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PRODUCTS OF EXTRA STRONG
ŚWIA̧TKOWSKI FUNCTIONS

Abstract

In this paper we characterize products of four or more extra strong
Świa̧tkowski functions.

1 Preliminaries

We use mostly standard terminology and notation. The letters R and N
denote the real line and the set of positive integers, respectively. The symbols
I(a, b) and I[a, b] denote the open and the closed interval with endpoints a
and b, respectively. For each A ⊂ R we use the symbols intA, clA, and bdA
to denote the interior, the closure, and the boundary of A, respectively. We
say that a set A ⊂ R is simply open [1], if it can be written as the union of an
open set and a nowhere dense set. The symbol Ent(x) denotes the greatest
integer not larger than x ∈ R.

Let f : I → R, where I is a nondegenerate interval. The symbol C(f)
stands for the set of all points of continuity of f . We say that f is a Darboux
function (f ∈ D), if it maps connected sets onto connected sets. We say that
f is quasi-continuous in the sense of Kempisty [2], if for all x ∈ I and open
sets U 3 x and V 3 f(x), the set int(U ∩ f−1(V )) is nonempty. We say that
f is cliquish [7], if the set of points of continuity of f is dense in I. We say
that f is a strong Świa̧tkowski function [3] (f ∈ Śs), if whenever α, β ∈ I and
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y ∈ I(f(α), f(β)), there is an x0 ∈ I(α, β) ∩ C(f) such that f(x0) = y. We
say that f is an extra strong Świa̧tkowski function [6] (f ∈ Śes), if whenever
α, β ∈ I, α 6= β, and y ∈ I[f(α), f(β)], there is an x0 ∈ I[α, β]∩C(f) such that
f(x0) = y. One can easily see that each strong Świa̧tkowski function is both
Darboux and quasi-continuous and each extra strong Świa̧tkowski function is
strong Świa̧tkowski. The symbol [f = a] stands for the set {x ∈ I : f(x) = a}.
We say that a function f changes its sign in interval J , if there are points
x1, x2 ∈ J such that sgn f(x1) 6= sgn f(x2). The symbol M denotes the class
of all functions f such that f has a zero in each interval in which it takes on
both positive and negative values.

2 Introduction

In 1996 A. Maliszewski proved the following theorem [4].

Theorem 2.1. For each function f : R → R the following conditions are
equivalent :

i) f is a finite product of Darboux quasi-continuous functions,

ii) there are Darboux quasi-continuous functions g and h such that f = gh,

iii) f ∈M, f is cliquish, and the set [f = 0] is simply open.

He showed also that products of two and three strong Świa̧tkowski func-
tions are different, and asked for characterization of products of such functions.
In 2006 I found the partial solution of this problem proving the following the-
orem [5].

Theorem 2.2. For each function f : R → R the following conditions are
equivalent :

i) f is a finite product of strong Świa̧tkowski functions,

ii) there are strong Świa̧tkowski functions g1, . . . , g4 such that f = g1 . . . g4,

iii) the function f is cliquish, the set [f = 0] is simply open, and there exist
a Gδ-set A ⊂ [f = 0] such that I ∩ A 6= ∅ for every interval I in which
f takes on both positive and negative values.

Recently I found a bounded strong Świa̧tkowski function which cannot be
written as the finite product of extra strong Świa̧tkowski functions [6, Propo-
sition 4.2]. Moreover I presented a product of three extra strong Świa̧tkowski
functions that cannot be written as a product of two such functions and a
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product of four extra strong Świa̧tkowski functions that cannot be expressed
as a product of three functions of that kind [6, Propositions 4.4 and 4.5].

In this paper I characterize products of four or more extra strong Świa̧tkowski
functions. However, the following problem is still open.

Problem 2.3. Characterize the products of two extra strong Świa̧tkowski
functions and the products of three extra strong Świa̧tkowski functions.

3 Auxiliary lemmas

The proof of Lemma 3.1 we can find in [6, Theorem 3.1].

Lemma 3.1. For each function f : R→ R the following conditions are equiv-
alent :

i) f ∈ Śes,

ii) f ∈ D and f [I] = f [I ∩ C(f)] for each nondegenerate interval I ⊂ R,

iii) f ∈ D and f(x) ∈ f [I[x, t] ∩ C(f)] for each x ∈ R and each t ∈ R \ {x}.

The next lemma is interesting in itself.

Lemma 3.2. Assume that I ⊂ R is an interval, g : I → R, and h : R→ R. If
g, h ∈ Śes, then h ◦ g ∈ Śes.

Proof. Let x ∈ I and t ∈ I \ {x}. If g�I[x, t] ∈ Const, then (h ◦ g)�I[x, t] ∈
Const and

(h ◦ g)(x) ∈ (h ◦ g)[I[x, t] ∩ C(h ◦ g)].

In the other case, since g ∈ Śes ⊂ D, then g[I[x, t]] is a nondegenerate interval.
Since h ∈ Śes, by Lemma 3.1 we have

(h ◦ g)(x) ∈ h
[
g[I[x, t]]

]
= h

[
g[I[x, t]] ∩ C(h)

]
= h

[
g[I[x, t] ∩ C(g)] ∩ C(h)

]
⊂ h

[
g[I[x, t] ∩ C(h ◦ g)]

]
= (h ◦ g)[I[x, t] ∩ C(h ◦ g)].

Clearly h ◦ g ∈ D. By Lemma 3.1 we obtain that h ◦ g ∈ Śes.

Lemma 3.3 is due to A. Maliszewski [4, Lemma III.1.1].

Lemma 3.3. Let A ⊂ R be nowhere dense and closed and I be the family of
all components of R \ A. There are pairwise disjoint families I1, . . . , I4 ⊂ I
such that for each j ∈ {1, . . . , 4} and x ∈ A if x is not isolated in A from the
left (from the right), then there is a sequence (Ij,n) ⊂ Ij with inf Ij,n → x−

(with sup Ij,n → x+, respectively).
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The proof of Lemma 3.4 is similar to the proof of [5, Lemma 3.4].

Lemma 3.4. Assume that F ⊂ C are closed and J is a family of components
of R \ C such that C ⊂ cl

⋃
J . There is a family J ′ ⊂ J such that

i) for each J ∈ J , if F ∩ bd J 6= ∅, then J ∈ J ′,

ii) for each c ∈ F , if c is a right-hand (left-hand) limit point of C, then c
is a right-hand (respectively left-hand) limit point of the union

⋃
J ′,

iii) cl
⋃
J∈J ′

{inf J} ⊂ F ∪
⋃
J∈J ′

{inf J} and cl
⋃
J∈J ′

{sup J} ⊂ F ∪
⋃
J∈J ′

{sup J}.

Proof. Let P be the family of all components of R \ F and P ∈ P. One
can easily see that there is a family JP ⊂ J such that

⋃
JP ⊂ P and the

following conditions hold:

if P ∩ C 6= ∅, then JP 6= ∅, (1)

for each J ∈ J , if J ⊂ P and bdP ∩ bd J 6= ∅, then J ∈ JP , (2)

if inf P ∈ cl(P ∩ C), then inf P ∈ cl
⋃
JP , (3)

if supP ∈ cl(P ∩ C), then supP ∈ cl
⋃
JP , (4)

cl
⋃
J∈JP

{inf J} ⊂ bdP ∪
⋃
J∈JP

{inf J}, (5)

cl
⋃
J∈JP

{sup J} ⊂ bdP ∪
⋃
J∈JP

{sup J}. (6)

Define J ′ =
⋃
P∈P JP . Clearly J ′ ⊂ J . We will show that J ′ satisfies

the conditions i)–iii) of the lemma.
Assume that F ∩bdJ 6= ∅ for some J ∈ J . Since F ⊂ C, there is a P ∈ P

with J ⊂ P . Then by (2), J ∈ JP ⊂ J ′. This proves condition i).
To prove condition ii) assume that c ∈ F is a right-hand limit point of C.

We consider two cases.
If there is a P ∈ P with c = inf P , then by (3),

c ∈ cl
⋃
JP ⊂ cl

(
(c,∞) ∩

⋃
J ′
)
.

In the opposite case fix a d > c. Since C ⊂ cl
⋃
J , we obtain (c, d) ∩⋃

J 6= ∅. By our assumption, there is a J ∈ J such that J ⊂ (c, d) and
(sup J, d) ∩ F 6= ∅. Choose P ∈ P with J ⊂ P . Clearly P ⊂ (c, d).

If P ∩ C = ∅, then P = J ∈ J , and by (2), P ∈ JP ⊂ J ′. Consequently
(c, d) ∩

⋃
J ′ 6= ∅.

If P ∩ C 6= ∅, then by (1), JP 6= ∅. Since
⋃
JP ⊂ P , we obtain that

(c, d) ∩
⋃
J ′ 6= ∅. This completes the proof of ii).
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Finally we will show iii). Note that by (5),

cl
⋃
J∈J ′

{inf J} = cl
⋃
P∈P

⋃
J∈JP

{inf J} ⊂ cl
⋃
P∈P

(
bdP ∪

⋃
J∈JP

{inf J}
)
⊂

⊂ clF ∪
⋃
P∈P

( ⋃
J∈JP

{inf J} ∪ bdP
)

= F ∪
⋃
J∈J ′

{inf J}.

Similarly, using condition (6) we can prove that cl
⋃
J∈J ′{sup J} ⊂ F ∪⋃

J∈J ′{sup J}. This completes the proof of the lemma.

Lemma 3.5. Let I = (a, b) be an open interval and assume that y1, y2 ∈ [0, 1].
There is an extra strong Świa̧tkowski function g : cl I → [0, 1] such that

i) g(a) = y1, g(b) = y2,

ii) g[I] = (0, 1],

iii) bd I ⊂ C(g),

iv) if y1 6= 0, then g
[
[a, a+ δ)

]
= {y1} for some δ > 0,

v) if y2 6= 0, then g
[
(b− δ, b]

]
= {y2} for some δ > 0.

Proof. Define the function ḡ : R→ (0, 1] by

ḡ(x) =

{
min

{
1, sinx−1 + |x|+ 1

}
if x 6= 0,

2−1 if x = 0.

Then clearly ḡ ∈ Śes. Choose elements a < x1 < · · · < x7 < b and define
continuous functions ϕ,ψ : cl I → [0, 1] as follows:

ϕ(x) =


y1 if x ∈ [a, x1],

y2 if x ∈ [x7, b],

1 if x ∈ [x2, x6],

linear in intervals [x1, x2] and [x6, x7],

ψ(x) =


y1 if x = a,

y2 if x = b,

1 if x ∈ [x2, x6],

linear in intervals [a, x2] and [x6, b].
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Now define the function g : cl I → [0, 1] by the formula:

g(x) =


ḡ(x− x4) if x ∈ [x3, x5],

ϕ(x) if x ∈ [a, x2] and y1 6= 0 or x ∈ [x6, b] and y2 6= 0,

ψ(x) if x ∈ [a, x2] and y1 = 0 or x ∈ [x6, b] and y2 = 0,

linear in intervals [x2, x3] and [x5, x6].

Clearly C(g) = cl I \ {x4}. So, condition iii) holds and g ∈ Śes. Now assume
that y1 6= 0 and put δ = x1 − a > 0. Then obviously g

[
[a, a + δ)

]
= {y1}.

Similarly we can show that condition v) is fulfilled. The other requirements
of the lemma are evident.

Lemma 3.6. Let E ⊂ R be a compact interval and f : E → R. Assume
that I = (a, b) ⊂ E is an open interval such that I ⊂ [f = 0]. Moreover,
suppose that c, d ∈ [−1, 1] such that c 6= 0 if f(a) 6= 0 and d 6= 0 if f(b) 6= 0.
There are extra strong Świa̧tkowski functions g1, g2 : cl I → [−1, 1] such that
sgn ◦ (g1g2) = sgn ◦ f� cl I and for i ∈ {1, 2}, we have:

i) gi(a) = c(sgn f(a))i+1, gi(b) = d(sgn f(b))i+1,

ii) gi[I] = [−1, 1],

iii) if f(a) 6= 0, then gi[(a, z) ∩ C(gi)] = [−1, 1] for each z ∈ (a, b),

iv) if f(a) = 0, then [a, a+ δ) ⊂ [gi = 0] for some δ > 0,

v) if f(b) 6= 0, then gi[(z, b) ∩ C(gi)] = [−1, 1] for each z ∈ (a, b),

vi) if f(b) = 0, then (b− δ, b] ⊂ [gi = 0] for some δ > 0.

Proof. Choose t ∈ (a, b) and a strictly decreasing sequence (xn) ⊂ (a, t)
such that xn → a+. Put x0 = t. Define the function h : (a, t]→ [−1, 1] by the
formula:

h(x) =


0 if x = xn−1, n ∈ N,

(−1)n−1 if x = (xn−1 + xn)/2, n ∈ N,

linear in each interval of the form [xn, (xn−1 + xn)/2]

or [(xn−1 + xn)/2, xn−1], n ∈ N.

Then h is continuous on (a, t] and h
[
(a, t]

]
= [−1, 1]. Now fix an i ∈ {1, 2}

and define two functions ϕi, ψi : [a, t]→ [−1, 1] as follows:

ϕi(x) =


h(x) if x ∈

⋃∞
n=1[x4n−2i+2, x4n−2i],

0 if x ∈
⋃∞
n=1[x4n+2i−4, x4n+2i−6],

c(sgn f(x))i+1 if x = a,
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ψi(x) =

{
h(x) if x ∈ [x6−2i, x4−2i],

0 if x ∈ [x2i, x2i−2] ∪ [a, x4].

Since h(xn) = 0 for each n ∈ N ∪ {0}, functions ϕi and ψi are well defined
and ψi is continuous. Moreover the function ϕi ∈ Śes and t ∈ C(ϕi) ∩ C(ψi).
Proceeding similarly we construct functions ϕ̄i, ψ̄i : [t, b] → [−1, 1] having the
same properties as ϕi and ψi, respectively. Define the function gi : cl I →
[−1, 1] by the formula:

gi(x) =


ϕi(x) if x ∈ [a, t] and f(a) 6= 0,

ψi(x) if x ∈ [a, t] and f(a) = 0,

ϕ̄i(x) if x ∈ [t, b] and f(b) 6= 0,

ψ̄i(x) if x ∈ [t, b] and f(b) = 0.

Since ϕi(t) = ψi(t) = ϕ̄i(t) = ψ̄i(t) = 0, the function gi is well defined.
Moreover, t ∈ C(gi), whence gi ∈ Śes. Now assume that f(a) = 0 and put
δ = x4 − a > 0. Then

gi
[
[a, a+ δ)

]
= ψi

[
[a, a+ δ)

]
= {0}.

So, [a, a+ δ) ⊂ [gi = 0]. Similarly we can show that condition vi) holds.
Finally, sgn ◦ (g1g2)�I = 0 = sgn ◦ f�I and

(
sgn ◦ (g1g2)

)
(x) = (sgn ◦

f)(x) for each x ∈ bd I. Consequently, sgn ◦ (g1g2) = sgn ◦ f� cl I. The other
requirements of the lemma are evident.

4 Main results

Theorem 4.1. Assume that E ⊂ R is a compact interval, the function
f : E → R is cliquish, the set [f = 0] is simply open, and there is a Gδ-
set A ⊂ [f = 0] such that I ∩ A 6= ∅ for each interval I in which the func-
tion f changes its sign. Then there are functions g1, . . . , g4 ∈ Śes such that
f = g1 . . . g4.

Proof. First we will show that

there are functions g1, g2 ∈ Śes with sgn ◦ (g1g2) = sgn ◦ f . (7)

Define C
df
= bd[f = 0]. Observe that the set C is closed and since [f = 0] is

simply open, C is nowhere dense. Let I be the family of all components of
R \ C. By Lemma 3.3 there are pairwise disjoint families I1, . . . , I4 ⊂ I such
that for each j ∈ {1, . . . , 4} and x ∈ C if x is not isolated in C from the left
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(from the right), then there is a sequence (Ij,n) ⊂ Ij with inf Ij,n → x− (with
sup Ij,n → x+, respectively). Observe that, since [f = 0] is simply open, we
have only I ∩ [f = 0] = ∅ or I ⊂ [f = 0] for each I ∈ I. Now define

P
df
= {x ∈ C : x ∈ bd I ∩ bd I ′ for some I, I ′ ∈ I such that I ′ 6= I}. (8)

Clearly, P is the set of all points which are bilaterally isolated in C. Let

A1
df
= (A ∩ C) ∪ P. (9)

Since A is a Gδ-set, A1 is a Gδ-set, too. Then C \ A1 is an Fσ-set, whence
there is an increasing sequence (Fn) consisting of closed sets such that

C \A1 =
⋃
n∈N

Fn. (10)

Let C1
df
= C \ P . Then obviously C1 is closed, nowhere dense, and C \ A1 =

C1 \A1. So, Fn ⊂ C1 for each n ∈ N and C1 ⊂ cl
⋃
Ij for each j ∈ {1, . . . , 4}.

Define F ′0 = ∅. For each n ∈ N, use four times Lemma 3.4 to construct a
sequence of sets (F ′n) and an increasing sequence of families of intervals (J ′n)
such that

J ′n =

4⋃
j=1

J ′j,n, (11)

F ′n = Fn ∪
⋃
k<n

(
F ′k ∪

⋃
I∈J ′

k

(bd I \A1)
)
, (12)

and for j ∈ {1, . . . , 4},

J ′j,n ⊂ Ij , (13)

for each I ∈ Ij , if F ′n ∩ bd I 6= ∅, then I ∈ J ′j,n, (14)

for each c ∈ F ′n, if c is a right-hand (left-hand) limit point of C1,
then c is a right-hand (left-hand) limit point of the union

⋃
J ′j,n,

(15)

cl
⋃

J∈J ′
j,n

{inf J} ⊂ F ′n ∪
⋃

J∈J ′
j,n

{inf J} and

cl
⋃

J∈J ′
j,n

{sup J} ⊂ F ′n ∪
⋃

J∈J ′
j,n

{sup J}.
(16)
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Observe that for each k < n, the set Bk
df
= F ′k ∪

⋃
I∈J ′

k
(bd I \A1) is closed.

Indeed, fix a k < n and let x ∈ clBk. Then there is a sequence (xm) ⊂ Bk
such that xm → x. If (xm) ⊂ F ′k, then x ∈ clF ′k = F ′k ⊂ Bk. In the opposite
case, without loss of generality we can assume that (xm) ⊂

⋃
I∈J ′

k
{inf I}\A1,

whence x ∈ cl
⋃
I∈J ′

k
{inf I}. By (16), x ∈ F ′k ∪

⋃
I∈J ′

k
{inf I}. If we would

have x ∈ A1, then since (xm) ⊂
⋃
I∈J ′

k
{inf I} and xm → x, there was a

sequence (ym) ⊂
⋃
I∈J ′

k
{sup I} such that ym → x, which contradicts (16).

Consequently x ∈ Bk, which proves that the set Bk is closed. So, by (12), the
set F ′n is also closed and F ′n ⊂ C1 \A1.

Now let aI
df
= inf I, bI

df
= sup I for each I ∈ I, and

I5
df
=
{
I ∈ I : I /∈

4⋃
j=1

Ij
}
.

Fix an I ∈ I and put

nI =

{
min

{
n ∈ N : I ∈ J ′n

}
if I ∈

⋃
J ′n,

Ent(1/|I|) + 1 if I ∈ I \
⋃
J ′n.

Note that if aI ∈ P , then there is IR ∈ I such that aI = bIR . Similarly, if
bI ∈ P , then there is IL ∈ I such that bI = aIL . Define

raI =


0 if aI ∈ A,

2−1|sgn f(aI)| if aI = bIR and nI ≥ nIR ,

2nI−nIR
−1|sgn f(aI)| if aI = bIR and nI < nIR ,

2−n|sgn f(aI)| if aI ∈ F ′n \
⋃
k<n F

′
k, n ∈ N,

rbI =


0 if bI ∈ A,

2−1|sgn f(bI)| if bI = aIL and nI ≥ nIL ,

2nI−nIL
−1|sgn f(bI)| if bI = aIL and nI < nIL ,

2−n|sgn f(bI)| if bI ∈ F ′n \
⋃
k<n F

′
k, n ∈ N.

Observe that raI , rbI ∈ [0, 1]. Moreover we can easily see that if components
J, J ′ ∈ I and aJ = bJ′ , then

2−nJ raJ = 2−nJ′ rbJ′ . (17)

By (8), if x ∈ bd I ∩ P , there is I ′ ∈ I such that I ′ 6= I and x ∈ bd I ∩ bd I ′.
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For each x ∈ bd I define

s(x) =



|sgn f(x)| if x /∈ P or x ∈ P and I ′ ⊂ [f = 0],

(−1)j+1|sgn f(x)| if x ∈ P , I ′ ∈ Ij for j ∈ {1, 2, 5},
and I ′ ∩ [f = 0] = ∅,

(−1)j+1 sgn f(x) if x ∈ P , I ′ ∈ Ij for j ∈ {3, 4},
and I ′ ∩ [f = 0] = ∅.

If I ∩ [f = 0] = ∅, assuming that y1 = raI and y2 = rbI , we construct
the function gI : cl I → [0, 1] which fulfills the requirements of Lemma 3.5.
And if I ⊂ [f = 0], assuming that c = raIs(aI) and d = rbIs(bI), we construct
functions g1,I , g2,I : cl I → [−1, 1] which fulfill the requirements of Lemma 3.6.

Fix an i ∈ {1, 2}. Define the function gi : E → [−1, 1] by the formula:

gi(x) =



0 if x ∈ A ∩ C,

2−nIgi,I(x) if x ∈ cl I and I ⊂ [f = 0],

(−1)j+12−nI (sgn f(x))i+1gI(x) if x ∈ cl I, I ∩ [f = 0] = ∅,
and I ∈ Ij for j ∈ {1, 2, 5},

(−1)j+12−nI (sgn f(x))igI(x) if x ∈ cl I, I ∩ [f = 0] = ∅,
and I ∈ Ij for j ∈ {3, 4},

2−n(sgn f(x))i+1 if x ∈ F ′n \
(⋃

I∈I bd I ∪ F ′n−1
)
,

n ∈ N.

First we will show that the function gi is well defined. If x ∈ bd I ∩A for some
I ∈ I, then gi(x) = 0. Now let x /∈ A and x ∈ bd I ∩ bd I ′ for some I, I ′ ∈ I
such that I ′ 6= I. Then obviously x ∈ P . Note that if x ∈ [f = 0] ∩ P , then
gi(x) = 0. So, let (sgn ◦f)(x) 6= 0. Without loss of generality we can assume
that x = aI = bI′ . We consider the following cases.

Case 1. I ⊂ [f = 0] and I ′ ⊂ [f = 0].
Then, by (17) and since s(aI) = 1 = s(bI′), we have

gi(aI) = 2−nIgi,I(aI) = 2−nI raIs(aI)(sgn f(aI))
i+1 =

= 2−nI′ rbI′ s(bI′)(sgn f(bI′))
i+1 = 2−nI′ gi,I′(bI′) = gi(bI′).

Case 2. I ∩ [f = 0] = ∅, I ′ ⊂ [f = 0], and I ∈ Ij for j ∈ {1, 2, 5}.
Since gI(aI) = raI and s(bI′) = (−1)j+1, then by (17)

gi(aI) = (−1)j+12−nI (sgn f(aI))
i+1gI(aI) =

= 2−nI′ rbI′ s(bI′)(sgn f(bI′))
i+1 = 2−nI′ gi,I′(bI′) = gi(bI′).
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Case 3. I ∩ [f = 0] = ∅, I ′ ⊂ [f = 0], and I ∈ Ij for j ∈ {3, 4}.
Since gI(aI) = raI , (sgn f(aI))

i = (sgn f(bI′))
i+2, and

s(bI′) = (−1)j+1 sgn f(bI′),

then by (17)

gi(aI) = (−1)j+12−nI (sgn f(aI))
igI(aI) =

= 2−nI′ rbI′ s(bI′)(sgn f(bI′))
i+1 = 2−nI′ gi,I′(bI′) = gi(bI′).

So, the function gi is well defined. Moreover, we can easily see that sgn ◦
(g1g2) = sgn ◦ f .

Now we will show that

A′1
df
= A ∩ C ⊂ C(gi). (18)

Take an x0 ∈ A′1. Observe that A′1 ⊂ [f = 0]∩C. If there is an I ∈ I such that
x0 = bI , then by condition iii) of Lemma 3.5 or condition vi) of Lemma 3.6,
respectively, the function gi is continuous from the left at x0.

In the opposite case take an x0 ∈ A′1 \ {bI : I ∈ I} and let ε > 0. Choose
n0 ∈ N such that 2−n0 < ε and define the set F as follows:

F
df
=

{(
cl
⋃
J ′n0

)
\
(
I ∪ {x0}

)
if there is an I ∈ I such that x0 ∈ cl I,

cl
⋃
J ′n0

otherwise.

Observe that, by (16), the set F is closed. Put δ = min{2−n0 ,dist(F, x0)}.
(If C \ A1 = ∅, then δ = 2−n0 .) Since x0 /∈ F , we have dist(F, x0) > 0.
Consequently δ > 0. Choose a δ′ ∈ (0, δ) such that x0 − δ′ /∈

⋃
I. (Recall

that x0 is not isolated in C from the left.) Observe that if I ∈ I5 and I ⊂
(x0 − δ′, x0), then |I| < 2−n0 and nI > n0. For every x ∈ (x0 − δ′, x0),
we have x /∈ F , which shows that x /∈

⋃
I∈J ′

n0

cl I. Condition (15) yields

F ′n0
⊂ cl

⋃
J ′n0

, whence F ′n0
⊂ F ∪ {x0} and in particular x /∈ F ′n0

. Thus

|gi(x)− gi(x0)| = |gi(x)| ≤ 2−n0 < ε.

So, in this case the function gi is continuous from the left at x0, too. Similarly
we can prove that the function gi is continuous from the right at each point
x0 ∈ A′1. Consequently A′1 ⊂ C(gi).

Now we will prove that

∀
n∈N
∀
δ>0

(
x ∈ F ′n \ {bI : I ∈ I} ⇒ gi[(x− δ, x) ∩ C(gi)] ⊃ [−2−n, 2−n]

)
. (19)
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Let n ∈ N, δ > 0 and x ∈ F ′n \ {bI : I ∈ I}. Then x /∈ P , whence for
j ∈ {1, . . . , 4}, by (15), there is an Ij ∈ J ′j,n with Ij ⊂ (x− δ, x). Notice that

max
{
nIj : j ∈ {1, . . . , 4}

}
≤ n. So,

gi[(x− δ, x) ∩ C(gi)] ⊃
4⋃
j=1

gi[Ij ∩ C(gi)] ⊃ [−2−n, 2−n] \ {0}.

If there is an I ∈ I such that I ⊂ [f = 0] and (x− δ, x)∩ I 6= ∅, then since
gi,I ∈ Śes and conditions v) and vi) of Lemma 3.6 hold, we have

gi[(x− δ, x) ∩ C(gi)] ⊃ [−2−n, 2−n].

In the opposite case, since x /∈ P , the function f changes its sign in each
left-hand neighborhood of x. Hence, by assumption

∅ 6= (x− δ, x) ∩A′1 ⊂ (x− δ, x) ∩ C(gi) ∩ [gi = 0]

and finally
gi[(x− δ, x) ∩ C(gi)] ⊃ [−2−n, 2−n].

Similarly we can prove that

∀
n∈N
∀
δ>0

(
x ∈ F ′n \ {aI : I ∈ I} ⇒ gi[(x, x+ δ) ∩ C(gi)] ⊃ [−2−n, 2−n]

)
.

Further we will show that

for each I ∈ I, if x ∈ bd I, then gi(x) ∈ gi
[
I[x, t] ∩ C(gi)

]
for each

t 6= x such that I[x, t] ⊂ E.
(20)

Let I ∈ I, x ∈ bd I, and t 6= x. Without loss of generality we can assume
that x /∈ C(gi). Hence by (18), x /∈ A′1. Let t < x. (If t > x we proceed
analogously.)

First assume that x = bI . We consider two cases.

Case 1. I ⊂ [f = 0].
Then gi = 2−nIgi,I on cl I. If gi,I(bI) 6= 0, then by condition v) of

Lemma 3.6 we obtain that

gi,I [(t0, bI) ∩ C(gi,I)] = [−1, 1],

where t0 = sup{aI , t}. Hence and by the definition of gi we have

gi[[t, x] ∩ C(gi)] ⊃ gi[(t0, bI) ∩ C(gi)] = [−2−nI , 2−nI ] 3 gi(bI) = gi(x).
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If gi,I(bI) = 0, then by condition vi) of Lemma 3.6 there is a δ > 0 such that

(bI − δ, bI ] ⊂ [gi,I = 0] ⊂ [gi = 0],

whence condition (20) holds.

Case 2. I ∩ [f = 0] = ∅.
Then gi = 2−nIgI or gi = −2−nIgI . If gi(bI) = 0, then bI ∈ A∩C = A′1 ⊂

C(gi), which is impossible, or bI ∈ P . But if bI ∈ P , then by condition iii) of
Lemma 3.5 and by condition iv) of Lemma 3.6, we would also have x = bI ∈
C(gi), a contradiction. So, gi(bI) 6= 0. By condition v) of Lemma 3.5 there is
a z ∈ (t, bI) ∩ C(gi) such that gi(z) = gi(bI) = gi(x), whence condition (20)
holds.

Now let x = aI . We can assume that x /∈ P . Since x /∈ A′1, then x /∈ A1.
Consequently x ∈ C \ A1 =

⋃
n∈N Fn, whence x ∈ F ′n \

⋃
k<n F

′
k for some

n ∈ N. Since gi(aI) = 0, gi(aI) = 2−n−nI , or gi(aI) = −2−n−nI , we have
|gi(aI)| < 2−n. Therefore, by (19),

gi[[t, x] ∩ C(gi)] ⊃ [−2−n, 2−n] 3 gi(aI) = gi(x),

which completes the proof of (20).

To complete the proof of (7) we must show that gi ∈ Śes. Let α, β ∈ E,
α < β, and y ∈ I[gi(α), gi(β)]. Assume that gi(α) ≤ gi(β). (The other case is
similar.) If α, β ∈ cl I for some I ∈ I, then by (20) and since g1,I , g2,I , gI ∈ Śes,
there is an x0 ∈ [α, β] ∩ C(gi) with gi(x0) = y. So, assume that the opposite
case holds.

Assume that y ≥ 0. (The case y < 0 is analogous.) If β ∈ A′1, then
y = gi(β) = 0 and by (18), β ∈ C(gi). So, let β /∈ A′1. We consider two cases.

Case 1. β /∈
⋃
n∈N F

′
n or β ∈ {bI : I ∈ I}.

Then there is an I ∈ I such that β ∈ cl I, α /∈ cl I and β 6= aI . If
y ∈ I[gi(aI), gi(β)], then by (20) and since g1,I , g2,I , gI ∈ Śes, there is an
x0 ∈ [aI , β] ∩ C(gi) ⊂ [α, β] ∩ C(gi) with gi(x0) = y.

Now let y ∈ [0, gi(aI)). Then gi(aI) > 0, whence aI /∈ A.

If aI ∈ C \ A1 =
⋃
n∈N Fn, then aI ∈ F ′n \

⋃
k<n F

′
k for some n ∈ N and

gi(aI) = 2−n−nI < 2−n. By (19),

y ∈ [0, gi(aI)) ⊂ [0, 2−n] ⊂ gi[(α, aI) ∩ C(gi)].

So, there is an x0 ∈ (α, aI) ∩ C(gi) ⊂ [α, β] ∩ C(gi) with gi(x0) = y.

If aI ∈ P , then there is an I ′ ∈ I such that aI = bI′ . Since gi(aI) > 0, we
have I ⊂ [f = 0] or I ′ ⊂ [f = 0]. Assume that the first inclusion holds. (If
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I ′ ⊂ [f = 0], then we proceed similarly.) By condition iii) of Lemma 3.6 and
since gi = 2−nIgi,I on cl I we obtain that

y ∈ [0, gi(aI)] ⊂ [0, 2−nI ] ⊂ gi[(aI , β) ∩ C(gi)].

Hence there is an x0 ∈ (aI , β) ∩ C(gi) ⊂ [α, β] ∩ C(gi) with gi(x0) = y.

Case 2. β ∈
⋃
n∈N F

′
n \ {bI : I ∈ I}.

Then β ∈ F ′n \ F ′n−1 for some n ∈ N. By (19),

y ∈ [0, gi(β)] ⊂ [0, 2−n] ⊂ gi[(α, β) ∩ C(gi)].

Consequently, there is an x0 ∈ (α, β) ∩ C(gi) ⊂ [α, β] ∩ C(gi) with gi(x0) = y.
This completes the proof of condition (7).

Now define the function f̃ : E → R by

f̃(x) =


f

g1g2
(x) if f(x) 6= 0,

1 otherwise.

Notice that f̃ is cliquish. Indeed, it is obvious that

C(f̃) ⊃ C(f) ∩ C(g1) ∩ C(g2) ∩ U,

where

U
df
= int[f = 0] ∪ int[f 6= 0].

Observe that E \ U = bd[f = 0] = C is nowhere dense, whence U is residual.
Since the sets C(f), C(g1), and C(g2) are also residual, the set C(f̃) is dense.
Hence the function f̃ is cliquish.

Clearly f̃ > 0 on E. So, the function ln ◦ f̃ : E → R is cliquish. By [6,
Corollary 3.4], there are functions h1, h2 ∈ Śes such that ln ◦ f̃ = h1 + h2.

Define g3
df
= exp ◦ h1 and g4

df
= exp ◦ h2. By Lemma 3.2, g3, g4 ∈ Śes.

Clearly

f = g1g2f̃ = g1g2(exp ◦ h1)(exp ◦ h2) = g1 . . . g4,

which completes the proof.

Theorem 4.2. Let f : R→ R. The following conditions are equivalent :

i) there are functions g1, . . . , g4 ∈ Śes such that f = g1 . . . g4,

ii) there is a k ∈ N and functions g1, . . . , gk ∈ Śes such that f = g1 . . . gk,
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iii) the function f is cliquish, the set [f = 0] is simply open, and there is
a Gδ-set A ⊂ [f = 0] such that I ∩ A 6= ∅ for every interval I in which
f changes its sign.

Proof. The implication i)⇒ ii) is evident, while the implication ii)⇒ iii) fol-
lows by [6, Theorem 4.1].

iii)⇒ i). Put E = [−π/2, π/2]. Define the function f̃ : E → R by

f̃(x) =

{
(f ◦ tan)(x) if x ∈ (−π/2, π/2),

0 if x ∈ {−π/2, π/2}.

Then clearly Ã
df
= arctan[A] ∪ {−π/2, π/2} ⊂ [f̃ = 0] is a Gδ-set, the func-

tion f̃ is cliquish, and by [1], the set [f̃ = 0] = arctan
[
[f = 0]

]
∪ {−π/2, π/2}

is simply open. Moreover for each interval I ⊂ E, if the function f̃ changes its
sign in I, then I ∩ Ã 6= ∅. So, by Theorem 4.1, there are functions g̃1, . . . , g̃4 ∈
Śes such that f̃ = g̃1 . . . g̃4. For i ∈ {1, . . . , 4} define gi = g̃i ◦ arctan and
notice that by Lemma 3.2, gi ∈ Śes. Clearly

f = f̃ ◦ arctan = (g̃1 ◦ arctan) . . . (g̃4 ◦ arctan) = g1 . . . g4,

which completes the proof.
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Tatra Mt. Math. Publ., 49 (2011), 71–79.

[7] H. P. Thielman, Types of functions, Amer. Math. Monthly, 60(3) (1953),
156–161.



16 P. Szczuka


