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SUFFICIENT CONDITIONS FOR THREE
WEIGHT SUM INEQUALITIES IN

LEBESGUE SPACES

Abstract

Conditions (in terms of integrals of the weights) are derived, under
which the weighted Lq-norm of the j-th order derivative of the function
u can be estimated by the sum of the weighted Lr-norm of u and of
the weighted Lp-norm of its m-th order derivative, j < m. All mutual
positions of the parameters, p, q, r are admissible.

1 Introduction

The aim of this paper is to describe conditions under which a three weight-
inequality of the form

||u(j)||q,W ≤ C
(
||u||r,W0

+ ||u(m)||p,Wm

)
(1.1)

holds for a certain class of (sufficiently smooth) functions u with a constant
C > 0 independent of u, i.e., to characterize the weights W,Wm,W0 (= mea-
surable positive a.e. functions) for which (1.1) is true for various choices of the
parameters p, q, r ∈ (1,∞).
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We will consider the one-dimensional case, i.e., u = u(t) is a function
defined on an interval I = (a, b) with −∞ ≤ a < b ≤ ∞ and we use the
notation

||u||s,V =

(∫ b

a

|u(t)|sV (t) dt

) 1
s

, s > 1 ,

to signify the norm of u in the weighted Lebesgue space Ls(I;V ). Further we
suppose that the integers j,m satisfy 0 ≤ j < m.

There are many results concerning inequalities of the type (1.1) even in
the higher dimensional case. Let us mention, e.g. the papers of P. I. Lizorkin
and M. Otelbaev [9], [10], Brown and Hinton [1], [2], [3], [4], [5] as well as
the book of V. Maz’ja [11] where for the special case j = 0, m = 1 necessary
and sufficient conditions are given under which an analogue of (1.1) holds
for functions which are defined in a domain Ω ⊂ RN , N > 1, or the recent
papers of R. Oinarov [12] and B. Curgus and T. Read [6] dealing with the
one-dimensional case, again for the special case of (1.1) for which p = r. In
the last two papers, necessary and sufficient conditions are given, for p ≤ q
in [6] and for p ≤ q as well as for p > q in [13]. Unfortunately the conditions
described in all the papers we have mentioned are complicated and not easy to
verify. Moreover the problem of finding conditions for (1.1) when j > 0 which
are both necessary and sufficient is unsolved for general weights W,Wm,W0.

The approach described in this paper gives for the most part only sufficient
conditions, but for every choice of the parameters p, q, r and also for higher
values of j < m. Moreover the conditions given here can be easily verified
and examples are given showing that the conditions are “not far” from the
necessary ones.

The method used here is rather elementary. We start with a certain type
of unweighted interpolation inequality and then use both Hölder’s inequality
and various Hardy inequalities; the conditions that allow us to apply Hardy’s
inequality are then in fact the conditions guaranteeing the validity of (1.1). In
the following two sections we will describe two approaches depending on two
choices of the basic interpolation inequality.

2 The First Approach

J ⊂ R be a compact interval of length |J | and let

ACk(J) =
{
u : u(k) is absolutely continuous on J

}
.
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Then if u = u(t) ∈ ACm−1(J) the following inequality holds (see, e.g.,
[1, Lemma 2.1]):

|u(j)(t)| ≤ C|J |−(j+1)

∫
J

|u(s)| ds+ |J |m−(j+1)

∫
J

|u(m)(s)| ds (2.1)

with a positive constant C depending only on the integers j and m, 0 ≤ j < m
and for every t ∈ J .

First we will consider functions u = u(t) defined on an interval I = [0, b)
which is bounded from below: 0 < b ≤ ∞. Here we require that u ∈ ACm−1loc (I)
where

ACkloc(I) = {u : u ∈ ACk(J) for every compact subinterval J ∈ I} .

Using (2.1) for the finite interval J = [0, t] we obtain the inequality

|u(j)(t)| ≤ Ct−(j+1)

∫ t

0

|u(s)| ds+ tm−(j+1)

∫ t

0

|u(m)(s)| ds . (2.2)

Now let r0 > 1, rm > 1 be two auxiliary parameters and w0, wm two auxiliary
weight functions. Then Hölder’s inequality yields∫ t

0

|u(s)| ds =

∫ t

0

|u(s)|w
1
r0
0 (s)w

− 1
r0

0 (s) ds

≤
(∫ t

0

|u(s)|r0w0(s) ds

) 1
r0
(∫ t

0

w
1−r′0
0 (s) ds

) 1
r′0

(2.3)

and ∫ t

0

|u(m)(s)| ds ≤
(∫ t

0

|u(m)(s)|rmwm(s) ds

) 1
rm

×
(∫ t

0

w
1−r′m
m (s) ds

) 1
r′m

(2.4)

where as usual r′i = ri(ri−1)−1 for i = 0,m, so that−r′i/ri = 1/(1−ri) = 1−r′i.
Next we proceed in the following way: First we use the estimates (2.3) and

(2.4) in the right hand side of (2.2), and in the resulting inequality we take
the q-th power of both sides with q > 1 and use in the right hand side the
elementary inequality (A+B)q ≤ 2q−1(Aq +Bq). Secondly we multiply both
sides of the resulting inequality by the weight function W (t) and integrate the
resulting inequality with respect to t from 0 to b. This finally yields that∫ b

0

|u(j)(t)|qW (t) dt ≤ C1(J1 + J2) (2.5)
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where C1 = 2q−1 max{C, 1} and

J1 =

∫ b

0

t−(j+1)qW (t)

(∫ t

0

w
1−r′0
0 (s) ds

)
q

r′0

×
(∫ t

0

|u(s)|r0w0(s) ds

) q
r0

dt (2.6)

J2 =

∫ b

0

t(m−j−1)qW (t)

(∫ t

0

w
1−r′m
m (s) ds

)
q
r′m

×
(∫ t

0

|u(m)(s)|rmwm(s) ds

)
q
rmdt . (2.7)

Now we estimate J1 and J2 using the Hardy inequality∫ b

0

H(t)

(∫ t

0

U(s) ds

)q̃
dt ≤ C0

(∫ b

0

K(t)U p̃(t) dt

) q̃
p̃

(2.8)

which holds for non-negative functions U if and only if the weight functions
H and K satisfy — for 1 ≤ p̃ ≤ q̃ <∞ — the condition

B(x) =

(∫ b

x

H(t) dt

) 1
q̃ (∫ x

0

K1−p̃′(t) dt

) 1
p̃′

≤ B <∞ . (2.9)

(For details, see e.g. B. Opic and A. Kufner [13, Theorem 1.14].)
Suppose now p, q, r satisfy

q ≥ max{p, r} > 1 , (2.10)

that the auxiliary parameters r0, rm satisfy

1 < r0 < r , 1 < rm < p , (2.11)

and let W0, Wm be (given) weight functions on I.
(a) The structure of (2.6) suggests that we should use Hardy’s inequality

(2.8) for the special choice

q̃ =
q

r0
, p̃ =

r

r0

H(t) = t−(j+1)qW (t)

(∫ t

0

w
1−r′0
0 (s) ds

) q

r′0

K(t) = W0(t)w−p̃0 (t) (2.12)

U(t) = |u(t)|r0w0(t) ,
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i.e.,
K(t)U p̃(t) = W0(t)w−p̃0 (t)|u(t)|p̃r0wp̃0(t) = W0(t)|u(t)|r .

We obtain that

J1 ≤ C0

(∫ b

0

|u(t)|rW0(t) dt

) q
r

(2.13)

if and only if the function

B1(x) =

(∫ b

x

t−(j+1)qW (t)

(∫ t

0

w
1−r′0
0 (s) ds

) q

r′0
dt

) r0
q

×
(∫ x

0

W
− r0
r−r0

0 (s)w
r

r−r0
0 (s) ds

) r−r0
r

(2.14)

is bounded on I. Notice that B1(x) is the function B(x) from (2.9) for our
special choice (2.12) of H and K. Because of (2.10) and (2.11) 1 < p̃ ≤ q̃ and
we have that

p̃′ =
p̃

p̃− 1
=

r

r − r0
, 1− p̃′ = − r0

r − r0
, p̃(1− p̃′) = −p̃′ .

(b) The structure of (2.7) suggests that we use Hardy’s inequality (2.8) for
the choice

q̃ =
q

rm
p̃ =

p

rm

H(t) = t(m−j−1)qW (t)

(∫ t

0

w
1−r′m
m (s) ds

) q
r′m

K(t) = Wm(t)w−p̃m (t) (2.15)

U(t) = |u(m)(t)|rmwm(t) .

This yields in the same way that

J2 ≤ C0

(∫ b

0

|u(m)(t)|pWm(t) dt

) q
p

(2.16)

if and only if the function

B2(x) =

(∫ b

x

t(m−j−1)qW (t)

(∫ t

0

w
1−r′m
m (s) ds

) q
r′m

dt

) rm
q

×
(∫ x

0

W
− rm
p−rm

m (s)w
p

p−rm
m (s) ds

) p−rm
p

(2.17)
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is bounded on I.
Using the notation from (1.2), it follows from (2.5), (2.13) and (2.16) that

||u(j)||qq,W ≤ C1C0

(
||u||qr,W0

+ ||u(m)||qp,Wm

)
,

and from this inequality, the inequality (1.1) follows immediately since for
q > 1 we have (Aq +Bq)1/q ≤ A+B.

The following Theorem summarizes our results:

Theorem 2.1 Suppose that the numbers p, q, r > 1 satisfy

q ≥ max{p, r} . (2.18)

Let m, j be integers 0 ≤ j < m and let W,W0 and Wm be weight functions on
I = [0, b). Suppose that for parameters r0, rm with

1 < r0 < r , 1 < rm < p , (2.19)

and for auxiliary weight functions w0, wm, the functions B1(x) and B2(x) from
the formulas (2.14) and (2.17), respectively are bounded on [0, b). Then the
inequality (1.1) holds for every function u ∈Wm;p,r(I;W0,Wm) where

Wm;p,r(I;W0,Wm) := {u ∈ ACm−1loc (I) : ||u||r,W0 , ||u(m)||p,Wm <∞}

with a constant C independent of u.

Remark 2.1 (A slight weakening the conditions (2.19)). We can also suppose
that

1 < r0 = r and/or 1 < rm = p . (2.20)

In this case, the number p̃ in the Hardy inequality (2.8) chosen according to
(2.12) and/or (2.15), is equal to one, and for p̃ = 1, the necessary and sufficient
condition (2.9) has to be modified to the form

B∗(t) =

(∫ b

t

H(s) ds

) 1
q̃

ess sup
s∈[0,t)

K(s)−1 ≤ B∗ <∞ .

Consequently, if we choose r0 = r, the condition (2.14) that B1(x) should
be bounded has to be replaced by the condition that

B∗1(x) =

(∫ b

x

t−(j+1)qW (t)

(∫ t

0

w1−r′
0 (s) ds

) q
r′

dt

) r
q

ess sup
s∈[0,x)

w0(s)

W0(s)

be bounded on I, since, due to (2.12), K(t) = W0(t)w−10 (t).
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We proceed in a similar way for the case rm = p.

Remark 2.2 (A special choice of the auxiliary weight functions w0, wm). If
we choose

w0 = W0 and/or wm = Wm

then the functions B1(x) and/or B2(x) become simpler in structure since (for
r0 < r and/or rm < p) we have that

W
− r0
r−r0

0 (t)w
r

r−r0
0 (t) = W0(t) ,

W
− rm
p−rm

m (t)w
p

p−rm
m (t) = Wm(t) .

Consequently,

B1(x) =

(∫ b

x

t−(j+1)qW (t)

(∫ t

0

W
1−r′0
0 (s) ds

) q

r′0
dt

) r0
q

×
(∫ x

0

W0(s) ds

) r−r0
r

,

B2(x) =

(∫ b

x

t(m−j−1)qW (t)

(∫ t

0

W
1−r′m
m (s) ds

) q
r′m

dt

) rm
q

×
(∫ x

0

Wm(s) ds

) p−rm
p

.

If we choose additionally r0 = r and/or rm = p, we have that

W0(t)

wp̃0(t)
≡ 1 and/or

Wm(t)

wp̃m(t)
≡ 1

and, e.g., for rm = p and wm = Wm the function B2(x) from (2.17) should be
replaced by

B∗2(x) =

(∫ b

x

t(m−j−1)qW (t)

(∫ t

0

W 1−p′
m (s) ds

) q
p′

dt

) p
q

with a similar change in (2.14).

Remark 2.3 (A different Hardy Inequality). If p = q = r > 1 we can use the
same basic idea as in (2.1)–(2.8) but substitute the Hardy Maximal Function



Three Weight Inequalities in Lebesgue Spaces 299

inequality (cf. Hewitt and Stromberg [7]) for the Hardy inequality in (2.1)–
(2.8) which will allow us to substitute a general interval I = [a,∞), −∞ ≤ a <
∞ for [0,∞). One form of the Maximal Function inequality is the following.
Let f be a nonnegative function in Lp(I), 1 < p < ∞, and J := [x, c],
a ≤ x ≤ c <∞, a finite subinterval of I. For x ∈ I, define

M[f ](x) := sup
x≤c<∞

∫
J
f(s) ds

|J |
.

Then ∫
I

M[f ](x)p dx ≤
(

p

p− 1

)p ∫
I

f(x)p dx .

To implement the method using this inequality, we start by letting J = Jx ≡
[x, x+ f(x)] in (2.1) where f is a positive measurable function. Set w0 = W

1
q

0 ,

wm = W
1
q
m. Then Hölder’s inequality gives as in (2.3) and (2.4)∫

Jx

|u(s)| ds ≤
(∫

Jx

|u(s)|r0W
r0
q

0 (s) ds

) 1
r0

(∫
Jx

W
− r
′
0
q

0 (s) ds

) 1
r′0

,

∫
Jx

|u(m)(s) ds| ≤
(∫

Jx

|u(m)(s)|rmW
rm
q

m (s) ds

) 1
rm

(∫
Jx

W
− r
′
m
q

m (s) ds

) 1
r′m

.

Now raise both sides of (2.1) to the q-th power and multiply by W . We get

W |u(j)(x)|q ≤ S1(x)

(
f(x)−1

∫
Jx

|u(s)|r0W
r0
q

0 (s) ds

) q
r0

+ S2(x)

(
Cqf(x)−1

∫
Jx

|u(m)(s)|rmW
rm
q

m (s) ds

) q
rm

(2.21)

where

S1(x) = W (x)f(x)−(j+1)q+ q
r0

(∫
Jx

W
− r
′
0
q

0 (s) ds

) q

r′0

= f(x)−jqW (x)

(
f(x)−1

∫
Jx

W
− r
′
0
q

0 (s) ds

) q

r′0

,

S2(x) = W (x)f(x)(m−j−1)q+
q
rm

(∫
Jx

W
− r
′
m
q

m (s) ds

) q
r′m

= W (x)f(x)(m−j)q

(
f(x)−1

∫
Jx

W
− r
′
m
q

m (s) ds

) q
r′m

.
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Suppose now that S1(x), S2(x) are bounded above on I = [a,∞) and assume
that u ∈Wm;p,r(I;W0,Wm). Next integrate both sides of (2.22) over I. Since(

f(x)−1
∫
Jx

|u(s)|r0W
r0
q

0 (s) ds

)

≤ sup
a≤c<b

(
(c− x)−1

∫ c

x

|u(s)|r0W
r0
q

0 (s) ds

)
,(

f(x)−1
∫
Jx

|u(m)(s)|rmW
rm
q

m (s) ds

)

≤ sup
a≤c<b

(
(c− x)−1

∫ c

x

|u(m)(s)|rmW
rm
q

m (s) ds

)
,

inequality (1.1) follows by a double application of the Hardy Maximal Inequal-
ity (with p replaced by q̃ ≡ q/r0 or p̃ ≡ q/rm).

By this argument we have proven:

Theorem 2.2 Suppose p = q = r then inequality (1.1) is true on an interval
I = [a,∞) for all u ∈ Wm;p,r(I;W0,Wm) if the functions S1(x), S2(x) are
bounded on I.

Remark 2.4 (A change in the assumption (2.18)). The Hardy inequality
(2.8) also holds for 1 < q̃ < p̃ < ∞, but in this case the necessary and
sufficient condition (2.9) has to be replaced by

A =

∫ b

0

(∫ b

t

H(s) ds

) r̃
q̃ (∫ t

0

K1−p̃′(s) ds

) r̃
q̃′

K1−p̃′(t) dt


1
r̃

<∞ .

where
1

r̃
=

1

q̃
− 1

p̃

(see, e.g. [13, Theorem 1.15]).

Moreover we can suppose that q̃ satisfies

0 < q̃ <∞ .

If we choose p̃, q̃ according to (2.12), then from its definition the number
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A has the form

A1 =

∫ b

0

(∫ b

x

t−(j+1)qW (t)

(∫ t

0

w
1−r′0
0 (s) ds

) q

r′0
dt

) r
r−q

(2.22)

×
(∫ x

0

W
− r0
r−r0

0 (s)w
r

r−r0
0 (s) ds

) r(q−r0)

r0(r−q)

W
− r0
r−r0

0 (x)w
r

r−r0
0 (x) dx


r0(r−q)
rq

since

r̃ =
r0(r − q)

rq
,

r̃

q̃
=
r − q
r

,
r̃

q̃′
=

r(q − r0)

r0(r − q)q
.

In a similar way the choice of p̃, q̃ according to (2.15) leads to the expression

A2 =

∫ b

0

(∫ b

x

t(m−j−1)qW (t)

(∫ t

0

w
1−r′m
m (s) ds

) q
r′m

dt

) p
p−q

(2.23)

×
(∫ x

0

W
− rm
p−rm

m (s)w
p

p−rm
0 (s) ds

) p(q−rm)
rm(p−q)

W
− rm
p−rm

m (x)w
p

p−r0
m (x) dx


rm(p−q)

pq

.

Using this version of Hardy’s inequality we need not assume that q ≥
max{p, r} and can reformulate Theorem 2.1 as follows:

Theorem 2.3 The conclusion of Theorem 2.1 holds for p, q, r in any of the
following cases:

(i) The condition
1 < r ≤ q < p (2.25)

holds and we suppose that the function B1(x) from (2.14) is bounded on
[0, b) and that A2 <∞ where A2 is given by the formula (2.24) and rm
is chosen so that rm 6= q.

(ii) The condition
1 < p ≤ q < r (2.26)

holds and we suppose that the function B2(x) from (2.17) is bounded on
[0, b) and that A1 < ∞ where A1 is given by formula (2.23) and r0 is
chosen so that r0 6= q.

(iii) The condition
0 < q < min{p, r} (2.27)

holds and we suppose that A1 < ∞, A2 < ∞ and that the auxiliary
parameters are chosen so that r0 6= q, rm 6= q.
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(Notice that in case (iii) we can even allow q to satisfy 0 < q ≤ 1. Of course,
in all cases, we assume that the conditions (2.19) are satisfied.)

Remark 2.5 (The case of an interval unbounded from below). Up to now
we have assumed that the interval [0, b) is bounded from below. Now let us
consider an interval (a, b) bounded from above; without loss of generality we
can consider functions u = u(t) defined on the interval (a, 0], −∞ ≤ a < 0. In
this case we use (2.1) for the finite interval I = [t, 0], a < t < 0, where now
|I| = |t|, and start from the basic interpolation inequality

|u(j)(t)| ≤ C|t|−(j+1)

∫ 0

t

|u(s)| ds+ |t|(m−j−1)
∫ 0

t

|u(m)(s)| ds .

Proceeding analogously as in the case of the interval [0, b), we finally obtain
the following analogue of formula (2.5):∫ 0

a

|u(j)(t)|qW (t) dt ≤ C1(J1 + J2)

where now

J1 =

∫ 0

a

|t|−(j+1)qW (t)

(∫ 0

t

w
1−r′0
0 (s) ds

) q

r′0

×
(∫ 0

t

|u(s)|r0w0(s) ds

) q
r0

dt ,

J2 =

∫ 0

a

|t|(m−j−1)qW (t)

(∫ 0

t

w
1−r′m
m (s) ds

) q
r′m

×
(∫ 0

t

|u(m)(s)|rmwm(s) ds

) q
rm

dt .

In this case we have to use the “dual” form of Hardy’s inequality (2.8), i.e.,

∫ 0

a

H(t)

(∫ t

a

U(s) ds

)q̃
dt ≤ C0

(∫ 0

a

K(t)U p̃(t) dt

) q̃
p̃

which holds – provided 1 < p̃ ≤ q̃ <∞ – if and only if the function

B(t) =

(∫ t

a

H(s) ds

) 1
q̃
(∫ 0

t

K1−p̃′(s) ds

) 1
p̃′

is bounded on (a, 0].
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Since all considerations are completely analogous to that of the case of the
interval [0, b], the formulation of the corresponding results is left to the reader.
Roughly speaking, we have to replace in the formulas for B1(x), B2(x), B∗1(x),

B∗2(x), A1, A2, etc. the integral
∫ b
t

by
∫ t
a

and the integral
∫ t
0

by
∫ 0

t
.

Remark 2.6 If I in (1.1) is a compact interval, then (1.1) holds with weak
conditions on the weights. If in (2.3) and (2.4) we take w0 = W0, wm = Wm,

r0 = r, and rm = p, then assuming W 1−r′
0 , W 1−p′

m are Lebesgue integrable on
I and substituting into (2.1) yields that

|u(j)(t)| ≤ C{||u||r,W0
+ ||u(m)||p,Wm

} , t ∈ I . (2.28)

If also W is Lebesgue integrable on I, then (1.1) follows from (2.28).

In Theorems 2.1 and 2.2 the inequality (1.1) is derived on either the interval
(0, b) or the interval (a, 0). For integrals such as (2.14) to exist W must
be sufficiently small at 0 (see Example 2.1 below). We wish now to derive
sufficient conditions for intervals of the form (a, b), 0 ≤ a < b ≤ ∞ where the
weight functions do not have such constraints at the left endpoint. First we
require a definition:

Definition 2.1 For I = [a, b) we say that a is a regular point for (1.1) if for

some c < b, W,W 1−r′
0 , and W 1−p′

m are Lebesgue integrable on [a, c].

We next show how to prove a version of Theorem 2.1 where 0 is a regular
point. Define for c > 0 and x ≥ c:

B1,c(x) =

(∫ b

x

t−(j+1)qW (t)

(∫ t

c

w
1−r′0
0 (s) ds

) q

r′0
dt

) r0
q

×
(∫ x

c

W
− r0
r−r0

0 (s)w
r

r−r0
0 (s) ds

) r−r0
r

(2.29)

and

B2,c(x) =

(∫ b

x

t(m−j−1)qW (t)

(∫ t

c

w
1−r′m
m (s) ds

) q
r′m

dt

) rm
q

×
(∫ x

c

W
− rm
p−rm

m (s)w
p

p−rm
m (s) ds

) p−rm
p

(2.30)

We define in a similar way B∗1,c(x), B∗2,c, A1,c, and A2,c.
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Theorem 2.4 Suppose p, q, r, j,m, r0, and rm are as in Theorem 2.1 or The-
orem 2.3 and let W,W0, and Wm be weight functions on I = [0, b), 0 < b ≤ ∞,
which are regular at 0 and that for auxiliary weight functions w0, wm on
[c, b) the functions B1,c(x) and B2,c(x), B∗1,c(x) and B∗2,c, and A1,c, A2,c

are bounded on [c, b). Then the inequality (1.1) holds for every function u ∈
Wm;p,r(I;W0,Wm) with a constant C independent of u.

Proof. Define functions w̃0, w̃m, W̃ on [0, b) by

w̃0(x) =

W
r0r
′

r′0r

0 (x), on [0, c]

w0(x), on [c, b) ,

w̃m(x) =

W
rmp

′
r′mp

0 (x), on [0, c]

wm(x), on [c, b) ,

W̃ (x) =

{
x(j+1)q, on [0, c]

W (x), on [c, b) .

Then a calculation gives that on [0, c]

w̃
1−r′0
0 = W

− r0
r−r0

0 w̃
− r0
r−r0

0 = W 1−r′
0 ,

w̃
1−r′m
m = W

− rm
p−r0

m w̃
− rm
p−rm

m = W 1−p′
m . (2.31)

We consider explicitly only B1,c(x) and B2,c(x). The remaining cases are

essentially the same. Let B̃1(x) be as in (2.14) where W and w0 are replaced

by W̃ and w̃0. Then from (2.31) and the definition of W̃ a computation shows

that the boundedness of B̃1(x) on [0, b) follows from that of B1,c(x) on [c, b).

Similarly let B̃2(x) be as in (2.17) where W and wm are replaced by W̃ and

w̃m. As in the B1(x), B̃1(x) case, the boundedness of B̃2(x) on [0, b) follows.

By Theorem 2.1, (1.1) holds on [0, b) with W replaced by W̃ . Thus(∫ b

c

W (t)|u(j)|q dt

) 1
q

≤ ||u(j)||
q,W̃
≤ C

(
||u||r,W0

+ ||u(m)||p,Wm

)
where the norms are on [0, b). Since 0 is a regular endpoint, combining the
last inequality with (1.1) on [0, c) yields (1.1) on [0, b). �

We return now to the problem of proving (1.1) on an interval I = [a, b),
a > 0.
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Theorem 2.5 Suppose that p, q, r > 1 and the parameters r0, rm satisfy (2.18)
and (2.19) respectively. Let m, j be integers 0 ≤ j < m and let W , W0, Wm,
w0, wm be weight functions on I = [a, b), a > 0. Then the conclusions of
Theorem 2.1 hold on I in the following cases:

(i) b =∞, W , W0, Wm, w0, wm are regular at a and the functions

B̃a,1(x) =

(∫ b

x

t−(j+1)qW (t+ a)

(∫ t

a

w
1−r′0
0 (s+ a) ds

) q

r′0
dt

) r0
q

×
(∫ x

a

W
− r0
r−r0

0 (s+ a)w
r

r−r0
0 (s+ a) ds

) r−r0
r

, (2.32)

B̃a,2(x) =

(∫ b

x

t(m−j−1)qW (t+ a)

(∫ t

0

w
1−r′m
m (s+ a) ds

) q
r′m

dt

) rm
q

×
(∫ x

a

W
− rm
p−r0

m (s+ a)w
p

p−rm
m (s+ a) ds

) p−rm
p

(2.33)

are bounded on I.

(ii) W,W0,Wm are regular at a and together with w0, wm have extensions

Ŵ , Ŵ0, Ŵm, ŵ0, ŵm to Î = [0, b) such that the functions B1(x) and B2(x)
are bounded on Î and∫

I

W (t)(t− a)(m−1−j)q dt <∞ . (2.34)

Proof. The proof of (i) is a direct application of Theorem 2.4. The weights

W̃ (t), W̃0(t), W̃m(t), w̃0(t), w̃m(t) defined by W (t + a),W0(t + a),Wm(t + a),
etc. are regular at 0. (2.32) and (2.33) correspond to (2.29) and (2.30). It

follows that (1.1) holds with respect to W̃ (t), W̃0(t), W̃m(t) on [0,∞). But the
change of variable t + a → s shows that this inequality is equivalent to (1.1)
with weights W,W0,Wm on [a,∞).

Next the assumptions of (ii) imply that (1.1) is valid for the extended
weights on [0, b). It follows that (1.1) is true for functions in

Wm;p,r
L (I;W0,Wm)={u ∈Wm;p,r(I;W0,Wm) : u(i)(a+)=0, i = 0, . . . ,m− 1}

since functions in this class can be trivially extended to [0, b) by defining them
as 0 on [0, a). Set

Gj(u) :=

(∫
I

W (t)|g(j)u (t)|q dt
)1/q

<∞
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where

gu(t) :=

m−1∑
i=0

(t− a)i

i!
u(i)(a+) .

By (2.34) Gj(u) is finite. Now let u ∈ Wm;p,r(I;W0,Wm). By the triangle
inequality(∫

I

W (t)|u(j)(t)|q
)1/q

dt ≤
(∫

I

W (t)|(u(t)− gu(t))(j)|q dt
)1/q

+Gj(u) .

By definition Gj(u) is a linear combination of the u(i)(a+), i = j, . . . ,m − 1.
A Hölder inequality argument applied to the interpolation inequality (2.1) will
give a family of inequalities each of the form

|u(i)(a+)| ≤ Ki

{(∫ c

a

W0(t)|u(t)|r
) 1
r

dt+

(∫ c

a

Wm(t)|u(m)(t)|p
) 1
p

dt

}
.

By addition and extension of the integration on the right hand side to Î, it
follows that

Gj(u) ≤ K

{(∫
I

W0(t)|u(t)|r
) 1
r

dt+

(∫
I

Wm(t)|u(m)(t)|p
) 1
p

dt

}

Since u−gu(t) ∈Wm;p,r
L (I;W0,Wm) and (1.1) is true for these functions (1.1)

follows at once for u on I by addition. �

Remark 2.7 If we define “B̃∗a,1(x), B̃∗a,2(x)” and “Ã∗a,1, Ã
∗
a,2” as in (2.32)

and (2.33), we can obtain versions of Theorem 2.5(i) for these cases. Also
B∗1(x), B∗2(x) or A1, A2 can be substituted for B1(x), B2(x) in Theorem 2.5(ii).
Hence in particular, we can prove Theorem 2.3 when p, q, r satisfy (2.25),
(2.26) or (2.27) on I = [a, b) for a > 0. Theorems 2.3 and 2.4 may also be
easily modified to handle the case where I is bounded above, i.e. I = (a, b]
where −∞ ≤ a < b <∞ and b 6= 0. The justifications of these various claims
are left to the reader. However we will work out some of the consequences in
the examples below.

Example 2.1 We take b <∞ in Theorem 2.1 and set

W (t) = tα , W0(t) = tβ , Wm(t) = tγ , (2.35)

α, β, γ ∈ R. Suppose that (1.1) holds on [0, b). We now derive a necessary
condition. Let u be a nontrivial C∞ function with compact support contained
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in [0, b). We extend u to [0,∞) by setting u(x) = 0 on (b,∞). Then (1.1)
holds for u and also for uR, R ≥ 1, defined by uR(t) = u(Rt), 0 < t ≤ b. (Note

that the support of uR is contained in [0, b).) Then u
(k)
R (t) = Rku(k)(Rt) and

applying (1.1) to uR gives

Rj−
α+1
q ||u(j)||q,tα ≤ C

(
R−

β+1
r ||u||r,tβ +Rm−

γ+1
p ||u(m)||p,tγ

)
, (2.36)

Since (2.36) holds for all R ≥ 1 we obtain the necessary condition for (1.1) to
hold that

−j +
α+ 1

q
≥ min

{
β + 1

r
,−m+

γ + 1

p

}
. (2.37)

If we had chosen b = ∞ with R > 0, then we would have obtained the two
necessary conditions

min

{
β + 1

r
,−m+

γ + 1

p

}
≤ −j +

α+ 1

q

≤ max

{
β + 1

r
,−m+

γ + 1

p

}
. (2.38)

Finally, if (1.1) is true on the interval [a,∞) as in Theorem 2.5(i) and u is
a function of compact support in [a,∞), we extend u to [0,∞) by setting
u(x) = 0 on [0, a). Then (1.1) holds for both u and uR if 0 < R ≤ 1 since
the support of uR is contained in [a,∞). (2.36) then leads to the necessary
condition

−j +
α+ 1

q
≤ max

{
β + 1

r
,−m+

γ + 1

p

}
. (2.39)

Next we check the sufficient conditions given by Theorem 2.1 with b <∞. If
we choose r0, rm according to (2.19) and take

w0(t) = tr0 , wm(t) = trm ,

then the functions B1(x) and B2(x) from (2.14), (2.17) have the form

B1(x) =

(∫ b

x

t−(j+1)q+α

(∫ t

0

sβ0(1−r′0) ds

) q

r′0
dt

) r0
q

×
(∫ x

0

s
−βr0+β0r
r−r0 ds

) r−r0
r

,
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B2(x) =

(∫ b

x

tm−j−1)q+α
(∫ t

0

sγ0(1−r
′
m) ds

) q
r′m

dt

) rm
q

×
(∫ x

0

s
−γrm+γ0p
p−rm ds

) r−rm
p

.

For B1(x) to be bounded on [0, b) the following conditions are necessary:

(i)
−βr0 + β0r

r − r0
+ 1 > 0⇔ β + 1

r
<
β0 + 1

r0
,

(ii) β0(1− r′0) + 1 > 0⇔ β0 + 1

r0
< 1 ,

(iii) [−(j+1)q+α+1+(β0(1−r′0)+1)
q

r′0
+1]

r0
q

+

(
−βr0 + β0r

r − r0
+ 1

)
r − r0
r
≥

0⇔ −j +
α+ 1

q
≥ β + 1

r
.

Similarly B2(x) is bounded on [0, b) if:

(i)
γ + 1

p
<
γ0 + 1

rm
,

(ii)
γ0 + 1

rm
< 1 ,

(iii) −j +
α+ 1

q
≥ −m+

γ + 1

p
.

Thus Theorem 2.1 gives that (1.1) holds on [0, b), b <∞, if

β + 1

r
< 1 ,

γ + 1

p
< 1 , (2.40)

−j +
α+ 1

q
≥ max

{
β + 1

r
,−m+

γ + 1

p

}
. (2.41)

In a similar way, Theorem 2.1 gives that (1.1) holds on (0,∞) if

β + 1

r
< 1 ,

γ + 1

p
< 1 ,

−j +
α+ 1

q
=
β + 1

r
= −m+

γ + 1

p
. (2.42)
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We can conclude therefore from (2.37) and (2.41) that if β < r−1 and γ < p−1
and

β + 1

r
= −m+

γ + 1

p
, (2.43)

then

−j +
α+ 1

q
≥ β + 1

r

is a necessary and sufficient condition for inequality (1.1) with weights given
by (2.35) on [0, b); likewise under these assumptions it follows from (2.38) that
(2.42) is a necessary and sufficient condition for (1.1) on [0,∞).

Example 2.2 Consider the above example on I = [a,∞) with a > 0. The

weights are regular at a. Further W̃ (t), W̃0(t), W̃m(t) are regular at 0. If we

take r0 = r, rm = p, w0 = W̃0, and wm = W̃m. Using (2.21) and replacing
B1,a, B2,a by the upper bounds “B∗1,a, B∗2,a” of B∗1(x), B∗2(x) on I, we find
that

B∗1,a ≤ sup
x∈I

(∫ ∞
x

t−(j+1)q(t+ a)α(t+ a)

(
− βr

′
r +1

)
q
r′

) r
q

,

B∗2,a ≤ sup
x∈I

(∫ ∞
x

t(m−j−1)q(t+ a)α(t+ a)

(
− γp

′
p +1

)
q
p′

) p
q

.

Since t+ a ∼ t for large t, these are finite provided

−j +
α+ 1

q
< min

{
β + 1

r
,−m+

γ + 1

p

}
. (2.44)

Thus the inequality follows from (i) of Theorem 2.5 (cf. Remark 2.6). Here
however we need not require that β < r − 1, γ < p− 1.

In (ii) of Theorem 2.5 α, β, γ must satisfy (2.40). Additionally from (2.34)
Gj(u) <∞ if −j + (α+ 1)/q < −m+ 1 which is satisfied since (γ + 1)/p < 1.
Since the inequality on [a,∞) will continue to hold if α is diminished, the
condition

−j +
α+ 1

q
≤ min

{
β + 1

r
,−m+

γ + 1

p

}
(2.45)

follows. So this part of Theorem 2.5 allows equality in (2.45) if (γ + 1)/p < 1.
Again from (2.39) the condition

−j +
α+ 1

q
≤ β + 1

r

is necessary and sufficient if (2.43) is true.
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Example 2.3 We take the same weights as in the above two examples on

I = [a,∞) and I = [o,∞) with q < min{p, r}. Let w0 = W
r0/r
0 , wm = W

rm/p
m ,

and r0 = rm be arbitrarily close to q. (Since we are going to end up with
strict inequality constraints connecting α, β, γ, p, q, r, this will mean that as a
computational device, we can actually let r0, rm take on the forbidden value q
without changing the final results.) We compute “A1,a” and “A2,a” in this way
(cf. Remark 2.7), apply Theorem 2.5(i), and obtain finally that α, β, γ should
satisfy (2.44). Since Theorem 2.3 does not apply to these weights on [0,∞) we
cannot get cases of equality via Theorem 2.5(ii) as in the previous example.

Example 2.4 Theorems 2.1–2.3 will apply to the exponential weights W (t) =
eαt, W0(t) = eβt, Wm(t) = eγt on [0,∞) if and only if both α < 0 and

α

q
< min

{
β

r
,
γ

p

}
.

However when p = q = r, f(t) = 1, W (t) = W0(t) = Wm(t) = eαt, simple
calculations which we leave to the reader show that S1(x), S2(x) are bounded
on [0,∞) so that by Theorem 2.2 (1.1) is valid in this case.

Remark 2.8 The results of the above examples are consistent with the con-
clusions reached for power-type or exponential-type weights in [4, Examples 1
and 2] where Besicovitch covering arguments were used to derive sum inequal-
ities in Rn. For q ≥ max{p, r} our results are as a whole less general. When
however q < min{p, r}, Example 2.3 agrees precisely with [4, Example 1] but
is more general since we can allow 0 < q < 1.

3 The Second Approach

In this section we will deal only with the special case j = 0, m = 1 of (2.1). We
will use the following interpolation inequality which holds for every function
u ∈ AC(J) with J a compact interval in R:

|u(t)| ≤
(∫

J

w0(s) ds

)− 1
r0
(∫

J

|u(s)|r0w0(s) ds

) 1
r0

+

∫
J

|u′(s)| ds (3.1)

where t ∈ J is arbitrary, w0 is a certain (auxiliary) weight function and r0 ≥ 1
is an (auxiliary) parameter.

First we derive (3.1): For u ∈ AC(J) let c ∈ J be the point where |u(s)|
attains its minimum: |u(c)| = min

s∈J
|u(s)|. Then

|u(c)|r0w0(s) ≤ |u(s)|r0w0(s)
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for any s ∈ J . Integration with respect to s over J yields that

|u(c)| ≤
(∫

J

w0(s) ds

)− 1
r0
(∫

J

|u(s)|r0w0(s) ds

) 1
r0

. (3.2)

Since

|u(t)| =
∣∣u(c) +

∫ t

c

u′(s) ds
∣∣ ≤ |u(c)|+

∫
J

|u′(s)| ds

with t ∈ J arbitrary, (3.1) follows at once because of (3.2).
Now we again consider functions u = u(t) ∈ ACloc(I) defined on an interval

I = [a, b) which is bounded from below, −∞ < a < b ≤ ∞. (Note that in this
approach we need not initially require that a = 0.) Using (3.1) for the finite
interval [a, t] ⊂ I, we obtain the inequality

|u(t)| ≤
(∫ t

a

w0(s) ds

)− 1
r0
(∫ t

a

|u(s)|r0w0(s) ds

) 1
r0

+

∫ t

a

|u′(s)| ds . (3.3)

We then proceed as in Section 2: We choose an auxiliary parameter r1 > 1
and an auxiliary weight function w1 and estimate the second term on the right
hand side of (3.3) by the Hölder inequality (2.4) (where we take m = 1), take
the q-th power of the resulting inequality, multiply both sides by W (t) and
integrate with respect to t from a to b. Finally, we obtain that∫ b

a

|u(t)|qW (t) dt ≤ 2q−1(J1 + J2) (3.4)

where

J1 =

∫ b

a

W (t)

(∫ t

a

w0(s) ds

)− q
r0
(∫ t

a

|u(s)|r0w0(s) ds

) q
r0

dt ,

J2 =

∫ b

a

W (t)

(∫ t

a

w
1−r′1
1 (s) ds

)− q
r1
(∫ t

a

|u′(s)|r1w1(s) ds

) q
r1

dt .

Now we again use the Hardy inequality (2.8):

(a) The choice

q̃ =
q

r0
, p̃ =

r

r0
,

H(t) = W (t)

(∫ t

a

w0(s) ds

)− q
r0

,

K(t) = W0(t)w−p̃0 (t) ,

U(t) = |u(t)|r0w0(t) ,
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leads to the estimate

J1 ≤ C0

(∫ b

a

|u(t)|rW0(t) dt

) q
r

(3.5)

which holds — provided 1 < p̃ ≤ q̃ < ∞, i.e. r ≤ q — if and only if the
function

B1(x) =

(∫ b

x

W (t)

(∫ t

a

w0(s) ds

)− q
r0

dt

) r0
q

×
(∫ x

a

W
− r0
r−r0

0 (s)w
r

r−r0
0 (s) ds

) r−r0
r

(3.6)

is bounded on I = [a, b).

(b) The choice

q̃ =
q

r1
, p̃ =

p

r1
,

H(t) = W (t)

(∫ t

a

w
1−r′1
1 (s) ds

) q

r′1
,

K(t) = W1(t)w−p̃1 (t) ,

U(t) = |u′(t)|r1w1(t)

leads to the estimate

J2 ≤ C0

(∫ b

a

|u′(t)|pW1(t) dt

) q
p

(3.7)

which holds — provided 1 < p̃ ≤ q̃ < ∞, i.e. p ≤ q — if and only if the
function

B2(x) =

(∫ b

x

W (t)

(∫ t

a

w
1−r′1
1 (s) ds

) q

r′1
dt

) r1
q

×
(∫ x

a

W
− r1
p−r1

1 (s)w
p

p−r1
1 (s) ds

) p−r1
p

(3.8)

is bounded on I.
The desired inequality (1.1) (for j = 0 and m = 1) now follows from (3.4),

(3.5) and (3.7).
Summarizing we have the result:
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Theorem 3.1 Suppose that the numbers p, q, r > 1 satisfy

q ≥ max{p, r} . (3.9)

Let W0,W1 and W be weight functions on I = [a, b), −∞ < a < b ≤ ∞.
Suppose that for parameters r0, r1 with

1 ≤ r0 < r , 1 < r1 < p ,

and for auxiliary weight functions w0, w1, the functions B1(x) and B2(x) from
(3.6) and (3.8), respectively are bounded on [a, b). Then the inequality

||u||q,W ≤ C(||u||r,W0
+ ||u′||p,W1

)

holds for every function in W 1;p,r(I;W0,W1) with a constant C independent
of u.

Remark 3.1 In the same way as in Section 2 we can weaken the the condi-
tions on the auxiliary parameters (allowing r0 = r and/or r1 = p) and the
auxiliary weights (choosing w0 = W0 and/or w1 = W1). We also can consider
triples p, q, r which do not satisfy (3.9) and derive a corresponding inequal-
ity also for the function u defined on an interval bounded only from above.
The results are analogous to those mentioned in Remarks 2.1 to 2.5 and in
Theorem 2.3. The precise formulation is left to the reader.

Example 3.1 In the same way as in Example 2.1 we consider the interval
[0,∞) and the weight functions W (t) = tα, W0(t) = tβ , W1(t) = tγ . Choosing
w0(t) = tβ0 , w0(t) = tγ0 as before, we obtain from (3.6) and (3.8) that

B1(x) =

(∫ ∞
x

tα
(∫ t

0

sβ0 ds

)− q
r0

dt

) r0
q (∫ x

0

s
−βr0+β0r
r−r0 ds

) r−r0
r

,

B2(x) =

(∫ ∞
x

tα
(∫ t

0

sγ0(1−r
′
1) ds

) q

r′1
dt

) r1
q (∫ x

0

s
−γr1+γ0p
p−r1 ds

) p−r1
p

.

For B1(x) to be bounded on [0,∞) the following conditions are necessary:

(i)
−βr0 + β0r

r − r0
+ 1 > 0 ,

(ii) β0 + 1 > 0 ,

(iii) (α− (β0 + 1)
q

r0
+ 1 < 0 ,
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(iv)

[
α+ (β0 + 1)

q

r0
+ 1

]
r0
q

+

(
−βr0 + β0r

r − r0
+ 1

)
r − r0
r

= 0 ,

i.e.,
β0 + 1

r0
>
β + 1

r
, β0 > −1 ,

β0 + 1

r0
>
α+ 1

q
,

and (from (iv))
α+ 1

q
=
β + 1

r
.

The boundedness of B2(x) leads analogously to the conditions

γ0 + 1

r1
>
γ + 1

p
,

γ0 + 1

r1
< 1 ,

γ0 + 1

r1
> 1 +

α+ 1

q

and
α+ 1

q
= −1 +

γ + 1

r
.

Thus this approach gives the same results as Example 2.1 (2.42) when j = 0,
m = 1. In a similar fashion we can rederive the other examples of Section 2.
The details, however, will be left to the reader.

4 Some Comments

Remark 4.1 (Compactness of certain embeddings). Recall that the domain
of our fundamental inequality (1.1)

Wm;p,r(I;Wm,W0) ≡Wm;p,r(Wm,W0)

consists of the set of all functions from ACm−1loc [a, b) for which the norm

||u||m;p,r = ||u(m)||p,Wm
+ ||u||r,W0

is finite. This set is a weighted Sobolev space which is a Banach space if we
assume additionally that

W 1−p′
m ∈ L1

loc[a, b) , W 1−r′
0 ∈ L1

loc[a, b)

(see e.g., A. Kufner and B. Opic [8]).
Inequality (1.1) states that this weighted Sobolev space is continuously

embedded into a weighted Lebesgue space:

Wm;p,r(Wm,W0) ↪→ Lq(W ) . (4.1)
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Under stronger assumptions on the weights and parameters of our problem we
can show that the embedding (4.1) is compact.

For example, suppose that q ≥ max{p, r} as in Theorem 2.1. Then (4.1)
is compact if we additionally assume that

Bi(x)→ 0 for x→ 0+ and for x→ b− (i = 1, 2) (4.2)

where B1(x), B2(x) are given by (2.14) and (2.17). Indeed, (4.2) guarantees
that the embeddings realized through the Hardy inequality (2.8) are compact
(see, e.g. [13, Theorem 7.3]). Let us note (cf. [13, Theorem 7.5]) that the
embedding realized by the Hardy inequality (2.8) is automatically compact if
1 < q̃ < p̃ < ∞. It follows that the embedding (4.1) (whose continuity is
guaranteed by Theorem 2.3(iii)) is compact without any additional conditions
if 1 < q < min{p, r}. Further if q ≥ min{p, r} compactness results from the
single condition (4.2) if i = 1 and 1 < r ≤ q < p or if i = 2 and 1 < p ≤ q < r.

Example 4.1 In Example 2.2 the embedding is compact if the strict inequality
conditions (2.44) hold. In this case a computation shows that B̃i(x), i = 1, 2
satisfy the conditions (4.2).

Remark 4.2 (A modification of the j = 0, m = 1 approach). The method
described in Section 3 was based on the interpolation inequality (3.1) which
was derived only in the special case j = 0, m = 1. Now we will introduce
a modification of this inequality which will allow us to consider more general
values of j,m, 0 ≤ j < m. However this modification will force a restriction
on the type of weight functions under consideration.

We will say that a weight function w defined on an interval [a, b) is regular
if there exist constants C > 0 and δ ∈ (0, 1) such that for every subinterval
I ⊂ J ⊂ [a, b) with |I| ≥ δ|J |, ∫

J
w(t) dt∫

I
w(t) dt

≤ C . (4.3)

For a compact interval I with length |I| in the case j = 1, m = 2, and for
a regular weight w0, our basic interpolation inequality is:

|u′(t)| ≤ C
(∫

I

w0(s) ds

)−1
|I|−1

∫
I

w0(s)|u(s)| ds+

∫
I

|u′′(s)| ds (4.4)

where t is arbitrary in I and C depends only on w0. To derive (4.4) we consider
an interval I of length L and denote by I1 and I3 the first and last third of I
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respectively. Choosing x1 ∈ I1 and x3 ∈ I3 we have

u(x3)− u(x1)

x3 − x1
= u′(ξ) = u′(t)−

∫ t

ξ

u′′(s) ds (4.5)

for a certain ξ ∈ [x1, x3] and an arbitrary t ∈ I. Since |x3 − x1| ≥ L
3 we have

immediately from (4.5) that

|u′(t)| ≤ 3

L
(|u(x3)|+ |u(x1)|) +

∫
I

|u′′(s)| ds .

Multiplying this inequality by w0(x3) and integration with respect to x3 over
I3 yields that

|u′(t)| ≤ 3

L

(∫
I3
|u(s)|w0(s) ds∫
I3
w0(s) ds

+ |u(x1)|

)
+

∫
I

|u′′(s) ds| ,

Multiplying this inequality by w0(x1) and integration with respect to x1 over
I1 yields that

|u′(t)| ≤ 3

L

(∫
I3
|u(s)|w0(s) ds∫
I3
w0(s) ds

+

∫
I1
|u(s)|w0(s) ds∫
I1
w0(s) ds

)
+

∫
I

|u′′(s)| ds ,

and thus

|u′(t)| ≤ 3

L

(∫
I

w0

)−1(∫
I

|u|w0

)( ∫
I
w0∫

I3
w0

+

∫
I
w0∫

I1
w0

)
+

∫
I

|u′′| .

Using the regularity condition (4.3) with e.g., δ = 1/3, (4.4) follows immedi-
ately.

If we now use (4.4) for I = [a, t] for functions u = u(x) defined on [a, b) with
a < b ≤ ∞ or for I = [t, b) for functions defined on (a, b], −∞ ≤ a < b <∞ we
can proceed just as in Sections 2 and 3 to derive additional sufficient conditions
for inequality (1.1).
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