Javier Fernández de Bobadilla de Olazabal,*Master Class, Department of Mathematics, University of Utrecht. Budapestlaan 6, P.O. Box 80.010, 3508 TA Utrecht, The Netherlands, jfbobadi@@math.ruu.nl, javifb@@eucmos.sim.ucm.es

A MONOTONE C^{1} FUNCTION AND A RIEMANN INTEGRABLE FUNCTION WHOSE COMPOSITION IS NOT RIEMANN INTEGRABLE

Abstract

In this paper the author constructs a C^{1} function G and a Riemann integrable function H, and shows that the composition $H \circ G$ is not Riemann integrable.

If G is just required to be continuous, we can choose the function defined on the interval $[0,1]$ as $G(x)=1$ if x belongs to a Cantor set of positive measure C, and

$$
G(x)=1-\frac{1}{2}(b-a)+\left|x-\frac{1}{2}(a+b)\right|
$$

if x belongs to some interval (a, b) contiguous to $[0,1]$. In this case $H(x)$ would be 0 on $[0,1)$ and $H(1)=1$. This construction can be seen in [1]. With some modifications we can get G to be a C^{∞} function. But, if we also want G to be monotone, we need different arguments.
Let P be a Cantor perfect subset of $[0,1]$ which contains 0,1 and has positive measure. Let $\left\{\left(a_{n}, b_{n}\right)\right\}, n=1,2, \ldots$ be the intervals contiguous to P. Let $g:[0,1] \mapsto[0,1]$ defined as follows:

$$
g(x)= \begin{cases}0 & \text { if } x \in P \\ \frac{1}{2^{n}} & \text { if } x=\frac{a_{n}+b_{n}}{2}, n=1,2, \ldots \\ \text { linearly } & \text { on }\left[a_{n}, \frac{a_{n}+b_{n}}{2}\right] \text { and on }\left[\frac{a_{n}+b_{n}}{2}, b_{n}\right]\end{cases}
$$

[^0]Clearly g is continuous on $[0,1]$. Let $G:[0,1] \mapsto \mathbb{R}, G(x)=\int_{0}^{x} g(t) d t$ Then $G(0)=0, G(1)=\sum_{n=1}^{\infty}\left(b_{n}-a_{n}\right) / 2^{n+1}=\alpha$. It follows that G is strictly increasing and of class C^{1}. Also $G(P) \cup\left(\cup_{n=1}^{\infty} G\left(\left(a_{n}, b_{n}\right)\right)\right)=[0, \alpha]$. But $G\left(\left(a_{n}, b_{n}\right)\right)=\left(G\left(a_{n}\right), G\left(b_{n}\right)\right)=\int_{a_{n}}^{b_{n}} g(t) d t=\left(b_{n}-a_{n}\right) / 2^{n+1}$. Therefore $G(P)$ is a perfect subset of $[0, \alpha]$ of measure 0 . Let $H:[0, \alpha] \mapsto\{0,1\}$,

$$
H(x)= \begin{cases}1 & \text { if } x \in G(P) \\ 0 & \text { if } x \notin G(P)\end{cases}
$$

Clearly G and H are Riemann integrable, but

$$
H \circ G(x)= \begin{cases}1 & \text { if } x \in P \\ 0 & \text { if } x \notin P\end{cases}
$$

is not Riemann integrable.

References

[1] B. R. Gelbaum and J. M. Olmsted, Counterexamples in analysis, HoldenDay, Inc. San Francisco, 1964.

[^0]: Key Words: C^{1} functions, the Riemann integral
 Mathematical Reviews subject classification: 26A39
 Received by the editors March 21, 1996
 *I wish to acknowledge to Baldomero Rubio, who suggested this problem to me, read the previous versions and gave me important advice in order to simplify the proofs. I also thank Mariajo de las Heras for her help in writing the final version of this paper.

