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ON UNIONS OF POROUS SETS

Abstract

Some results about finite and countable unions of porous sets are
established.

The collection of porous sets is a hereditary class of small sets on the
real line that is smaller than the class of nowhere dense Lebesgue null sets
[Z]. However, porous sets do not constitute an ideal. They generate an ideal
(denoted here by J ) and they also generate a σ-ideal (denoted here by I),
the latter consisting of the σ-porous sets. Obviously, I ̸= J since the set of
all rationals is σ-porous and is not expressible as a finite union of porous sets
(otherwise, it would be nowhere dense). The aim of this paper is to give several
sharp examples showing that the class of porous sets is not stable under finite
unions. Our results are related to those obtained by Kahane [K] for H-sets,
small sets investigated in Fourier analysis (cf. [BKR]). Note that each H-set
is porous [Z].

Let us recall some definitions (cf. [Z]). For E ⊂ R, x ∈ R and r > 0, we
denote by γ(E, x, r) the length of a longest interval (a, b) ⊂ (x− r, x + r) \E;
if there is no such interval, we put γ(E, x, r) = 0. We say that E is porous at
x if the number

p(E, x) = lim sup
r→0+

(γ(E, x, r)/r),

called the porosity of E at x, is positive. If (x− r, x + r) above is replaced by
(x, x + r), one gets p+(E, x), the right porosity of E at x; p−(E, x) is defined
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similarly. Observe that p(E, x) > 0 iff p+(E, x) > 0 or p−(E, x) > 0. We
say that E is a porous (bilaterally porous) [strongly bilaterally porous] set if
p(E, x) > 0 (p+(E, x) > 0 and p−(E, x) > 0) [p+(E, x) = p−(E, x) = 1] for
each x ∈ E. Another variant is the following: E is symmetrically porous if
lim supr→0+(s(E, x, r)/r) > 0 for each x ∈ E where s(E, x, r) stands for the
length of the longest interval (a, b) ⊂ (x, x+r)\E fulfilling (2x−b, 2x−a)∩E =
∅. The notion of porosity can also be used in a metric space by replacing
intervals with balls (see [Z],[V]). Note that the family of porous sets in R is
invariant with respect to the mappings x 7→ ax+ b. (In short we say that it is
linear-invariant.) The following example shows that it is not finitely additive.

Example. The sets E0 = {0}, E1 = {1/j : j ∈ Z \ {0}} (where Z stands for
the set of all integers) are porous since they consist of isolated points. The
union E0 ∪ E1 is not porous at 0 because

p(E0 ∪ E1, 0) = lim
n→∞

(1/n− 1/(n + 1))/(1/n) = 0.

We will generalize the above example by constructing (for each n ∈ N =
{1, 2, ...}) a countable compact set that can be expressed as a union of n + 1
porous sets but is not expressible as a union of n porous sets. We need a
simple lemma.

Lemma 1 Let E and A be subsets of R and x ∈ R. If 0 ≤ p(E, x) < p(A, x) ≤
1, then, for each interval (a, b) containing x, there is an interval (c, d) ⊂ (a, b)
such that (c, d) ∩ E ̸= ∅ = (c, d) ∩A.

Proof. Assume p(E, x) = α1 < α2 = p(A, x). Fix any β such that α1 < β <
α2. Then for all sufficiently small neighborhoods (x−ε, x+ε) of x, there exists
no interval in (x− ε, x + ε) \ E of length ≥ βε. However, p(A, x) > β implies
that for an arbitrarily small ε > 0, there exists an interval in (x− ε, x+ ε) \A
of length > βε. Any sufficiently short interval of the latter type can be used
for (c, d). □

Let 0 < α ≤ 1. We say that E ⊂ R is α–porous if p(E, x) ≥ α for each
x ∈ E. In the same way, we define E is α–symmetrically porous.

Theorem 1

(a) For each n ∈ N, there exists a countable compact set Dn ⊂ R that is a
union of n + 1 discrete (porous) sets but cannot be expressed as a union
of n porous sets.

(b) There exists a countable compact σ-porous set D ⊂ R which cannot be
expressed as a union of finitely many porous sets.
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(c) Let 0 < α1 < α2 ≤ 1. Then for each n ∈ N, there exists a countable
compact α1–symmetrically porous set in R that can be expressed as a
union of n+ 1 discrete sets, but which cannot be expressed as a union of
n α2–porous sets.

Proof. (a) Let E0, E1 be defined as in Example 1. For each k ∈ N, if Ek is
defined and it consists of isolated points, we fix an open neighborhood U(x)

of x ∈ Ek, disjoint from
∪k

i=0 Ei \ {x}. Then we put

Ek+1 =
∪

x∈Ek

{x + 1/j : j ∈ Z \ {0}, x + 1/j ∈ U(x)}.

Thus we have defined inductively the sequence {Ek}∞k=0. The set Dn =∪n
i=0 Ei will meet our needs. Indeed, it is the union of the n + 1 discrete

sets Ei. (So each Ei is porous.) We will show the second part of the assertion
for n = 2. (The general case is similar, only involving more steps.) Suppose
that D2 = A1 ∪A2 where A1, A2 are porous. We may assume (by considering
an appropriate translation) that 0 ∈ A1. Hence, p(A1, 0) > 0. Apply Lemma
1 with E = E1, A = A1 and x = 0. (Here we have p(E, x) = 0.) Then there is
an interval (c1, d1) disjoint from A1 and a point x1 ∈ E1 ∩ (c1, d1). Obviously,
x1 ∈ A2, so p(A2, x1) > 0. By Lemma 1 (applied with E = E2, A = A2 and
(a, b) = (c1, d1)∩U(x1)), there is an interval (c2, d2) ⊂ (c1, d1)∩U(x1)\A2 and
a point x2 ∈ E2 ∩ (c2, d2). This is a contradiction since x2 ∈ E2 ⊂ D2, while
on the other hand, x2 ∈ (c2, d2) and (c2, d2) is disjoint from A1 ∪A2 = D2.

(b) Let D =
∪∞

k=0 Ek. By construction, D is countable and compact.
Suppose that D =

∪n
i=1 Ai for porous sets Ai. Since Dn ⊂ D, we have

Dn =
∪n

i=1(Ai∩Dn), where Ai∩Dn are porous (i = 1, ..., n). This contradicts
(a).

(c) The proof is analogous to that of (a) if one replaces the “double se-
quence” {±1/j}∞j=1 by the “double sequence” {±(1 − α1)j}∞j=1. □

Remark. Each discrete set is porous in a strong manner. For instance, it
is strongly bilaterally porous and even 1-very shell porous. (See below.)

In the following discussion and theorem, let X denote a metric space. Given
A ⊂ X, let A(1) denote the derived set A′ of A, i.e. the set of all accumulation
points of A. Inductively, we define A(n+1) = (A(n))′ for n ∈ N. (One can also
go further, using ordinals.) Additionally, let A(0) = A. If A(n) = ∅ ≠ A(n−1),
we say that the Cantor-Bendixson rank of A is n (abbreviated, rk(A) = n).
In [K] Kahane observed that, by Salinger’s result [S], for any n ∈ N, each
countable compact set A ⊂ R with rk(A) = n is expressible as a union of 2n−1

H-sets (some of which can be empty). Since each H-set is porous (even globally
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porous, see [Z]), we obtain the analogous statement with H-sets replaced by
porous sets. We will demonstrate a more general result which works in a
metric space. Our method of proof is different from that used in [S]. Namely,
we utilize shell porosity introduced by Vallin [V]. By Bx(r) we mean the open
ball in a metric space X, centered at x of radius r. Let clE denote the closure
of E ⊂ X. For x ∈ X and 0 < r1 < r2, we put Sx(r1, r2) = Bx(r2) \ clBx(r1).
For E ⊂ X, x ∈ X and R > 0, let

Λ(E, x,R) = sup{h > 0 : (∃t > 0) (t + h < R) & (Sx(t, t + h) ∩ E = ∅)}.

(If no such h > 0 exists, put Λ(E, x,R) = 0.) A set E is called shell porous if
ps(E, x) > 0 for each x ∈ E, where

ps(E, x) = lim sup
R→0+

(Λ(E, x,R)/R).

For X = R, shell porosity equals symmetric porosity and is stronger than
bilateral porosity. Let α ∈ (0, 1]. We will say that E is α-very shell porous if
ps
∗(E, x) ≥ α for each x ∈ E, where

ps
∗(E, x) = lim inf

R→0+
(Λ(E, x,R)/R).

Clearly, α-very shell porosity implies shell porosity. But “α–very shell porous”
does not imply “porous” in an arbitrary metric space. Let X be a discrete
metric space and E = X. Then E is 1-very shell porous at each of its points,
and yet E fails to be porous at any point.

Theorem 2 For all n ∈ N, each countable compact set A with rk(A) = n in

a metric space X is expressible as
∪2n−1

i=1 Ai, where each set Ai is compact and
(1/5)-very shell porous.

Proof. Let Ej = A(n−j) for j = 0, 1, ..., n. Then

E0 = ∅ ̸= E1 ⊂ E2 ⊂ ... ⊂ En = A.

We are going to define the family {At : t ∈
∪n−1

k=0 Seqk} of subsets of A where
Seqk denotes the set of all 0 – 1 sequences of length k. (The empty sequence
⟨ ⟩ is the unique element of Seq0.) For t ∈ Seqk and i ∈ {0, 1} let ti ∈ Seqk+1

stand for the extension of t with the last term equal to i. For each k ∈ {1, ..., n}
the sets At will satisfy the following conditions:

(1) At is closed for each t ∈ Seqk−1,

(2)
∪

t∈Seqk−1
At = A,
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(3) At = At0 ∪At1 for all t ∈ Seqk−1 (if k < n),

(4) ps
∗(At, x) ≥ 1/5 for all t ∈ Seqk−1 and x ∈ Ek.

We will use induction with respect to k. For k = n, conditions (2) and (4)
yield the assertion of Theorem 2.

First, we need an auxiliary construction. Consider a set C ⊂ X of the form
C =

∪
x∈D Bx(rx) where D ⊂ A and the balls Bx(rx), x ∈ D, are pairwise

disjoint. We define two operations C 7→ C0 and C 7→ C1 as follows. For each
x ∈ D, let {rxn}∞n=1 be a decreasing sequence of reals such that rx1 = rx and
limn→∞(rxn+1/r

x
n) = 1/2. Since A is countable, we may assume the numbers

rxn (for x ∈ D and n > 1) have been chosen so that there are no points in A
which lie exactly a distance rxn away from x. Put

C0 = D ∪
∪
x∈D

∞∪
j=1

Sx(rx2j−1, r
x
2j) ∪ (X \ C), C1 = D ∪

∪
x∈D

∞∪
j=1

Sx(rx2j , r
x
2j+1).

Now, we will start defining sets At. Let k = 1 and A⟨ ⟩ = A. Then
conditions (1) to (4) are obviously satisfied. Assume that 1 ≤ k < n and that
the sets At, for t ∈ Seqk−1, are defined. The set Ek+1 \ Ek is discrete, so we
can pick pairwise disjoint balls Bx(rx), x ∈ Ek+1 \ Ek. It is easy to see these
balls are disjoint from Ek. Additionally, we can ensure that the collection of
points in X which lie exactly a distance rx away from x does not meet A.
Now, for any fixed t ∈ Seqk−1, we put

Ati = At ∩ (

 ∪
x∈(Ek+1\Ek)∩At

Bx(rx)


i

∪ Ek),

where i = 0, 1. (Here we have used the operations C 7→ Ci, i = 0, 1, defined
above.) It is not hard to check that (by the compactness of A and the choice
of numbers rx) the sets Ati (i = 0, 1) are closed. The equality At0 ∪At1 = At

is also clear. This and (2) applied to k give (2) for k + 1. From (4) applied to
At (t ∈ Seqk−1) and from Ati ⊂ At it follows that ps

∗(Ati, x) ≥ 1/5 for x ∈ Ek

(i = 0, 1). It suffices to prove that

(4′) ps
∗(Ati, x) ≥ 1/5 for each x ∈ Ek+1 \ Ek(i = 0, 1).

To this end, pick x ∈ Ek+1 \ Ek. If x /∈ Ati, then (4’) holds because Ati is
closed. If x ∈ Ati, then by the construction we have

∞∪
j=1

Sx(rx2j , r
x
2j+1) ∩At0 =

∞∪
j=1

Sx(rx2j−1, r
x
2j) ∩At1 = ∅.
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A simple calculation now shows (4’) holds. □

Corollary 1 For each n ∈ N, there exists a countable compact set Fn ⊂ R that
is a union of n+1 compact (bilaterally) [symmetrically] porous sets but cannot
be expressed as a union of n compact (bilaterally) [symmetrically] porous sets.

Proof. Consider the set Dn from Theorem 1(a). Since rk(Dn) = n + 1,

Theorem 2 implies that Dn =
∪2n

i=1 Ai, where Ai (i = 1, ..., 2n) are compact
porous sets. At first consider all subsets of Dn that are unions of n+1 distinct
sets Ai. If at least one of these subsets cannot be expressed as a union of n
compact porous sets, we pick it as Fn. Otherwise, consider all subsets of Dn

that are unions of n+ 2 distinct sets Ai. (In fact, those unions can be reduced
to unions of n+1 compact porous sets.) and repeat the above procedure. After
fewer than 2n such steps, we find a subset Fn of Dn fulfilling the assertion.

(Otherwise, in the last step,
∪2n

i=1 Ai = Dn would be expressible as a union
of n compact porous sets which contradicts Theorem 1(a).) The proof for
bilateral (or symmetric) porosity is analogous. □

The next application of Theorem 1 deals with ideals J being nice generators
of a given linear-invariant σ-ideal I of subsets of R containing all singletons.
According to [BS] (see also [B]), a nice generator J should be an ideal gener-
ating I, be linear-invariant, contain all singletons, differ from the σ-ideal I on
each nonempty open set, fail to be a σ-ideal and, moreover, it should satisfy
the following Świa̧tkowski condition:

(∗) for each E ⊂ R, from E ∩ U ∈ J for any open bounded U ⊂ R it follows
that E ∈ J.

Additionally, I and J in [BS] are required to be Borel-supported, which
means each set from I (or J) is contained in a Borel set from the same family.
It is easily seen that the ideal of nowhere dense sets is a nice generator of the
σ-ideal of meager sets in R. In [BS], nice generators of the σ-ideal of Lebesgue
null sets are constructed. (There are many of them.) We show that the family
J of finite unions of porous sets is not a nice generator of the σ-ideal I of
σ-porous sets, which answers a question from [BS].

Corollary 2 The ideal J of finite unions of porous sets does not satisfy (∗).

Proof. We transform the sets Dn (n ∈ N) from Theorem 1(a) into sets
D∗

n ⊂ (n, n + 1) by suitable mappings x 7→ ax + b (a ̸= 0). Then we put
E =

∪∞
n=1 D

∗
n. By Theorem 1(a), we have E ∩ U ∈ J for each open bounded

U ⊂ R. However, E /∈ J . Indeed, suppose that E =
∪n

i=1 Ei where Ei are
porous sets. Then E ∩ (n, n+ 1) = D∗

n is expressible as the union of n porous
sets Ei ∩ (n, n + 1) (i = 1, ..., n), which contradicts Theorem 1(a). □
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Theorem 3 The ideal J ∗ of sets that can be covered by Gδ σ-porous sets in
R is a nice generator of the σ-ideal I of σ-porous sets.

Proof. First, recall that each σ-porous set is contained in a Gδσ σ-porous
set [FH]. Thus, J ∗ generates I. By considering the rationals we see that J ∗

is not a σ-ideal and that J ∗ differs from I on each nonempty open set. The
remaining conditions, except for (∗), are obvious. (Recall that a finite union of
Gδ sets is Gδ.) To show (∗), take E ⊂ R and assume E∩U ∈ J ∗ for any open
bounded U ⊂ R. Then, for each n ∈ Z, the set E ∩ (2n, 2n+ 3/2) is contained
in a Gδ σ-porous set Fn ⊂ (2n, 2n + 3/2). It easily follows that F =

∪
n∈Z Fn

is a Gδ σ-porous set. Similarly, for each n ∈ Z, the set E ∩ (2n− 1, 2n + 1/2)
is contained in a Gδ σ-porous set Hn ⊂ (2n− 1, 2n+ 1/2), and H =

∪
n∈Z Hn

is a Gδ σ-porous set. Finally, E is contained in the Gδ σ-porous set F ∪H,
and therefore E ∈ J ∗. □
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monic analysis and infinite combinatorics, Real Analysis Exchange,
20 (1994–95), 454–509.

[FH] J. Foran, P.D. Humke, Some set theoretic properties of σ-porous sets,
Real Analysis Exchange 6, (1980–81), 114–119.

[K] S. Kahane, Finite unions of H-sets and countable compact sets, Col-
loq. Math., 65 (1993), 83–86.

[S] D. Salinger, Sur les ensembles indépendents dénonbrables, C. R.
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