ii) there exists a subset S ⊂ [a,∞) of zero density of order n, such that

lim
x→∞
x/∈S

f(x) = 0.

Proof. The implication ii) ⇒ i) is clear. We will detail the implication
i)⇒ ii) in the case where n ≥ 1 (the argument when n = 0 being similar).

According to our hypothesis each of the sets

Sε = {x ∈ [a,∞) : |f(x)| ≥ ε} , ε > 0,
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has zero density of order n. Since d(n)(S1) = 0, one can choose an element
x1 ∈ [a,∞) ∩ [exp(n−1) 1,∞) such that

1

ln(n) x

∫
S1∩[exp(n−1) 1,x)

dαn < 1

for every x > x1. Since d(n)(S1/2) = 0, one can choose an element x2 > x1
such that

1

ln(n) x

∫
S1/2∩[exp(n−1) 1,x)

dαn <
1

2

for every x > x2. By induction one obtains a strictly increasing sequence (xk)k
such that limk→∞ xk =∞ and

1

ln(n) x

∫
S1/k∩[exp(n−1) 1,x)

dαn <
1

k

for all x > xk. Consider the set

S =

∞⋃
k=1

(
S1/k ∩ [xk, xk+1)

)
.

We will show that d(n)(S) = 0 and limx→∞ f |[a,∞)\S = 0.
In fact, for ε > 0 arbitrarily fixed put N = b1/εc+ 1. Then every x ≥ xN

lies in an interval [xp, xp+1), whence

S ∩ [a, x) =

( ∞⋃
k=1

(
S1/k ∩ [xk, xk+1)

))
∩ [a, x)

=

(
p⋃

k=1

(
S1/k ∩ [xk, xk+1)

))
∩ [a, x)

⊂ S1/p ∩ [x1, x) ⊂ S1/p ∩ [a, x).

Therefore for every x ≥ xN we get

1

ln(n) x

∫
S∩[exp(n−1) 1,x)

dαn

≤ 1

ln(n) x

∫
S1/p∩[exp(n−1) 1,x)

dαn <
1

p
≤ 1

N
< ε,

and thus d(n)(S) = 0.
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Since every x ∈ [xN ,∞)\S belongs to a set [xk, xk+1)\S1/k for some k ≥ N,
it follows that

|f(x)| < 1

k
≤ 1

N
< ε,

and thus limx→∞, x/∈S f(x) = 0. The proof is done.

We state now the main result of our paper.

Theorem 5. If f ∈ L1(0,∞), then

(d(n))− lim
x→∞

(∏n

k=0
ln(k) x

)
f(x) = 0

for every n ∈ N.

B. O. Koopman and J. von Neumann [4] have introduced the concept of
convergence in density in connection with the convergence of certain weighted
arithmetic means. More precisely, they proved that every locally integrable
function f : [0,∞)→ R that verifies the condition

lim
x→∞

1

x

∫ x

0

|f(t)| dt = 0,

verifies also the condition (d(0))-limx→∞ f(x) = 0. This fact can be extended
to densities of all orders.

Lemma 6. Suppose that f : [0,∞)→ R is a locally integrable function and n
is a positive integer. Then

lim
x→∞

1

ln(n) x

∫ x

exp(n−1) 1

|f(t)|dαn = 0 implies (d(n))- lim
x→∞

f(x) = 0,

and the converse holds if in addition f is bounded.

Proof. The first assertion follows by reductio ad absurdum. Indeed, accord-
ing to Theorem 4, if (d(n))-limx→∞ f(x) = 0 fails, then for some ε0 > 0 the
set

Sε0 =
{
x ∈ [exp(n−1) 1,∞) : |f(x)| ≥ ε0

}
does not have zero density of order n. Consequently there exist a positive
number C and an increasing sequence (xk)k of elements of (exp(n−1) 1,∞)
such that limk→∞ xk =∞ and

1

ln(n) xk

∫
Sε0∩[exp(n−1) 1,xk)

dαn ≥ C
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for every k. Then

1

ln(n) xk

∫ xk

exp(n−1) 1

|f(t)| dαn

≥ 1

ln(n) xk

∫
Sε0
∩[exp(n−1) 1,xk)

|f(t)| dαn

≥ ε0

ln(n) xk

∫
Sε0
∩[exp(n−1) 1,xk)

dαn ≥ Cε0,

which contradicts our hypothesis.
As concerns the second assertion, assume (d(n))-limx→∞ f(x) = 0 and fix

arbitrarily ε > 0. Since the set Sε =
{
x ∈ [exp(n−1) 1,∞) : |f(x)| ≥ ε/2

}
has

zero density of order n, there must exist a number xε ≥ exp(n−1) 1 such that

1

ln(n) x

∫
Sε∩[exp(n−1) 1,x)

dαn <
ε

2M

for every x > xε. Here M = supx≥0 |f(x)|. Then for x > xε we have

0 ≤ 1

ln(n) x

∫ x

exp(n−1) 1

|f(t)| dαn

≤ 1

ln(n) x

∫
[exp(n−1) 1,x)\Sε

|f(t)| dαn

+
1

ln(n) x

∫
[exp(n−1) 1,x)∩Sε

|f(t)| dαn

<
ε

2
+M · ε

2M
= ε,

and the proof is done.

Lemma 7. If ω : [a,∞)→ R is a nonincreasing, differentiable, and bounded
function and f : [a,∞) → R is a function locally integrable with respect to
ωdαn, then

lim
x→∞

ω(x)

∫ x

a

f(t)dαn = 0.

Proof. The nontrivial case is when ω(x) > 0 for every x. Given ε > 0, one
can choose y > 0 such that∣∣∣∣∫ x

y

ω(t)f(t)dαn

∣∣∣∣ < ε

3
for every x > y.
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According to the formula of integration by parts for absolutely continuous
functions,

ω(x)

∫ x

a

f(t)dαn = ω(x)

∫ x

a

f(t)
dt∏n−1

k=0 ln(k) t

= ω(x)

(∫ y

a

f(t)
dt∏n−1

k=0 ln(k) t
+

∫ x

y

1

ω(t)
ω(t)f(t)

dt∏n−1
k=0 ln(k) t

)

= ω(x)

(∫ y

a

f(t)
dt∏n−1

k=0 ln(k) t
+

∫ x

y

1

ω(t)

d

dt

(∫ t

y

ω(s)f(s)
ds∏n−1

k=0 ln(k) s

)
dt

)

= ω(x)

(∫ y

a

f(t)
dt∏n−1

k=0 ln(k) t
+

1

ω(x)

∫ x

y

ω(s)f(s)
ds∏n−1

k=0 ln(k) s

−
∫ x

y

ω′(t)

ω2(t)

(∫ t

y

ω(s)f(s)
ds∏n−1

k=0 ln(k) s

)
dt

)
.

On the other hand, for x > y sufficiently large we have∣∣∣∣∣ω(x)

∫ y

a

f(t)
dt∏n−1

k=0 ln(k) t
+

∫ x

y

ω(s)f(s)
ds∏n−1

k=0 ln(k) s

∣∣∣∣∣
≤ ω(x)

∣∣∣∣∣
∫ y

a

f(t)
dt∏n−1

k=0 ln(k) t

∣∣∣∣∣+
ε

3
≤ 2ε

3
,

and∣∣∣∣∣ω(x)

∫ x

y

ω′(t)

ω2(t)

(∫ t

y

ω(s)f(s)
ds∏n−1

k=0 ln(k) s

)
dt

∣∣∣∣∣
≤ ω(x)

∫ x

y

∣∣∣∣∣ ω′(t)ω2(t)

(∫ t

y

ω(s)f(s)
ds∏n−1

k=0 ln(k) s

)∣∣∣∣∣ dt
≤ ε

3
ω(x)

∫ x

y

−ω′(t)
ω2(t)

dt

≤ ε

3
ω(x)

(
1

ω(y)
− 1

ω(x)

)
≤ ε

3
,

whence
∣∣ω(x)

∫ x

a
f(t)dαn

∣∣ ≤ ε for x sufficiently large.

We are now in a position to detail the proof of Theorem 5. The function f

being integrable on [a,∞), it follows that the product
(∏n

k=0 ln(k) x
)
f is lo-
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cally integrable with respect to the measure ω(x)dαn, where ω(x) = 1/ ln(n) x.
According to Lemma 7,

lim
x→∞

1

ln(n) x

∫ x

a

(∏n

k=0
ln(k) x

)
f(t)

dt∏n−1
k=0 ln(k) t

= 0,

so by Lemma 6 we conclude that (d(n))-limx→∞

(∏n
k=0 ln(k) x

)
f(x) = 0.

A different approach of the behavior at infinity of an integrable function
has been recently described by E. Lesigne [5].

It is worth to notice here the existence of a discrete companion of Theorem
5, working for positive series. The details are the same, with the difference
that the role of Lebesgue measure over [0,∞) is taken by the counting measure
over the nonnegative integers.
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