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ON FUNCTIONS OF TWO VARIABLES
EQUICONTINUOUS IN ONE VARIABLE

Abstract

The continuity of some functions of two variables equicontinuous in
one variable is considered.

Let R be the set of all reals and let E denote R or R× R. For x ∈ E and
for a positive real r let K(x, r) denote the open ball with center x and radius
r, i.e. K(x, r) = {t ∈ X : |t − x| < r}. Moreover, let µe (µ) be the outer
Lebesgue measure (the Lebesgue measure) in E.

Denote by

du(A, x) = lim sup
h→0+

µe(A ∩K(x, h))/µ(K(x, h))

(dl(A, x) = lim inf
h→0+

µe(A ∩K(x, h))/µ(K(x, h)))

the upper (lower) outer density of a set A ⊂ E at a point x. A point x ∈ E is
called a density point of a set A ⊂ E if there exists a measurable (in the sense
of Lebesgue) set B ⊂ A such that dl(B, x) = 1. The family
Td = {A ⊂ E;A is measurable and every point x ∈ A is a density point of A}
is a topology called the density topology [1, 2, 3].

Moreover, let Te denote the Euclidean topology in E.
Some examples of functions f : E → R having continuous sections fx(t) =

f(x, t) and fy(t) = f(t, y), t ∈ R, whose sets of discontinuity points are of
positive measure are well known [5]. On the other hand, if all sections fx of
a function f : E → R are equicontinuous at a point y (i.e. for every positive
real η there is a positive real δ such that for every point v with |v − y| < δ
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and for every real x we obtain |f(x, v) − f(x, y)| < η) and if the section fy

is continuous at a point u, then f is continuous (as a function from (E, Te)
to (R, Te)) at the point (u, y). From this we obtain immediately the following
remarks.

Remark 1. Suppose that all sections fx, x ∈ R, of a function f : R2 → R
are equicontinuous at each point. Then f is continuous at a point (u, v) if and
only if the section fv is continuous at u.

Remark 2. Let I and J be σ-ideals of subsets R and R2 respectively, such
that every Fσ set A ⊂ R2 having all sections Ay = {x; (x, y) ∈ A}, y ∈ R,
belonging to I is in J . If all sections fx, x ∈ R, of a function f : R2 → R
are equicontinuous at each point and if all sections fy, y ∈ R, are I-almost
everywhere continuous (i.e. the sets D(fy) of all discontinuity points of fy

belong to I), then the function f is J -almost everywhere continuous.

As particular cases of the last remark we obtain the following.

Corollary 1. If all sections fx, x ∈ R, of a function f : R2 → R are equicon-
tinuous at each point and if all sections fy, y ∈ R, are such that µ(D(fy)) = 0
(all D(fy) are of the first category) then µ(D(f)) = 0 (D(f) is of the first cat-
egory).

We will show some stronger theorems.

Theorem 1. (a) Let J and I be some σ-ideals of subsets of R2 and of
R respectively such that the vertical and horizontal projections of sets
which are in 2R

2 \ J do not belong to I. Suppose that there is a set
A ∈ I such that all sections fx, x ∈ R, of a function f : R2 → R are
equicontinuous at each point y ∈ R \ A and for every point y the set
D(fy) of all discontinuity points of the section fy is in I. Then the set
D(f) of all discontinuity points of f belongs to J .

(b) Let I and J be some σ-ideals of subsets of R and of R2 respectively such

that the vertical projections of sets which are in 2R
2 \ J do not belong

to I. Suppose that all sections fx, x ∈ R, of a function f : R2 → R are
equicontinuous at every point and that all sections fy, y ∈ R, are
I-almost everywhere continuous (i.e. the sets D(fy) belong to I). Then
the set D(f) ∈ J .

Proof. Suppose, to the contrary, that the set D(f) of all discontinuity points
of f is not in J . Consequently, there is a positive real η such that the set

B = {(x, y); osc f(x, y) ≥ η}
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is not in J . Since all section fx, x ∈ R, are equicontinuous at each point
y ∈ R \A, for every point (x, y) ∈ B1 = B \ (R×A) there is an open interval
I(x, y) with rational endpoints such that y ∈ I(x, y) and |f(x, u)− f(x, y)| <
η/4 for all u ∈ I(x, y) and x ∈ R. The set B1 is not in J ; so there is an open
interval I such that B2 = {(x, y) ∈ B1; I(x, y) = I} is not in J . Fix a point
(x, y) ∈ B2 and consider the section fy. For every point (t, u) ∈ B2 we have
|f(t, u) − f(t, y)| < η/4. But B2 ⊂ B, so for each point (t, u) ∈ B2 there is a
sequence of points (vn(t, u), wn(t, u)) such that wn(t, u) ∈ I,

|f(vn(t, u), wn(t, u))− f(t, u)| > 3η/4

for each positive integer n and

lim
n→∞

(vn(t, u), wn(t, u)) = (t, u).

For each positive integer n and for each (t, u) ∈ B2 we obtain

|f(t, y)− f(vn(t, u), y)| ≥ |f(t, u)− f(vn(t, u), wn(t, u))|−

|f(t, u)−f(t, y)|−|f(vn(t, u), wn(t, u))−f(vn(t, u), y)| > 3η/4−η/4−η/4 = η/4.

Since limn→∞ vn(t, u) = t, the section fy is not continuous at any point of
the set F = {t : there is u such that (t, u) ∈ B2} which is not in I. So, the
set D(fy) of discontinuity points of the section fy is not in I, a contradiction.
This contradiction finishes the proof of (a). The proof of the part (b) is
analogous.

Corollary 2. If we suppose that I is the family of all subsets of R of measure
zero (of the first category) [which are countable] and that J is the family of all
subsets of R2 whose vertical projections belong to I, then there is a set A ∈ I
such that the set D(f) of all discontinuity points of the function f considered
in Theorem 1(b) is contained in A× R.

Theorem 1 is not true for ideals. For example, if I is the ideal of all finite
subsets of R and if J is the ideal of all subsets R2 whose vertical projections
are finite, then there is a function f : R2 → R having equicontinuous sections
fx, x ∈ R, and such that for every y ∈ R the set D(fy) is finite and D(f)
is not in J . For a construction of such a function we denote by N the set of
positive integers, by E(y) the greatest integer which is ≤ y and define

f(x, y) =

{
inf{|y − v|; v ∈ N} if x ≤ E(y)

0 otherwise on R2.
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We will prove that Theorem 1(b) is true for the ideals of nowhere dense
subsets of R and R2, respectively. In the proof of the next theorem we will
apply the following lemma.

Lemma 1. Suppose that the sections fx, x ∈ R, of a function f : R2 → R
are equicontinuous at each point. If the function f is not continuous at a
point (u, v) then there is an open interval I containing v such that f is not
continuous at any point (u, t), with t ∈ I.

Proof. Since f is not continuous at the point (u, v), there is a positive real η
such that osc f(u, v) ≥ η. From the equicontinuity of the sections fx, x ∈ R,
at the point v it follows that there is an open interval I containing v such that
|f(x, t)− f(x, v)| < η/8 for all t ∈ I and x ∈ R. There is a sequence of points
(un, vn) such that limn(un, vn) = (u, v) and |f(un, vn) − f(u, v)| > η/2 for
n = 1, 2, . . . . Since the section fu is continuous, we can assume that un 6= u
and vn ∈ I for n = 1, 2, . . . . Observe that for each point t ∈ I and for all
n = 1, 2, . . . we have

|f(un, vn)− f(u, t)| ≥ |f(un, vn)− f(u, v)| − |f(u, v)− f(u, t)|
> η/2− η/8 = 3η/8,

|f(un, vn)− f(un, t)| < |f(un, vn)− f(un, v)|+ |f(un, t)− f(un, v)|
< η/8 + η/8 = η/4

and

|f(un, t)− f(u, t)| ≥ |f(un, vn)− f(u, t)| − |f(un, vn)− f(un, t)|
> 3η/8− η/4 = η/8.

Since limn un = u, we obtain that osc f(u, t) ≥ η/8 and f is not continuous at
the point (u, t).

Theorem 2. If all sections fx, x ∈ R, of a function f : R2 → R are equicon-
tinuous at each point and if for every y ∈ R the set D(fy) of all discontinuity
points of the section fy is nowhere dense, then the set D(f) is nowhere dense.

Proof. Suppose, by way of contradiction, that the set D(f) is dense in
an open rectangle I × J , where I, J are open intervals. Enumerate all open
intervals with rational endpoints contained in I in a sequence I1, . . . , In, . . ..
Denote by D(f) the set of all discontinuity points of f . Let (u1, v1) ∈ I1 × J
be a discontinuity point of f . By Lemma 1 there is a closed interval J1 ⊂ J
such that every point (u1, t) with t ∈ J1 belongs to D(f). Next, by induction
in the nth step (n > 1) we find a point (un, vn) ∈ (In× int(Jn−1))∩D(f) (int
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denotes the interior operation) and a closed interval Jn ⊂ int(Jn−1) such that
for every point t ∈ Jn the point (un, t) is a discontinuity point of f . There is
a point w ∈

⋂
n Jn. Since the section fw is not continuous at any point un,

n = 1, 2, . . ., and the set {un;n ≥ 1} is dense in the open interval I, we obtain
a contradiction. So, the set D(f) is nowhere dense.

Denote by IG and by JG the ideals of all subsets of R and of R2 respectively,
which are nowhere dense in every set belonging to Td.
Problem 1. Is Theorem 1(b) true for the ideals IG and JG?

Theorem 3. Suppose that all sections fx, x ∈ R, of a function f : R2 → R
are equicontinuous and for every y ∈ R the set D(fy) ∈ IG. Then for all
nonempty sets K,L ∈ Td the set D(f) ∩ (K × L) is nowhere dense in K × L.

Proof. We can repeat the proof of Theorem 2. Suppose, by way of con-
tradiction that there are linear nonempty sets K,L ∈ Td such that the set
D(f) ∩ (K × L) is dense in K × L. Let I1, . . . , In, . . . be an enumeration of
all open intervals with rational endpoints for which In ∩K 6= ∅, n = 1, 2, . . . .
Let (u1, v1) ∈ (I1 ∩ K) × L be a discontinuity point of the function f . By
Lemma 1 there is an open interval J1 containing v1 such that every point
(u1, t), where t ∈ J1, belongs to D(f). Next, in the nth step (n > 1) we find a
point (un, vn) ∈ (In∩K)× (Jn−1∩L) belonging to D(f) and a closed interval
Jn ⊂ int(Jn−1) containing vn such that every point (un, t), where t ∈ Jn,
belongs to D(f). Let w ∈

⋂
n Jn. Then the section fw is discontinuous at

each point of the set {un, n = 1, 2, . . .}, which is dense in K ∈ Td. So the set
D(fw) is not in IG.

A function f : E → R has property A at a point x (f ∈ A(x)) ([4]) if for
every positive η and for every set U ∈ Td such that x ∈ U there is a nonempty
open set V such that V ∩ U 6= ∅, D(f) ∩ U ∩ V = ∅ and |f(t)− f(x)| < η for
all points t ∈ U ∩ V .

Evidently, if f ∈ A(x) for all x ∈ E(= R or R2), then D(f) ∈ IG or resp.
D(f) ∈ JG.

Theorem 4. Suppose that all sections fx, x ∈ R, of a function f : R2 → R are
equicontinuous and that for every point (x, y) ∈ R2 the relation fy ∈ A(x).
Then for every positive real η, for every point (u, v) and for all nonempty
linear sets K,L ∈ Td with (x, y) ∈ K × L there is an open set U such that
D(f) ∩ (K × L) ∩ U 6= ∅, (K × L) ∩ U = ∅ and |f(s, t)− f(u, v)| < η for each
point (s, t) ∈ (K × L) ∩ U .

Proof. Fix a positive real η, a point (u, v) and sets K,L ∈ Td with (u, v) ∈
K × L. Since fv ∈ A(u), there is an open interval I such that

I ∩K 6= ∅, I ∩K ∩D(fv) = ∅ and |f(s, v)− f(u, v)| < η/2
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for all points s ∈ I ∩K. From the equicontinuity of the sections fx, x ∈ R, it
follows that there is an open interval J containing v such that

|f(x, t)− f(x, v)| < η/2

for all points x ∈ R and t ∈ J . Evidently, J ∩ L 6= ∅ and consequently,

(I ∩K)× (J ∩ L) = (I × J) ∩ (K × L) 6= ∅.

For all points (s, t) ∈ (I ∩K)× (J ∩ L) we obtain

|f(s, t)− f(u, v)| ≤ |f(s, t)− f(s, v)|+ |f(s, v)− f(u, v)| < η/2 + η/2 = η.

Since the sets I ∩K and J ∩ L belong to Td, by Theorem 3 there is an open
set U such that

U ∩ ((I ∩K)× (J ∩ L)) 6= ∅

and
D(f) ∩ U ∩ ((I ∩K)× (J ∩ L)) = ∅.

Problem 2. Suppose that all sections fx, x ∈ R, of a function f : R2 → R
are equicontinuous and that fy ∈ A(x) for each point (x, y) ∈ R2. Is it true
that f ∈ A(x, y) for each point (x, y) ∈ R2?
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