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QUASI-UNIFORM CONVERGENCE OF
SEQUENCES OF 1-IMPROVABLE
DISCONTINUOUS FUNCTIONS

Abstract

In the paper it is shown that the strongly quasi-uniform limit of a
sequence of l-improvable discontinuous functions on a complete space
X is a l-improvable discontinuous function or a continuous function.
Automatically the same result will be valid for uniform convergence.

Definition 1 ([3]) Let f : X — Y (X,Y metric spaces). The function f
has at some point xo an improvable discontinuity if imy_,,, f(z) exists and

limg .z, f(2) # f(20)-

In this paper we consider the class A; of real-valued functions f on some
metric space X such that the function

lim; . f(t) if the limit exists
(1) _ t—
Fi) = { f(z) if lim;_,, f(t) doesn’t exist (1)

are continuous.

We shall prove that the strongly quasi-uniform limit of a sequence of
functions of the class A; belongs to A;. The problem was suggested by T.
Swi@tkowski.

Let A denote the class of continuous functions. If a function f € A4; \ Ao,
then it is called a 1-improvable discontinuous function ([1] and [2]). First we
shall consider a subclass Avl of the class Ap; namely f € :4\1 if and only if

Voex f(z) > 0 and Voex f () =0 (2)
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Lemma 1 Let f: X — R and f(z) = 0 if = is an isolated point. Then the
function f belongs to Ay if and only if

Veexf(z) >0 and Voso({z € X : f(z) > o} NA(f) = 0), (3)

where A(f) = {z € X : f(z) > 0}. (The notation {-}% means the set of limit
points of a set).

PROOF. First we assume that f € A If feAn A7, then f =0 and the
above condition is obvious. Assume that f € A; \ Ag. Suppose that there
exist a real number oy > 0 and a point zy € X such that f(xzg) > 0 and
ro € {x € X : f(x) > oo}?. Hence there exists a sequence {z,} such that
lim,, 00 &, = xg and liminf, o f(x,) > 09 > 0. Simultaneously f(z¢) > 0
and fM(zg) = 0; so lim,_,,, f(z) = 0. Thus we have a contradiction. Hence
condition (3) holds.

Now, we assume that condition (3) holds. If A(f) = 0, then f = 0 and
feAn A;. Assume that A(f) # 0. Let us take an arbitrary zop € X. We
will consider two cases. First, we assume that zg € A(f). Then zp ¢ {v € X :
f(z) > o}? for each ¢ > 0. Thus

Yos03rs0(K (z0,7) \ {zo}) N{z : f(x) = o} =0,
where K(zo,7) = {x € X : p(z,z0) <r}. So

Vo>03r>0Vae K (zo,r)\{zo} (0 < f() < o),

which means that lim, ,,, f(z) = 0 and then f(!)(zq) = 0.

Now, we assume that zo ¢ A(f). If lim,_,,, f(z) does not exist, then
fM(x) = f(zo) = 0. Assume that lim, ,,, f(z) exists and equals y with
y > 0. Then there exists a real number r > 0 such that f(x) > y/2 for z €
K(zo,7)\{z0}. Let 2’ € K(xo,r)\ {zo} be arbitrary. There exists a sequence
{zn} such that lim, ,. x, = 2’ and, for each n € N, z,, € K(zg,r) \ {z0}.
Then 2’ € {z: f(z) > y/2}¢N A(f), a contradiction. Hence lim,_,,, f(z) =0

and then fM)(zy) = 0. Thus f()(x) = 0 for each = € X. Hence f € A; and
the proof is complete. ([l

Definition 2 ([3]) The sequence {f,} is quasi-uniformly convergent on X to
fif fn approaches f on X and

Ve>0VnenTpenVeex Jo<i<p | fryi(z) — f(2) [<e.

Theorem 1 If functions f, (n = 1,2,...) belong to Ay and {fn} is quasi-
uniformly convergent on X to f, then f belongs to A;.
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PROOF. In view of the above assumption and Lemma 1 we confirm that
VaenVoso({z € X 1 fu(x) > 0} N A(f,) = 0), (4)

where A(f,) ={z € X : fu(z) > 0}.

Suppose that f does not belong to :4v1 Then there exists a real number
oo > 0 such that {z € X : f(x) > ao}? N A(f) # 0. Now let 29 € A(f) and
{1} be a sequence such that limy_, . z = z¢ and

Vien(f(zr) > 00). (5)

Put €9 = 1/2min (o9, f(x0)). Since the sequence {f,(xo)} converges to f(zg),
there exists n’ € N such that

vn>n'(fn(x0) > f(xo) - 60)' (6)

This follows from the assumption that the sequence {f,} is quasi-uniformly
convergent to f on X, and thus also on {z}. Therefore there exists a number
po € N such that

VienJo<i<po (frrvi(zr) > f(xr) — €0)-

Hence, by (5) and by the selection of ¢, we have

VienTo<i<po (frr+i1(zr) > 00/2).

Thus there exist I’ € {0,1,...,po} and a subsequence {x, } of {x}} such that
forsv(xg,,) > 00/2 for each m € N. Simultaneously, by (6) and by the selection
of 607fn’+l/ ({E()) > 0. Then x( € {x e X: fn/H/(x) > 0’0/2}d n A(fn’Jrl’)« This
contradicts (4). O

Definition 3 ([4]) The sequence {f.} of functions is said to be strongly
quasi-uniformly convergent to f on X if every subsequence {fn,} converges
quasi-uniformly to f.

Theorem I ([5]) For n € N let f,, be continuous on X and let {f,} con-
verge strongly quasi-uniformly on some dense subset Z of X to a function
f:Z —=R. Then {f,} is strongly quasi-uniformly convergent on X to a func-
tion @, obviously continuous, whose restriction to Z coincides with f.

Theorem 2 For n € N let f,, belong to the class A1 and let {f,} converge
strongly quasi-uniformly on a complete space X. Then the sequence {f,g,l)}

(where each fy(Ll) is defined by formula (1)) is also strongly quasi-uniformly
convergent on X to a continuous function .
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PrOOF. We denote by E, the set of all points in which the function f,, has
an improvable discontinuity (n = 1,2,...). E, is a set of the first category
([3]). The restriction of f, to X \ E, is continuous. Put E = J._, E,. The
set E is of the first category; so X \ F is a residual subset of X and since
X is complete, X \ E is a dense subset of X. The sequence {f,} converges
strongly quasi-uniformly on X \ E, and f,(Ll) | (X\E)=fn]|(X\E). Then the
sequence { f,gl)} converges strongly quasi-uniformly on the dense subset X \ E
of X. Since each fy(Ll) is continuous on X, we conclude that { fT(Ll)} converges
strongly quasi-uniformly on X to a continuous function ¢, by Theorem 1. [J

Lemma 2 If a function | f | belongs to ;1\1, then f belongs to Ay and fM(z) =
0 for each x € X.

PrOOF. Let E denote the set of points in which the function | f | has an
improvable discontinuity. Then by assumption, the function | f | has positive
values on the set E and is zero on X\ E. Thus f(z) = 0for z € X \ E. We shall
prove that f(1)(z) = 0 for each x € X. Tt suffices to show that lim;_,, f(t) =0
for each € E. Obviously, since z € E, we have lim;,, | f(¢) |[= 0. So
limy_,, f(£) = 0. O

Lemma 3 If a function f belongs to A1, then | f — f) | belongs to A;.

We omit the easy proof.

Theorem 3 If for each n € N the function f, belongs to Ay and {f,} is
strongly quasi-uniformly convergent on a complete space X to f, then f belongs

to Ay and fO) is the strongly quasi-uniform limit of the sequence {fﬁl)}.

PROOF. The sequence {f,} is strongly quasi-uniformly convergent on X to

f. Then, by Theorem 2, the sequence { fy(Ll)} is strongly quasi-uniformly con-
vergent on X to a continuous function ¢. Therefore the sequence {f,, — él)}

is strongly quasi-uniformly convergent on X to f — ¢ ([4]) and consequently
the sequence {| f, — fT(Ll) |} is strongly quasi-uniformly convergent on X to
| f — ¢ |. Note that each function | f,, — A | belongs to A (Lemma 3). By
Theorem 1, we have | f — ¢ |€ 1?1 Then, the function f — ¢ belongs to Ay
(Lemma 2). Therefore the function f (f = (f — ) + ¢ ) belongs to A;.

It remains to prove that f(1) is the strongly quasi-uniform limit of the
sequence {f}ll)} or f = ¢. Let f —¢ = g. The function | g |€ Ay so by
Lemma 2, g™ (z) = 0 for each 2 € X. Let 2 € X be arbitrary. First, we assume
that lim,_,, g(t) exists. Then lim,_,, f(t) exists and f)(z) = lim,_,, f(t) =
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limy,, g(¢) +1lim; . p(t) = 0+ (x) = p(z). Now, we assume that lim;_,, g(t)
doesn’t exist. Then lim;_,, f(t) doesn’t exist. Hence f)(z) = f(x) = g(x) +
o(x) =0+ ¢(x) = p(x). Thus fO(x) = ¢(z) for each z € X. O

Definition 4 ([1]) Let f : X — R and let U(f) = {z € X : limy_,, f(¥) #
f(z)}. For every ordinal a we define a function f(*) by

F@) (z) = f(z) if{y<a:zecU(fM)) =0
limg f(“/o)(t) where v = min{y < a: x € U(f(v))}

(fO)(x) = f(x) for each x € X ). We denote by A, the class of functions f
such that the function f(*) is continuous. If a function f € Ay \ Uo<p<a 45
then it is called an a-improvable discontinuous function. B

Problem 1 Does Theorem 3 remain valid for sequences of functions of the
class A,?
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