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PROPERTIES OF THE CLASS OF
IMPROVABLE FUNCTIONS

Abstract

In this paper the classes A, and the class A are characterized and
compared to the classes B1, B and the class of all Darboux functions.

1 Preliminaries

The word “function” will mean a bounded real function of a real variable and
D will denot a subset of R.

Definition 1 For each function f: D —s R, let
c(f) ={z e D; lim £(t) = f(2) };
U(f) ={z € D: Jim (1) # (@)
L(f) = {g; € D; Jim f(1) exists} .

Definition 2 A point xg € U(f) is called an improvable point of discontinuity
of the function f.

The following remark is easy to see.
Remark 1 Let f: D - R. Then U(f)NC(f) =0 and L(f) = U(f) UC(f).

The following proposition is well known. (Compare to [2].)

Proposition 1 Let f: D — R. Then the set U(f) is countable.
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We define the functions f(,) on the class of ordinal numbers.

Definition 3 Let f : D — R and let f)(x) = f(x) for each x € D. For
every ordinal number «, let

(o), {7 < ai 2 €U (fi)} =0,
f(a)(z) = limy f("/o)(t)v ifreU (f(’m))’
where 9 = min {'y <a;xelU (f(v))} .

The following theorems are established in [1] where the reader should turn
for pertainent definitions

Theorem 1 Let f: D — R and let a > 0 be an ordinal number. Then

(1,&) for each z € D, {'y <a;xeU (f(,y))} is the empty set or has only one
element,

(2,a) for each ordinal number v with v < «,

{zeD; foy@) # fly@} = | Ulfe),

Y<B<a

(3,) for each ordinal number v with v < «, if x € L (f(4)), then

lim f(,)(t) = fa)(2),

t—x

(4,0) Up<pea L (f19) € C (fla)-
Definition 4 For each ordinal number a, let

Ao ={f:D —>R; C(fun)=D}.

If a function f : D — R belongs to A \ (U0§ﬂ<a Ag), then it will be called
an a-improvable discontinuous function.

Put A = Upcpew, Aa- If a function f € A, then it will be called an
improvable function.

Definition 5 Let K C D. Put K©) = K. Let
KM = g = {z € D; x is an accumulation point of K in R}

and K* = K \ K.
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Example 1 Let W = {1/n; n € N} and let f be the characteristic function of
the set W. Then U(f) =W, and 0 is not an improvable point of discontinuity
of f. Note that fy(x) = 0 for each v € R, so f € Ay. Observe that fey is

also continuous at points, which do not belong to the set U(f).

Definition 6 For A C D C R, let
MA)={f:D —=R; f(A) ={0} and, for eachx € D, f(x) > 0}.
The following theorem is proved in [1].

Theorem 2 Let A be a dense subset of D and let f € A, be a function
such that C(f) = A. Then g = |f — fi| € M(A), for each 0 < 3 < a,

C (fip) =C(9s): U (fs)) = U (9s)) and g(s) = | f(5) — fa)-

In Section 3 we use the following lemma.

Lemma 1 Let f: R — R and let f € A, for some a < wy. Then f € By if
and only if g = |f — fia)| € B1.

PROOF. Let P be a perfect set. Assume that f € B;. Then there exists a
point g € R such that 2o € C (f|p). Consider two possibilities:

1. If g € C(f), then xo € C(g); so g € C (g|p).

2. If 29 € C(fip) \ C(f), then limy_, fip(t) exists and limy_q, fip(t)
= fip(xo). If there existed an ordinal number Sy < a and a sequence
(n)rry C (U (9(/30)) ﬂP) such that lim, _,o £, = zg, then by Theo-
rem 2 we would have (z,,),—; C (U (f(s,)) N P), a contradiction. Thus
limg 4, gp(t) exists and lim;_, fip(t) = g/p(z0).

Thus g € B;.
Now, assume that g € B;. We can prove that f € B; similarly. O

2 The Characterization of the Classes A,

As we have seen in Example 1 there functions f € A; with R\ C(f) # U(f).

Thus we can ask whether we can study continuity of the function f(,) by

considering properties of f\R\U,; U The answer is given in the following
<a

theorem.

Theorem 3 Let f: R — R and let o be an ordinal number. Then f € A, if

and only if fl(R\UO§[i<a U(i)) 1S continuous.
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ProOOF. First, we assume that f € A,. Let x € C(f). Then, of course,
flR\U0§ﬁ<a U(fis) is continuous at x. Let x € R\ (C(f) UlUo<p<a U (f(g))).
By Theorem 1 (2,a), {z € R; f(2) # fo)(2)} = Uo<p<a U (f())- Hence

Fay () = 10 fiay (1) = M0 fi iy, 0(50) (@)

t—x

=l fe\Uy e U(se)) )

Thus lim;_,, f‘ (R\Uo< s<a U(f(ﬁ)))(t) = f(x); so f‘ (R\Up<sen U(f))) is continu-
ous at x.

Now assume that fl(R\Uo<ﬁ<a U()) is continuous. We shall show that

fe)
R =C (f(a))- Of course, C (f(a)) C R. By Theorem 1 (4,a),

U Ufe) cC(fw) -

0<B<a

oo

Let 2 € R\ Ug<gea U (f(5)). Suppose that there exists a sequence (),
such that lim,, oo , = 2 and lim,,_, o J)(@n) # fla)(x). We can assume

that @ = lim, 0 f(a) (2n) < f(a)(z). By Theorem 1 (2,), Up< g0 U (fi) =
{2 €R; f(2) # f(z)} and
lim f (R\U0§ﬁ<a U(f(g))) (a)(t): lim f‘(R\U0§B<a U(fw)))(t):f(m):f(a)(x)'

t—zx ‘ t—zx

Thus there exists 79 € N such that, for each n > ng, ©, € Uycgea U (f(5))-
Therefore, we may assume that, for each n € N, z,, € U0§ﬁ<a U (f(/g)) and
fay(@n) < flay(@).

Let € = W By Theorem 1 (4,), Uy<pea U (fi3)) € C (f(ay)- Hence,
for each n € N, there exists an interval (a,,b,) containing x,, such that, for
each z € (an,bn), f(a)(2) < fla)(@n)+e. Since Upc s, U (f(s)) is a countable
set, we can choose a sequence (zn)zo:1 such that lim,_,o 2z, = x and, for

each n € N, z, € (an,b,) N (R\UO§5<QU (f(ﬂ))). Hence, for each n € N,
fta)(zn) = f(zn) and f(2n) < f(a)(zn) + €. Then

hmsupf(zn) < lim f(a)(xn) +e=a+e= Lf(x)
n—o0

n— o0 2

< f(=)

and lim;_,, flR\Uo<5< U(f(a))(t) # f(x), a contradiction. Hence z € C (f(a))-
Thus R = C ( f(a))_ and the proof is complete. O
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3 The Comparison of the Class of Improvable Functions
to Other Classes of Functions

First we compare the class of improvable functions to the class of Baire 1
functions.

Theorem 4 If f : R — R is an improvable function, then f is a Baire 1
function.

PROOF. By Lemma 1, we can assume that f € M (C(f)). Since f is an
improvable function, there exists an ordinal number o < wy such that f € A,.

Let P be a perfect set. Put D(f) = R\ C(f). If PN C(f) # 0, then
C(fip) # 0. Thus assume that P N C(f) = 0. First suppose that P N
U(f) # 0. Let zg € PNU(f). Thus for each neighborhood U(xzg) of the
point z¢ the set U(zg) N P is uncountable. Fix U(xp). Since P C D(f)
and U(f) is dense in D(f), for each x € D(f)\ U(f) there exists a sequence
(zn)oy C U(f) such that lim, o #, = x and lim, o f(2,) > 0. Hence
U(zo)NUp; {z € R; limsup,_,,, f(t) > 1} is uncountable; so there exists ng

such that U(zg)U {x € R; limsup,_,, f(t) > 7710} is uncountable, contrary to

zg € U(f). Thus U(f) NU(xp) = 0. Since U(zg) C {z € R; f(z) = f1)(2)};
so U(xg) NU (f(l)) = () and by transfinite induction we can show that, for
each ordinal number 3 < a, U(zo) NU (f(5)) = 0, contraty to f € Aq.
Thus PN Up<pea U (f(s)) = 0. Hence P C D(f) \ Uo<pca U (f(s)) and by
Theorem 3, C (fjp) # 0, which completes the proof. O

The following proposition shows that there exists a Baire 1 function which
is not an improvable discontinuous one.

Proposition 2 There exist a subset D of R and a function f : D — R such
that C(f) is a dense subset of D and there exist no ordinal number o such

that f € Ag.

PROOF. Let f: R — R be the characteristic function of [0, +00). Note that,
for x = 0,
0= lim f(¢t)# lim f(¢) =1
t—ax— t—at

Since C(f) = R\ {0}; so U(f) = 0 and, for each x € R, f1)(x) = f(x). By
Theorem 1 and by transfinite induction, we have that f,)(z) = f(x) for each
x € R and for every ordinal number a.

Denote by (By, p) the metric space of all bounded real Baire 1 functions de-
fined on R, where, for each pair of functions f,g € By, p(f,g) = sup,eg |f(x)—
g(z)]. Let f: D — R and let 6 > 0. Put K(f,8) ={g € B1; p(f,g) <}
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Theorem 5 The set A is nowhere dense in By.

435

PROOF. Let f € By and let § > 0 be a real number. Put K = K (f,0). We
shall show that there exists a ball K; C K such that K;NA = 0. If ANK = (),
then we put K; = K. Let g € KN A. Put 6 = p(f,g) and 0 = § — d;. Since
g € A, so C(g) is residual in R. Then there exists a perfect nowhere dense set

P C C(g). We define the function h by

_J oglx)+ %, ifzeP,
h(z) = { g(x), otherwise.
Note that h is the sum of two functions: g and k, where

_ | 3, ifzeP,
k(z) = { 0, otherwise.

Thus h € B;. We shall show that, for each ordinal number o with 0 < a < wy,

(a)( ) g, ifx e P,
(1,0) Aoy (@) = { 9(a) (), otherwise.
(ii,a) for each z € P,
. . o
lim sup h(q)(t) = limsup b (g) (o) (t) = g(a) () + 5
t—x t—x

and

llItglglf h(a)(t) = hgglglf h|C(g) () (t) = 9(a) (ac),

(iit,a) C (ha)) = C (9() \ P and U (ha)) = U (9(a))-

Let @ = 0. By the definition of the function h, condition (i,0) is true.

Let 2 € P. Since P C C(g), P = P%, P c (C(g))* and cl (R \ P)
know that

lim hp(t

t—x

lim h‘(R\p) (t

t—zx

) =g(z) +
)

limsup A(t) =limsup hjc(g)(t) = g(x) +
)=

=g(),
g and
t—x t—x 2

lim inf A(¢ 1m1nf hic(g)(t) = g(x).

t—x

=R, we
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Consequently condition (ii,0) is satisfied.

Since R\ P is an open set and since g\ p)y = g|r\p), We get C(h)\ P =
C(g)\ P and U(h) \ P = U(g) \ P. By condition (ii,0), L(h) C R\ P.
Therefore C(h) = C(h)\P = C(g)\ P and U(h) =U(h)\P =U(g)\ P. Since
U(g) C R\ C(g) C R\ P, we have that U(h) = U(g) and condition (iii,0) is
true.

Now we assume that o > 0 is an arbitrary ordinal number and, for each
ordinal number (0 < 8 < «), conditions (i,53), (ii,8) and (iii,3) are satisfied.
Let x € P. Since, for each ordinal number 8 with 0 < 8 < «, by (iii,5),

U (hg) =U (95) CR\C (g9(5) CR\C(9) CR\ P,

we have {ﬁ <areU (h(ﬁ))} = {ﬁ <areU (g(g))} = 0 and h((z) =
h(z) = g(z) + § = g(a)(z) + §-
Let x € R\ P. Then

h(x), if {B <a;relU (h(ﬁ))} =0,
h(a)( ) = limy ., h(ﬁo)(t>7 ifzelU (h(ﬂo))7
where By = min {6 <a;reU (h(g))}

and

g(x), it {8 <a;xel(gp)} =0
9(e) (1‘) = limy_ g(gl)(t) fxzeU (g(gl)),
where §; = min{ﬂ <a;xelU (g(g))}.

By our assumptions, we know that Sy = ;. Since R\ P is an open set and
I(R\P) (Bo) = h|(]R\p) (Bo)> We get lim;_,,. g(go)(t) = limy_,,. h(@o)(t). Therefore
ha) () = g(a)(2). So

_f gw@ + 5, ifzcP,
hia)(2) { 9oy (), otherwise.

By (i,a), as in the proof of (ii,0), we can show that, for each x € P,

. . g
limsup ha) (1) = Hmsup fio(g) (o) (1) = 9o (2) + 5
t—x t—x

and
lim inf h(a) (t) = lilfiiff h|C(g) (a) (t) = Y(a) (l‘)

t—x
Since R\ P is an open set and by (i,a), h|®\P) (a) = J|(R\P) (o). Hence
C (f())\P =C (ga))\P and U (h(a)) \ P = U (g(a)) \ P. By condition (ii,a),
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L (h(a)) C R\ P. Therefore C (h(a)) =C (h(a)) \P=C (g(a)) \ P and
U (ha)) = U (h@)\P = U (9(e))\P- By U (g9(a)) € R\C (g(a) € R\C(g) C
R\ P, we know that U (h(a)) =U (g(a)) and condition (iii,«) is true. Thus,
for each a with 0 < o < wy, conditions (i,«), (ii,«) and (iii,«r) are satisfied.

We suppose that there exists an ordinal number o with 0 < oy < wy such
that h € A,,. Then C (h(ao)) = R. This is impossible, since, by (iii,ap),
C (h(ao)) =C (g(ao)) \PCR\P#R. Hence h ¢ A.

Put K1 = K (h, %) Let h* € K;. Suppose that h* € A. Then we may
show that, for each ordinal number o with 0 < a < wy,

(iv,a) for each z € C(g),

B (@) — b (@) < 4,

(via) PCR\ L (h;fa)).

Let a = 0. By p(h,h*) < &, condition (iv,0) is obvious. Let € P. By condi-
tions (iv,0) and (ii,0), liminf, ., h*(t) <
liminf, . h(t) + § = g(x) + § and limsup,_,, h*(t) > limsup, ,, h(t) — § =
g(x)+§ —F. Thus limsup,_,, h*(t) —liminf, ,, h*(t) > § > 0and = ¢ L(h*).

We assume that o with 0 < o < w; is an ordinal number and, for each
ordinal number § with 0 < § < «, conditions (iv,3) and (v,5) are satisfied. Let
x € C(g). Then, for each § with 0 < § < «, by condition (iii,3), U (h(g)) -
R\ C(g). Therefore o<, U (h(s) € R\ C(g) and, by Theorem 1 (2,c),
h(ay(x) = h(zx). By our assumption, we know that

U U(kis)c U L(bs) cr\P

0<B<a 0<B<a
Therefore if x € P, then, by Theorem 1 (2,a), h{, () = h*(x). Hence, for
B (@) — h(a)(x)’ = |h*(z) — h(z)| < 2. Let x € C(g)\ P. Tf
{5 <oyzeU (h;ﬁ))} =0, then b, (z) = h*(z) and |k, (2) — Ao (@)
g,
We assume that Sy = min {B <a;xé€ U(h’{m)}. Then h?a)(x) =
limy_yp h’(kﬂo)(t). Let € > 0 be an arbitrary real number. Thus there ex-

each x € P,

IN

ists a real number n > 0 such that, for each t € (x — 9,2 + 1) and ¢ # =,

hige)(t) = A,y (@)| < 5. Since z € C(g) \ P = C(h); so there exists a real

number 7; > 0 such that, for each t € (z —n1, 2 +m), |h(z) — h(t)| < 5.
Let 1o = min{n,m}. Since h* € A, the set C (h*) is a residual subset of R

and Uy<pop, U (h’("ﬁ)) C R\ C(h*) is a set of the first category. Therefore
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(x —no,z) N (R \Uo<p<p, U (h?@))) # (. Then, by Theorem 1 (2,8p), there
exists a point tg € (x — 19, z) N {t; hig, () = h* (t)} Hence

By () = h(a)|

By () = 1y (10)| + [ (t0) = " (t0)

+ [h*(to) — h(t)| + |h(t) — h(z)]
<Cro0+ TS24
2 6 2 6

"%)W) = ) (f)’ =

<

Therefore |h{, (z) — h(a)(m)’ < Z and condition (iv,a) is satisfied.
Let € P. Then, by (iv,a) and (ii,«),

- * .. * - o

hgn;;lf hiay(t) < hggﬁ he(g) (o)) < h?Lgﬁ hic(g) (o) (t) + 3

o
=g(a)(2) + 5

and

. * . * . o

limsup h(, () > Hmsup hjo(g) (o) (1) = Bmsup hic(g) (o) (t) — 5
t—zx t—x t—zx

o o

:g(a)(w) +5 - =

2 6
Therefore limsup, ,, h{,,(t) —liminf;_; h{, (t) > § > 0 and x ¢ L (h’(ka));

so, for each ordinal number a(0 < o < wy), conditions (iv,a) and (v,«) are
satisfied. By our assumptions, there exists an ordinal number ay with 0 <

a < wy such that h* € An,. Then R = C (h;‘ao)) cL (h?ao)) By (v,a0),
PcR\L (h’{ao)) = (), a contradiction. Thus h* ¢ A and K; N.A = 0.
Now we show that K; € K. Let h* € K;. Assume that x € P. Then

1" (@) = f(@)| <In*(2) = h(@)| + h(@) - ()]
=[1* (@) = h(@)| + |g(@) + 5 ~ f(@)
< (@) = (@) +lg@) = S@)| + 5 < 5+
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Let z € R\ P. Then

[ (z) = f(2)] <|p"(2) = h(z)] + |h(z) = ()]

Therefore p(f,h*) < %‘7 +d; < 6 and h* € K and the proof is complete. [

We will say that f: R — R belongs to By if for every perfect set P there
exists an open interval (a, b) such that fi, 5)np is a continuous function.

Proposition 3 The class A; is not contained in Bj.

PrOOF. Let P C [0,1] be the Cantor set. We define the function f: R — R
as follows. If z is the end of some contiguous interval of P, then f(x) is equal
to the length of this interval, otherwise f(z) = 0. Note that f € A; \ Ap.
Let (a,b) be a non-empty interval such that (a,b) N P # 0. Then there
exists a point xg € (a,b) such that z( is the end of some contiguous interval
of P; so f(xg) > 0 and there exists a real number n > 0 such that either

(o —n,20) C {x € (a,b); f(x) =0} or (zo, 0 + 1) C {z € (a,b); f(x) =0}
Thus either lim,_, - f(t) = 0 or lim,_, .+ f(t) = 0. Hence for every open

interval (a, b) such that (a,b) N P # 0, the function f|(4,)np is not continuous
on the set P. Thus f & B, so A; ¢ B and the proof is complete. O

It is easy to see that L(f) = C(f) for every Darboux function. We have
thus the following theorem.

Theorem 6 There is no Darboux discontinuous function, which is improv-
able.
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