
INROADS Real Analysis Exchange
Vol. 21(2), 1995–96, pp. 750–754

Jadwiga Wolnicka, Institute of Mathematics, Technical University of  Lódź,
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QUASI-UNIFORM CONVERGENCE OF
SEQUENCES OF 1-IMPROVABLE
DISCONTINUOUS FUNCTIONS

Abstract

In the paper it is shown that the strongly quasi-uniform limit of a
sequence of 1-improvable discontinuous functions on a complete space
X is a 1-improvable discontinuous function or a continuous function.
Automatically the same result will be valid for uniform convergence.

Definition 1 ([3]) Let f : X → Y (X,Y metric spaces). The function f
has at some point x0 an improvable discontinuity if limx→x0 f(x) exists and
limx→x0 f(x) ̸= f(x0).

In this paper we consider the class A1 of real-valued functions f on some
metric space X such that the function

f (1)(x) =

{
limt→x f(t) if the limit exists
f(x) if limt→x f(t) doesn’t exist

(1)

are continuous.
We shall prove that the strongly quasi-uniform limit of a sequence of

functions of the class A1 belongs to A1. The problem was suggested by T.
Świa̧tkowski.

Let A0 denote the class of continuous functions. If a function f ∈ A1 \A0,
then it is called a 1-improvable discontinuous function ([1] and [2]). First we

shall consider a subclass Ã1 of the class A1; namely f ∈ Ã1 if and only if

∀x∈Xf(x) ≥ 0 and ∀x∈Xf (1)(x) = 0 (2)
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Lemma 1 Let f : X → R and f(x) = 0 if x is an isolated point. Then the

function f belongs to Ã1 if and only if

∀x∈Xf(x) ≥ 0 and ∀σ>0({x ∈ X : f(x) ≥ σ}d ∩A(f) = ∅), (3)

where A(f) = {x ∈ X : f(x) > 0}. (The notation {·}d means the set of limit
points of a set).

Proof. First we assume that f ∈ Ã1. If f ∈ A0 ∩ Ã1, then f ≡ 0 and the
above condition is obvious. Assume that f ∈ Ã1 \ A0. Suppose that there
exist a real number σ0 > 0 and a point x0 ∈ X such that f(x0) > 0 and
x0 ∈ {x ∈ X : f(x) ≥ σ0}d. Hence there exists a sequence {xn} such that
limn→∞ xn = x0 and lim infn→∞ f(xn) ≥ σ0 > 0. Simultaneously f(x0) > 0
and f (1)(x0) = 0; so limx→x0 f(x) = 0. Thus we have a contradiction. Hence
condition (3) holds.

Now, we assume that condition (3) holds. If A(f) = ∅, then f ≡ 0 and

f ∈ A0 ∩ Ã1. Assume that A(f) ̸= ∅. Let us take an arbitrary x0 ∈ X. We
will consider two cases. First, we assume that x0 ∈ A(f). Then x0 /∈ {x ∈ X :
f(x) ≥ σ}d for each σ > 0. Thus

∀σ>0∃r>0(K(x0, r) \ {x0}) ∩ {x : f(x) ≥ σ} = ∅,

where K(x0, r) = {x ∈ X : ρ(x, x0) < r}. So

∀σ>0∃r>0∀x∈K(x0,r)\{x0} (0 ≤ f(x) < σ),

which means that limx→x0 f(x) = 0 and then f (1)(x0) = 0.
Now, we assume that x0 /∈ A(f). If limx→x0 f(x) does not exist, then

f (1)(x0) = f(x0) = 0. Assume that limx→x0 f(x) exists and equals y with
y > 0. Then there exists a real number r > 0 such that f(x) > y/2 for x ∈
K(x0, r) \ {x0}. Let x′ ∈ K(x0, r) \ {x0} be arbitrary. There exists a sequence
{xn} such that limn→∞ xn = x′ and, for each n ∈ N, xn ∈ K(x0, r) \ {x0}.
Then x′ ∈ {x : f(x) > y/2}d ∩A(f), a contradiction. Hence limx→x0 f(x) = 0

and then f (1)(x0) = 0. Thus f (1)(x) = 0 for each x ∈ X. Hence f ∈ Ã1 and
the proof is complete. □

Definition 2 ([3]) The sequence {fn} is quasi-uniformly convergent on X to
f if fn approaches f on X and

∀ϵ>0∀n∈N∃p∈N∀x∈X∃0≤l≤p | fn+l(x) − f(x) |< ϵ.

Theorem 1 If functions fn (n = 1, 2, . . .) belong to Ã1 and {fn} is quasi-

uniformly convergent on X to f , then f belongs to Ã1.
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Proof. In view of the above assumption and Lemma 1 we confirm that

∀n∈N∀σ>0({x ∈ X : fn(x) ≥ σ}d ∩A(fn) = ∅), (4)

where A(fn) = {x ∈ X : fn(x) > 0}.
Suppose that f does not belong to Ã1. Then there exists a real number

σ0 > 0 such that {x ∈ X : f(x) ≥ σ0}d ∩ A(f) ̸= ∅. Now let x0 ∈ A(f) and
{xk} be a sequence such that limk→∞ xk = x0 and

∀k∈N(f(xk) ≥ σ0). (5)

Put ϵ0 = 1/2 min (σ0, f(x0)). Since the sequence {fn(x0)} converges to f(x0),
there exists n′ ∈ N such that

∀n>n′(fn(x0) > f(x0) − ϵ0). (6)

This follows from the assumption that the sequence {fn} is quasi-uniformly
convergent to f on X, and thus also on {xk}. Therefore there exists a number
p0 ∈ N such that

∀k∈N∃0≤l≤p0 (fn′+l(xk) > f(xk) − ϵ0).

Hence, by (5) and by the selection of ϵ0, we have

∀k∈N∃0≤l≤p0 (fn′+l(xk) > σ0/2).

Thus there exist l′ ∈ {0, 1, . . . , p0} and a subsequence {xkm} of {xk} such that
fn′+l′(xkm) > σ0/2 for each m ∈ N. Simultaneously, by (6) and by the selection
of ϵ0, fn′+l′(x0) > 0. Then x0 ∈ {x ∈ X : fn′+l′(x) ≥ σ0/2}d ∩A(fn′+l′). This
contradicts (4). □

Definition 3 ([4]) The sequence {fn} of functions is said to be strongly
quasi-uniformly convergent to f on X if every subsequence {fnk

} converges
quasi-uniformly to f .

Theorem I ([5]) For n ∈ N let fn be continuous on X and let {fn} con-
verge strongly quasi-uniformly on some dense subset Z of X to a function
f : Z → R. Then {fn} is strongly quasi-uniformly convergent on X to a func-
tion φ, obviously continuous, whose restriction to Z coincides with f .

Theorem 2 For n ∈ N let fn belong to the class A1 and let {fn} converge

strongly quasi-uniformly on a complete space X. Then the sequence {f (1)
n }

(where each f
(1)
n is defined by formula (1)) is also strongly quasi-uniformly

convergent on X to a continuous function φ.
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Proof. We denote by En the set of all points in which the function fn has
an improvable discontinuity (n = 1, 2, . . .). En is a set of the first category
([3]). The restriction of fn to X \ En is continuous. Put E =

∪∞
n=1 En. The

set E is of the first category; so X \ E is a residual subset of X and since
X is complete, X \ E is a dense subset of X. The sequence {fn} converges

strongly quasi-uniformly on X \E, and f
(1)
n | (X \E) = fn | (X \E). Then the

sequence {f (1)
n } converges strongly quasi-uniformly on the dense subset X \E

of X. Since each f
(1)
n is continuous on X, we conclude that {f (1)

n } converges
strongly quasi-uniformly on X to a continuous function φ, by Theorem 1. □

Lemma 2 If a function | f | belongs to Ã1, then f belongs to A1 and f (1)(x) =
0 for each x ∈ X.

Proof. Let E denote the set of points in which the function | f | has an
improvable discontinuity. Then by assumption, the function | f | has positive
values on the set E and is zero on X\E. Thus f(x) = 0 for x ∈ X \ E. We shall
prove that f (1)(x) = 0 for each x ∈ X. It suffices to show that limt→x f(t) = 0
for each x ∈ E. Obviously, since x ∈ E, we have limt→x | f(t) |= 0. So
limt→x f(t) = 0. □

Lemma 3 If a function f belongs to A1, then | f − f (1) | belongs to Ã1.

We omit the easy proof.

Theorem 3 If for each n ∈ N the function fn belongs to A1 and {fn} is
strongly quasi-uniformly convergent on a complete space X to f , then f belongs

to A1 and f (1) is the strongly quasi-uniform limit of the sequence {f (1)
n }.

Proof. The sequence {fn} is strongly quasi-uniformly convergent on X to

f . Then, by Theorem 2, the sequence {f (1)
n } is strongly quasi-uniformly con-

vergent on X to a continuous function φ. Therefore the sequence {fn − f
(1)
n }

is strongly quasi-uniformly convergent on X to f − φ ([4]) and consequently

the sequence {| fn − f
(1)
n |} is strongly quasi-uniformly convergent on X to

| f − φ |. Note that each function | fn − f
(1)
n | belongs to Ã1 (Lemma 3). By

Theorem 1, we have | f − φ |∈ Ã1. Then, the function f − φ belongs to A1

(Lemma 2). Therefore the function f (f = (f − φ) + φ ) belongs to A1.
It remains to prove that f (1) is the strongly quasi-uniform limit of the

sequence {f (1)
n } or f (1) = φ. Let f − φ = g. The function | g |∈ Ã1; so by

Lemma 2, g(1)(x) = 0 for each x ∈ X. Let x ∈ X be arbitrary. First, we assume
that limt→x g(t) exists. Then limt→x f(t) exists and f (1)(x) = limt→x f(t) =
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limt→x g(t)+limt→x φ(t) = 0+φ(x) = φ(x). Now, we assume that limt→x g(t)
doesn’t exist. Then limt→x f(t) doesn’t exist. Hence f (1)(x) = f(x) = g(x) +
φ(x) = 0 + φ(x) = φ(x). Thus f (1)(x) = φ(x) for each x ∈ X. □

Definition 4 ([1]) Let f : X → R and let U(f) = {x ∈ X : limt→x f(t) ̸=
f(x)}. For every ordinal α we define a function f (α) by

f (α)(x) =

{
f(x) if {γ < α : x ∈ U(f (γ))} = ∅
limt→x f

(γ0)(t) where γ0 = min{γ < α : x ∈ U(f (γ))}

(f (0)(x) = f(x) for each x ∈ X). We denote by Aα the class of functions f
such that the function f (α) is continuous. If a function f ∈ Aα \

∪
0≤β<α Aβ ,

then it is called an α-improvable discontinuous function.

Problem 1 Does Theorem 3 remain valid for sequences of functions of the
class Aα?
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