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PROPERTIES OF THE CLASS OF
IMPROVABLE FUNCTIONS

Abstract

In this paper the classes Aα and the class A are characterized and
compared to the classes B1, B∗

1 and the class of all Darboux functions.

1 Preliminaries

The word “function” will mean a bounded real function of a real variable and
D will denot a subset of R.

Definition 1 For each function f : D −→ R, let

C(f) =
{
x ∈ D; lim

t→x
f(t) = f(x)

}
;

U(f) =
{
x ∈ D; lim

t→x
f(t) 6= f(x)

}
;

L(f) =
{
x ∈ D; lim

t→x
f(t) exists

}
.

Definition 2 A point x0 ∈ U(f) is called an improvable point of discontinuity
of the function f .

The following remark is easy to see.

Remark 1 Let f : D → R. Then U(f) ∩ C(f) = ∅ and L(f) = U(f) ∪ C(f).

The following proposition is well known. (Compare to [2].)

Proposition 1 Let f : D −→ R. Then the set U(f) is countable.
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We define the functions f(α) on the class of ordinal numbers.

Definition 3 Let f : D → R and let f(0)(x) = f(x) for each x ∈ D. For
every ordinal number α, let

f(α)(x) =

 f(x), if
{
γ < α; x ∈ U

(
f(γ)

)}
= ∅,

limt→x f(γ0)(t), if x ∈ U
(
f(γ0)

)
,

where γ0 = min
{
γ < α; x ∈ U

(
f(γ)

)}
.

The following theorems are established in [1] where the reader should turn
for pertainent definitions

Theorem 1 Let f : D → R and let α > 0 be an ordinal number. Then

(1,α) for each x ∈ D,
{
γ < α;x ∈ U

(
f(γ)

)}
is the empty set or has only one

element,

(2,α) for each ordinal number γ with γ < α,{
x ∈ D; f(γ)(x) 6= f(α)(x)

}
=

⋃
γ≤β<α

U
(
f(β)

)
,

(3,α) for each ordinal number γ with γ < α, if x ∈ L
(
f(γ)

)
, then

lim
t→x

f(γ)(t) = f(α)(x),

(4,α)
⋃

0≤β<α L
(
f(β)

)
⊂ C

(
f(α)

)
.

Definition 4 For each ordinal number α, let

Aα =
{
f : D → R; C

(
f(α)

)
= D

}
.

If a function f : D → R belongs to Aα \
(⋃

0≤β<αAβ
)
, then it will be called

an α-improvable discontinuous function.
Put A =

⋃
0≤α<ω1

Aα. If a function f ∈ A, then it will be called an
improvable function.

Definition 5 Let K ⊂ D. Put K(0) = K. Let

K(1) = Kd = {x ∈ D; x is an accumulation point of K in R}

and K∗ = K \Kd.
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Example 1 Let W = {1/n; n ∈ N} and let f be the characteristic function of
the set W . Then U(f) = W , and 0 is not an improvable point of discontinuity
of f . Note that f(1)(x) = 0 for each x ∈ R, so f ∈ A1. Observe that f(1) is
also continuous at points, which do not belong to the set U(f).

Definition 6 For A ⊂ D ⊂ R, let

M(A) = {f : D → R; f(A) = {0} and, for each x ∈ D, f(x) ≥ 0} .

The following theorem is proved in [1].

Theorem 2 Let A be a dense subset of D and let f ∈ Aα be a function
such that C(f) = A. Then g = |f − f(α)| ∈ M(A), for each 0 ≤ β ≤ α,

C
(
f(β)

)
= C

(
g(β)

)
, U

(
f(β)

)
= U

(
g(β)

)
and g(β) = |f(β) − f(α)|.

In Section 3 we use the following lemma.

Lemma 1 Let f : R → R and let f ∈ Aα for some α < ω1. Then f ∈ B1 if
and only if g = |f − f(α)| ∈ B1.

Proof. Let P be a perfect set. Assume that f ∈ B1. Then there exists a
point x0 ∈ R such that x0 ∈ C

(
f|P
)
. Consider two possibilities:

1. If x0 ∈ C(f), then x0 ∈ C(g); so x0 ∈ C
(
g|P
)
.

2. If x0 ∈ C
(
f|P
)
\ C(f), then limt→x0 f|P (t) exists and limt→x0 f|P (t)

= f|P (x0). If there existed an ordinal number β0 < α and a sequence

(xn)
∞
n=1 ⊂

(
U
(
g(β0)

)
∩ P

)
such that limn→∞ xn = x0, then by Theo-

rem 2 we would have (xn)
∞
n=1 ⊂

(
U
(
f(β0)

)
∩ P

)
, a contradiction. Thus

limt→x0
g|P (t) exists and limt→x0

f|P (t) = g|P (x0).

Thus g ∈ B1.
Now, assume that g ∈ B1. We can prove that f ∈ B1 similarly. �

2 The Characterization of the Classes Aα

As we have seen in Example 1 there functions f ∈ A1 with R \ C(f) 6= U(f).
Thus we can ask whether we can study continuity of the function f(α) by
considering properties of f|R\

⋃
β<α U(f(β)). The answer is given in the following

theorem.

Theorem 3 Let f : R→ R and let α be an ordinal number. Then f ∈ Aα if
and only if f|(R\

⋃
0≤β<α U(f(β))) is continuous.
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Proof. First, we assume that f ∈ Aα. Let x ∈ C(f). Then, of course,

f|R\
⋃

0≤β<α U(f(β)) is continuous at x. Let x ∈ R \
(
C(f) ∪

⋃
0≤β<α U

(
f(β)

))
.

By Theorem 1 (2,α),
{
x ∈ R; f(x) 6= f(α)(x)

}
=
⋃

0≤β<α U
(
f(β)

)
. Hence

f(α)(x) = lim
t→x

f(α)(t) = lim
t→x

f|(R\
⋃

0≤β<α U(f(β))) (α)(t)

= lim
t→x

f|(R\
⋃

0≤β<α U(f(β)))(t).

Thus limt→x f|(R\
⋃

0≤β<α U(f(β)))(t) = f(x); so f|(R\
⋃

0≤β<α U(f(β))) is continu-

ous at x.
Now assume that f|(R\

⋃
0≤β<α U(f(β))) is continuous. We shall show that

R = C
(
f(α)

)
. Of course, C

(
f(α)

)
⊂ R. By Theorem 1 (4,α),⋃

0≤β<α

U
(
f(β)

)
⊂ C

(
f(α)

)
.

Let x ∈ R \
⋃

0≤β<α U
(
f(β)

)
. Suppose that there exists a sequence (xn)

∞
n=1

such that limn→∞ xn = x and limn→∞ f(α)(xn) 6= f(α)(x). We can assume

that a = limn→∞ f(α)(xn) < f(α)(x). By Theorem 1 (2,α),
⋃

0≤β<α U
(
f(β)

)
={

x ∈ R; f(α)(x) 6= f(x)
}

and

lim
t→x

f|(R\
⋃

0≤β<α U(f(β))) (α)(t)= lim
t→x

f|(R\
⋃

0≤β<α U(f(β)))(t)=f(x)=f(α)(x).

Thus there exists n0 ∈ N such that, for each n > n0, xn ∈
⋃

0≤β<α U
(
f(β)

)
.

Therefore, we may assume that, for each n ∈ N, xn ∈
⋃

0≤β<α U
(
f(β)

)
and

f(α)(xn) < f(α)(x).

Let ε = f(x)−a
2 . By Theorem 1 (4,α),

⋃
0≤β<α U

(
f(β)

)
⊂ C

(
f(α)

)
. Hence,

for each n ∈ N, there exists an interval (an, bn) containing xn such that, for
each z ∈ (an, bn), f(α)(z) < f(α)(xn)+ε. Since

⋃
0≤β<α U

(
f(β)

)
is a countable

set, we can choose a sequence (zn)
∞
n=1 such that limn→∞ zn = x and, for

each n ∈ N, zn ∈ (an, bn) ∩
(
R \

⋃
0≤β<α U

(
f(β)

))
. Hence, for each n ∈ N,

f(α)(zn) = f(zn) and f(zn) < f(α)(xn) + ε. Then

lim sup
n→∞

f(zn) ≤ lim
n→∞

f(α)(xn) + ε = a+ ε =
a+ f(x)

2
< f(x)

and limt→x f|R\
⋃

0≤β<α U(f(α))(t) 6= f(x), a contradiction. Hence x ∈ C
(
f(α)

)
.

Thus R = C
(
f(α)

)
and the proof is complete. �
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3 The Comparison of the Class of Improvable Functions
to Other Classes of Functions

First we compare the class of improvable functions to the class of Baire 1
functions.

Theorem 4 If f : R → R is an improvable function, then f is a Baire 1
function.

Proof. By Lemma 1, we can assume that f ∈ M (C(f)). Since f is an
improvable function, there exists an ordinal number α < ω1 such that f ∈ Aα.

Let P be a perfect set. Put D(f) = R \ C(f). If P ∩ C(f) 6= ∅, then
C
(
f|P
)
6= ∅. Thus assume that P ∩ C(f) = ∅. First suppose that P ∩

U(f) 6= ∅. Let x0 ∈ P ∩ U(f). Thus for each neighborhood U(x0) of the
point x0 the set U(x0) ∩ P is uncountable. Fix U(x0). Since P ⊂ D(f)
and U(f) is dense in D(f), for each x ∈ D(f) \ U(f) there exists a sequence
(xn)

∞
n=1 ⊂ U(f) such that limn→∞ xn = x and limn→∞ f(xn) > 0. Hence

U(x0)∩
⋃∞
n=1

{
x ∈ R; lim supt→x0

f(t) ≥ 1
n

}
is uncountable; so there exists n0

such that U(x0)∪
{
x ∈ R; lim supt→x0

f(t) ≥ 1
n0

}
is uncountable, contrary to

x0 ∈ U(f). Thus U(f) ∩ U(x0) = ∅. Since U(x0) ⊂
{
x ∈ R; f(x) = f(1)(x)

}
;

so U(x0) ∩ U
(
f(1)
)

= ∅ and by transfinite induction we can show that, for

each ordinal number β < α, U(x0) ∩ U
(
f(β)

)
= ∅, contraty to f ∈ Aα.

Thus P ∩
⋃

0≤β<α U
(
f(β)

)
= ∅. Hence P ⊂ D(f) \

⋃
0≤β<α U

(
f(β)

)
and by

Theorem 3, C
(
f|P
)
6= ∅, which completes the proof. �

The following proposition shows that there exists a Baire 1 function which
is not an improvable discontinuous one.

Proposition 2 There exist a subset D of R and a function f : D → R such
that C(f) is a dense subset of D and there exist no ordinal number α such
that f ∈ Aα.

Proof. Let f : R → R be the characteristic function of [0,+∞). Note that,
for x = 0,

0 = lim
t→x−

f(t) 6= lim
t→x+

f(t) = 1.

Since C(f) = R \ {0}; so U(f) = ∅ and, for each x ∈ R, f(1)(x) = f(x). By
Theorem 1 and by transfinite induction, we have that f(α)(x) = f(x) for each
x ∈ R and for every ordinal number α.

Denote by (B1, ρ) the metric space of all bounded real Baire 1 functions de-
fined on R, where, for each pair of functions f, g ∈ B1, ρ(f, g) = supx∈R |f(x)−
g(x)|. Let f : D → R and let δ > 0. Put K(f, δ) = {g ∈ B1; ρ(f, g) < δ}.
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Theorem 5 The set A is nowhere dense in B1.

Proof. Let f ∈ B1 and let δ > 0 be a real number. Put K = K (f, δ). We
shall show that there exists a ball K1 ⊂ K such that K1∩A = ∅. If A∩K = ∅,
then we put K1 = K. Let g ∈ K ∩ A. Put δ1 = ρ(f, g) and σ = δ − δ1. Since
g ∈ A, so C(g) is residual in R. Then there exists a perfect nowhere dense set
P ⊂ C(g). We define the function h by

h(x) =

{
g(x) + σ

2 , if x ∈ P ,
g(x), otherwise.

Note that h is the sum of two functions: g and k, where

k(x) =

{
σ
2 , if x ∈ P ,
0, otherwise.

Thus h ∈ B1. We shall show that, for each ordinal number α with 0 ≤ α < ω1,

(i,α) h(α)(x) =

{
g(α)(x) + σ

2 , if x ∈ P ,
g(α)(x), otherwise.

(ii,α) for each x ∈ P ,

lim sup
t→x

h(α)(t) = lim sup
t→x

h|C(g) (α)(t) = g(α)(x) +
σ

2

and

lim inf
t→x

h(α)(t) = lim inf
t→x

h|C(g) (α)(t) = g(α)(x),

(iii,α) C
(
h(α)

)
= C

(
g(α)

)
\ P and U

(
h(α)

)
= U

(
g(α)

)
.

Let α = 0. By the definition of the function h, condition (i,0) is true.

Let x ∈ P . Since P ⊂ C(g), P = P d, P ⊂ (C(g))
d

and cl (R \ P ) = R, we
know that

lim
t→x

h|P (t) =g(x) +
σ

2
,

lim
t→x

h|(R\P )(t) =g(x),

lim sup
t→x

h(t) = lim sup
t→x

h|C(g)(t) = g(x) +
σ

2
and

lim inf
t→x

h(t) = lim inf
t→x

h|C(g)(t) = g(x).
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Consequently condition (ii,0) is satisfied.
Since R \ P is an open set and since h|(R\P ) = g|(R\P ), we get C(h) \ P =

C(g) \ P and U(h) \ P = U(g) \ P . By condition (ii,0), L(h) ⊂ R \ P .
Therefore C(h) = C(h)\P = C(g)\P and U(h) = U(h)\P = U(g)\P . Since
U(g) ⊂ R \ C(g) ⊂ R \ P , we have that U(h) = U(g) and condition (iii,0) is
true.

Now we assume that α > 0 is an arbitrary ordinal number and, for each
ordinal number β(0 ≤ β < α), conditions (i,β), (ii,β) and (iii,β) are satisfied.
Let x ∈ P . Since, for each ordinal number β with 0 ≤ β < α, by (iii,β),

U
(
h(β)

)
= U

(
g(β)

)
⊂ R \ C

(
g(β)

)
⊂ R \ C(g) ⊂ R \ P,

we have
{
β < α;x ∈ U

(
h(β)

)}
=
{
β < α;x ∈ U

(
g(β)

)}
= ∅ and h(α)(x) =

h(x) = g(x) + σ
2 = g(α)(x) + σ

2 .
Let x ∈ R \ P . Then

h(α)(x) =

 h(x), if
{
β < α; x ∈ U

(
h(β)

)}
= ∅,

limt→x h(β0)(t), if x ∈ U
(
h(β0)

)
,

where β0 = min
{
β < α; x ∈ U

(
h(β)

)}
and

g(α)(x) =

 g(x), if
{
β < α; x ∈ U

(
g(β)

)}
= ∅,

limt→x g(β1)(t) if x ∈ U
(
g(β1)

)
,

where β1 = min
{
β < α; x ∈ U

(
g(β)

)}
.

By our assumptions, we know that β0 = β1. Since R \ P is an open set and
g|(R\P ) (β0) = h|(R\P ) (β0), we get limt→x g(β0)(t) = limt→x h(β0)(t). Therefore
h(α)(x) = g(α)(x). So

h(α)(x) =

{
g(α)(x) + σ

2 , if x ∈ P ,
g(α)(x), otherwise.

By (i,α), as in the proof of (ii,0), we can show that, for each x ∈ P ,

lim sup
t→x

h(α)(t) = lim sup
t→x

f|C(g) (α)(t) = g(α)(x) +
σ

2

and
lim inf
t→x

h(α)(t) = lim inf
t→x

h|C(g) (α)(t) = g(α)(x).

Since R \ P is an open set and by (i,α), h|(R\P ) (α) = g|(R\P ) (α). Hence

C
(
f(α)

)
\P = C

(
g(α)

)
\P and U

(
h(α)

)
\P = U

(
g(α)

)
\P . By condition (ii,α),
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L
(
h(α)

)
⊂ R \ P . Therefore C

(
h(α)

)
= C

(
h(α)

)
\ P = C

(
g(α)

)
\ P and

U
(
h(α)

)
= U

(
h(α)

)
\P = U

(
g(α)

)
\P . By U

(
g(α)

)
⊂ R\C

(
g(α)

)
⊂ R\C(g) ⊂

R \ P , we know that U
(
h(α)

)
= U

(
g(α)

)
and condition (iii,α) is true. Thus,

for each α with 0 ≤ α < ω1, conditions (i,α), (ii,α) and (iii,α) are satisfied.
We suppose that there exists an ordinal number α0 with 0 ≤ α0 < ω1 such

that h ∈ Aα0
. Then C

(
h(α0)

)
= R. This is impossible, since, by (iii,α0),

C
(
h(α0)

)
= C

(
g(α0)

)
\ P ⊂ R \ P 6= R. Hence h 6∈ A.

Put K1 = K
(
h, σ6

)
. Let h∗ ∈ K1. Suppose that h∗ ∈ A. Then we may

show that, for each ordinal number α with 0 ≤ α < ω1,

(iv,α) for each x ∈ C(g),
∣∣∣h∗(α)(x)− h(α)(x)

∣∣∣ ≤ σ
6 ,

(v,α) P ⊂ R \ L
(
h∗(α)

)
.

Let α = 0. By ρ (h, h∗) < σ
6 , condition (iv,0) is obvious. Let x ∈ P . By condi-

tions (iv,0) and (ii,0), lim inft→x h
∗(t) ≤

lim inft→x h(t) + σ
6 = g(x) + σ

6 and lim supt→x h
∗(t) ≥ lim supt→x h(t) − σ

6 =
g(x)+ σ

2 −
σ
6 . Thus lim supt→x h

∗(t)− lim inft→x h
∗(t) ≥ σ

6 > 0 and x 6∈ L(h∗).
We assume that α with 0 < α < ω1 is an ordinal number and, for each

ordinal number β with 0 ≤ β < α, conditions (iv,β) and (v,β) are satisfied. Let
x ∈ C(g). Then, for each β with 0 ≤ β < α, by condition (iii,β), U

(
h(β)

)
⊂

R \ C(g). Therefore
⋃

0≤β<α U
(
h(β)

)
⊂ R \ C(g) and, by Theorem 1 (2,α),

h(α)(x) = h(x). By our assumption, we know that⋃
0≤β<α

U
(
h∗(β)

)
⊂

⋃
0≤β<α

L
(
h∗(β)

)
⊂ R \ P.

Therefore if x ∈ P , then, by Theorem 1 (2,α), h∗(α)(x) = h∗(x). Hence, for

each x ∈ P ,
∣∣∣h∗(α)(x)− h(α)(x)

∣∣∣ = |h∗(x)− h(x)| ≤ σ
6 . Let x ∈ C(g) \ P . If{

β < α; x ∈ U
(
h∗(β)

)}
= ∅, then h∗(α)(x) = h∗(x) and

∣∣∣h∗(α)(x)− h(α)(x)
∣∣∣ ≤

σ
6 .

We assume that β0 = min
{
β < α; x ∈ U

(
h∗(β)

)}
. Then h∗(α)(x) =

limt→x h
∗
(β0)

(t). Let ε > 0 be an arbitrary real number. Thus there ex-

ists a real number η > 0 such that, for each t ∈ (x − η, x + η) and t 6= x,∣∣∣h∗(β0)
(t)− h∗(α)(x)

∣∣∣ < ε
2 . Since x ∈ C(g) \ P = C(h); so there exists a real

number η1 > 0 such that, for each t ∈ (x− η1, x+ η1), |h(x)− h(t)| < ε
2 .

Let η0 = min {η, η1}. Since h∗ ∈ A, the set C (h∗) is a residual subset of R
and

⋃
0≤β<β0

U
(
h∗(β)

)
⊂ R \ C (h∗) is a set of the first category. Therefore
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(x− η0, x) ∩
(
R \

⋃
0≤β<β0

U
(
h∗(β)

))
6= ∅. Then, by Theorem 1 (2,β0), there

exists a point t0 ∈ (x− η0, x) ∩
{
t; h∗(β0)

(t) = h∗(t)
}

. Hence

∣∣∣h∗(α)(x)− h(α)(x)
∣∣∣ =
∣∣∣h∗(α)(x)− h(x)

∣∣∣
≤
∣∣∣h∗(α)(x)− h∗(β0)

(t0)
∣∣∣+
∣∣∣h∗(β0)

(t0)− h∗(t0)
∣∣∣

+ |h∗(t0)− h(t)|+ |h(t)− h(x)|

<
ε

2
+ 0 +

σ

6
+
ε

2
=
σ

6
+ ε.

Therefore
∣∣∣h∗(α)(x)− h(α)(x)

∣∣∣ ≤ σ
6 and condition (iv,α) is satisfied.

Let x ∈ P . Then, by (iv,α) and (ii,α),

lim inf
t→x

h∗(α)(t) ≤ lim inf
t→x

h∗|C(g) (α)(t) ≤ lim inf
t→x

h|C(g) (α)(t) +
σ

6

=g(α)(x) +
σ

6

and

lim sup
t→x

h∗(α)(t) ≥ lim sup
t→x

h∗|C(g) (α)(t) ≥ lim sup
t→x

h|C(g) (α)(t)−
σ

6

=g(α)(x) +
σ

2
− σ

6
.

Therefore lim supt→x h
∗
(α)(t) − lim inft→x h

∗
(α)(t) ≥

σ
6 > 0 and x 6∈ L

(
h∗(α)

)
;

so, for each ordinal number α(0 ≤ α < ω1), conditions (iv,α) and (v,α) are
satisfied. By our assumptions, there exists an ordinal number α0 with 0 ≤
α < ω1 such that h∗ ∈ Aα0

. Then R = C
(
h∗(α0)

)
⊂ L

(
h∗(α0)

)
. By (v,α0),

P ⊂ R \ L
(
h∗(α0)

)
= ∅, a contradiction. Thus h∗ 6∈ A and K1 ∩ A = ∅.

Now we show that K1 ⊂ K. Let h∗ ∈ K1. Assume that x ∈ P . Then

|h∗(x)− f(x)| ≤|h∗(x)− h(x)|+ |h(x)− f(x)|

=|h∗(x)− h(x)|+ |g(x) +
σ

2
− f(x)|

≤|h∗(x)− h(x)|+ |g(x)− f(x)|+ σ

2
<

2σ

3
+ δ1.
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Let x ∈ R \ P . Then

|h∗(x)− f(x)| ≤|h∗(x)− h(x)|+ |h(x)− f(x)|
=|h∗(x)− h(x)|+ |g(x)− f(x)|

≤|h∗(x)− h(x)|+ |g(x)− f(x)| < σ

6
+ δ1.

Therefore ρ(f, h∗) ≤ 2σ
3 + δ1 < δ and h∗ ∈ K and the proof is complete. �

We will say that f : R → R belongs to B∗1 if for every perfect set P there
exists an open interval (a, b) such that f|(a,b)∩P is a continuous function.

Proposition 3 The class A1 is not contained in B∗1.

Proof. Let P ⊂ [0, 1] be the Cantor set. We define the function f : R → R
as follows. If x is the end of some contiguous interval of P , then f(x) is equal
to the length of this interval, otherwise f(x) = 0. Note that f ∈ A1 \ A0.
Let (a, b) be a non-empty interval such that (a, b) ∩ P 6= ∅. Then there
exists a point x0 ∈ (a, b) such that x0 is the end of some contiguous interval
of P ; so f(x0) > 0 and there exists a real number η > 0 such that either
(x0 − η, x0) ⊂ {x ∈ (a, b); f(x) = 0} or (x0, x0 + η) ⊂ {x ∈ (a, b); f(x) = 0}.
Thus either limt→x−

0
f(t) = 0 or limt→x+

0
f(t) = 0. Hence for every open

interval (a, b) such that (a, b)∩P 6= ∅, the function f|(a,b)∩P is not continuous
on the set P . Thus f 6∈ B∗1 , so A1 6⊂ B∗1 and the proof is complete. �

It is easy to see that L(f) = C(f) for every Darboux function. We have
thus the following theorem.

Theorem 6 There is no Darboux discontinuous function, which is improv-
able.
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