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ON APPROXIMATE UNSMOOTHING OF
FUNCTIONS

Abstract

The smoothing T, f, for a > 0, of a locally-integrable function f :
R — IR is defined by

+a

(Tf)@) =5 [ ftu)dy, ek

—a

For a given g : IR — IR, any solution f of the equation T,f = ¢ is
called an unsmoothing of ¢g. In this note we analyse the problem of
constructing a function f : IR, — IR such that (T, f)(z;) = g(x;) for a
given set of points z1,x2,...,x, € IR. We give an iterative process of
constructing such an f under the assumption f € Lo (R).

1 Introduction

Let L;,.(IR) denote the space of all locally-integrable functions on the real line
and for a > 0, f € Lj,.(R), let

“+a
@) =5 [ flr+y)preR

a —a
The function T, f is called the smoothing of f and T, is called the smooth-
ing operator. In [2], the range and kernel of the smoothing operator were
discussed and a right-inverse for T, was constructed which preserved the dif-
ferentiability properties optimally. In practical problems, T, f represents the
smoothing (moving average or sliding mean) of the raw data f. The prob-
lem of constructing some function f such that T, f = g, g given, is called the
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unsmoothing problem. In the case when f is an integrable function with
compact support, reconstruction formulas using two-sided Laplace transform
were obtained by Van der Pol in [3].

We consider the following situation : let a function g be the smoothing
of some function f, i.e., T,f = ¢g. One knows g at only a finite number of
points, i.e., one knows the values g(z;) = ¢;, for some z1,z9,...,z, € R.
Of course, one cannot hope to recover the function f exactly from this data.
However, it is meaningful to ask the question : Can one find some f such that
(T.f) = ¢;,1 <14 < n? Since, in practical situations, the raw data f(z) is a
bounded function (at least on finite time intervals), it is not unreasonable to
assume that there exists some f which is bounded and has compact support
such that (T,f)(x;) = ¢;,1 < i < n. So, we may assume that there exists
some f € Lo(IR) such that (T, f)(z;) = ¢;,1 < i < n. The problem is to
find some f € Lo(IR) such that (T, f)(z;) = ¢;,1 < i < n. We call this the
approximate unsmoothing problem.

2 Construction of ‘Approximate Unsmoothing’

We are given x1,x3,...,2, € R and c1,c¢3,...,¢, € IR. We also have the
knowledge that there exists some f € La(IR) such that (T, f)(x;) = ¢;,1 <i <
n. We want to construct some f € Ly(IR) such that (T, f)(z;) = ¢;,1 < i < n.
In case the intervals [x; —a,z; + a],1 < i < n are pairwise disjoint, an obvious

choice for f is given by
N n
f = ZCiX[xi—a,r,;—&-a]‘
i=1

It is easy to see that (T,f)(z;) = ¢,1 < i < n. In the general case, we
proceed as follows: We choose arbitrary functions ¢; € Lao(IR), such that
(Tati)(z:i) = 1,1 < i < n (for example ¢; = X[z, —a,0,44))- Let (., .) denote
the inner-product on Ls(IR) and

N; = {g € LQ(]R)|<97 X[Iri—a,zi+a]> = 0}7 1<i<n.
Then each N; is a closed subspace of La(IR) of co-dimension one. Let
Qi Ly(R) — N; (1)

denote the orthogonal projection onto N;. Let P; : Ly(IR) — L2(IR) be
defined by

Pi(g) = Qi(g) + (I = Qi)(f), Vg€ L(IR).
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We note that (I — Q;)(f) € span{¢;} and hence

(I—-Q:)(f) =g, for some a; € R.

In fact,
i = o [(Tagi)(@i)] = [Ta(eigs)] (2:)
= [Ta((I = Qi) (M) (z:) = (Tuf) (i) — [(TaQi) ()] ()
C; — <Q2(f)a X[mifa,mi+a]> = C;.
Thus,

Pi(9) = Qi(g) + ci¢s. (2)

Hence, the operators @; and P;,1 < i < n are completely known once the
functions ¢;’s are chosen. For further arguments, we need the following :

Theorem 2.1 Let H be a Hilbert space and Q; be the orthogonal projection
onto a closed subspace N; C H,1 < i < n. Let Ny = mNi and Qo be

i=1
the orthogonal projection onto Ny. Let Q = QpnQn—1...Q1. Then Q™ (g) —
Qo(g) as m — oo for every g € H.

PRrOOF. We refer to [1].

Lemma 2.2 Let Q;, P;,1 < i < n be as constructed in (1) and (2). Let Qo
denote the orthogonal projection on the subspace Nog = N;—1N; and let QQ =

Qn@Qn-1...Q1,P = P,P,_1...P1 and Py(g9) = Qo(g — f) + f.g € L2(IR).
Then W}gnoo P™(g) = Po(g) Vg € La(IR).

PRrOOF. We first show that Vm and Vg € Ly(IR), P™(g) = Q™ (g — f) + f.
For m =1 and g € L2(IR),

- (P1(g)))

- (Pi(9)) + (I = Qn)(f)
2. (P1(9) + (I = Qu-1)(f)] + (I = @n)(f)
2.+ (Pr(@))] + (I = Qn@n-1)(f)

P(g) = Pn(Pnfl

n—l(Pn
n—l(Pn

Qn(Qn-1---(Q1(9))) + (I = Qu@n—1...Q1)(f)
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Suppose the claim is true for each m < k — 1. Then Vg € Lo(IR)

P*g) = P*U(P(9)=Q" ' (P(9)— )+
Q" MQUg—MN+F=Q g -+
Thus, by induction, ¥ m > 1 and g € La(IR)
P™g)=Q™(g—[f)+ [
By Theorem 2.1, Q™ (g — f) — Qo(g — f), where Qg is the orthogonal pro-
jection onto N, N;. Hence P™(g9) — Qo(9 — f)+ f = Po(g) ¥V g € La(IR).

Theorem 2.3 Let go € La(IR) be arbitrary and let P be as in Lemma 2.2.
Then {P™(go) }m>1 s convergent and if f:= lim P™(go), then
- m—>r00

(Tof) () = ci,1 < i <n.

PRrROOF. By Lemma 2.2, {P™(go)}m>1 converges to Qo(go — f) + f. Thus, if
f:=Qo(go— f)+ f, then f — f =Qo(go — f) € No. Hence Vi=1,2,...,n,

xri+a

0= {F = F Xppmamera) = | (F= D) = 2a(T(F - £)(w:).
Thus T, (f(z:)) = Ta(f)(z:) = ¢; V1 < i <n.
This completes the proof of the theorem.

Note 2.4 Tt is easy to see that the approximate unsmoothing can also be
constructed in the case IR is replaced by IR™ and intervals [x; — a, z; + a] are
replaced by bounded subsets of IR™ of positive Lebesgue measure.
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