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CARDINAL INVARIANTS CONNECTED
WITH ADDING REAL FUNCTIONS

Abstract

In this paper we consider a cardinal invariant related to adding real
functions defined on the real line. Let F be such a family, we consider
the smallest cardinality of a family G of functions such that h + G has
non-empty intersection with F for every function h. We note that this
cardinal is the additivity, a cardinal previously studied, of the compli-
ment of F . Thus, we calculate the additivities of the compliments of
various families of functions including the Darboux, almost continuous,
extendable and perfect road functions. We briefly consider the general
relationship between the additivity of a family and its compliment.

1 Preliminaries

In what follows we will use the following terminology and notation. Functions
will be identified with their graphs. The set of all functions from a set X into
a set Y will be denoted by Y X . Given a set X and f, g ∈ XX we denote
their composition by f ◦ g. The characteristic function of a set A ⊆ R will be
denoted by χA. The symbol |X| will denote the cardinality of the set X. The
successor of a cardinal κ will be denoted by κ+. We denote by [X]<κ, [X]κ,
and [X]≤κ the sets of all subsets of X of cardinality less than κ, equal to κ,
and less than or equal to κ, respectively. The cardinality of the real numbers
R will be denoted by c. Given a cardinal number κ we let cf(κ) denote the
cofinality of κ. We say a cardinal κ is regular provided that cf(κ) = κ. For
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Cardinal Invariants Connected with Adding Real Functions 697

functions f, g ∈ RR let [f = g] denote the set {x ∈ R : f(x) = g(x)}. We define
[f < g] and [f ≤ g] in a similar way.

dense subset
We also will consider the following cardinal invariants related to a cardi-

nal κ.

dκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(|[f = g]| = κ)},

d∗κ = min{|F | : F ⊆ κκ & (∀G ∈ [κκ]κ)(∃f ∈ F )(∀g ∈ G)(|[f = g]| = κ},

eκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(|[f = g]| < κ)},

e∗κ = min{|F | : F ⊆ κκ & (∀G ∈ [κκ]κ)(∃f ∈ F )(∀g ∈ G)(|[f = g]| < κ)}.

Note that dκ ≤ d∗κ and eκ ≤ e∗κ.

2 Introduction

We will denote the complement of a family F ⊆ RR by ¬F . The following
cardinal function has been defined for families F ⊂ RR in [5].

A(F) = min g ∈ RR)(∃f ∈ F )(f + g ∈ ¬F)} ∪ {(2c)+}

If we restate the definition of additivity for the complement of a family F we
get,

A(¬F) = min g ∈ RR)(∃f ∈ F )(f + g ∈ F)} ∪ {(2c)+}

So, the statement A(¬F) ≤ κ is equivalent to the fact that there is a family
F ⊆ RR such that |F | = κ and (g + F ) ∩ F 6= ∅ for every g ∈ RR.

Below we list some basic facts about this cardinal function [4].

Proposition 1. Let G,F ⊂ RR. Then,

(i) A(F) ≥ 2 if and only if F 6= ∅;

(ii) A(F) ≤ 2c if and only if F 6= RR;

(iii) if F ⊂ G, then A(F) ≤ A(G);

(iv) if F 6= ∅, then A(F) = 2 if and only if F − F 6= RR.

Proof. Items (i), (ii), and (iii) are easy and are restatements of [4, Proposi-
tion 1.1].

Item (iv) is a modification of [4, Proposition 1.3] by replacing the assump-
tion χ∅ ∈ F with F 6= ∅. For the readers convenience we present here the
modified proof.



698 Francis Jordan

Suppose that F − F = RR. We show that A(F) > 2. Let f1, f2 ∈ RR be
arbitrary and F = {f1, f2}. We find a g ∈ RR such that g + f1, g + f2 ∈ F .
Since F − F = RR, there exists h1, h2 ∈ F such that f1 − f2 = h1 − h2. Let
g = h1 − f1 = h2 − f2. Then fi + g = fi + (hi − fi) = hi ∈ F for i = 1, 2.
Thus, A(F) > 2.

To see the other implication suppose that F − F 6= RR. Since F 6= ∅,
A(F) ≥ 2, so it is enough to show that A(F) ≤ 2. Pick h ∈ RR \ (F − F)
and put F = {χ∅, h}. Let g ∈ RR be arbitrary. It is enough to show that
g + f /∈ F for some f ∈ F . However, if g = χ∅ + g ∈ F and h + g ∈ F , then
h ∈ F − g ⊆ F − F , contradicting our choice of h. Thus, A(F) = 2.

We prove some other facts about A with respect to the values it may
assume and its relationship with complementation.

Proposition 2. Let ω ≤ λ ≤ 2c. There exists F ⊆ RR such that A(F) = 2
and A(¬F) = λ.

Proof. Let H be an additive subgroup of RR such that |H| = λ and the set
{g + H : g ∈ RR} = {Hα : α ∈ 2c} has cardinality 2c. Let F be a selector of
{Hα : α ∈ 2c}.

We prove that A(¬F) = λ. We first show that A(¬F) ≤ λ. Since |H| = λ,
it is enough to show that

(∀g ∈ RR)(∃h ∈ H)(g + h ∈ F). (1)

Let g ∈ RR be arbitrary. Clearly, (g +H) ∩ F 6= ∅. So, there exists an h ∈ H
such that g + h ∈ F . Thus, (1) holds and A(¬F) ≤ |H| = λ.

Next we prove the other inequality. Let F ⊆ RR be such that |F | = κ < λ.
We find a g ∈ RR such that f + g ∈ ¬F for all f ∈ F . Enumerate F by
{fξ : ξ < κ}. Each fξ lies in some translation Hαξ

of H. Since F is a selector
of {Hα : α ∈ 2c},

there is a unique hξ ∈ H such that fξ + hξ ∈ Hαξ
∩ F . (2)

Since |F | = κ < λ, there is an h ∈ H \ {hξ : ξ ∈ κ}. Thus, by the uniqueness
part of (2), h + fξ ∈ (Hαξ

\ F) ⊆ ¬F for every ξ < κ. So, letting g = h, we
have λ ≤ A(¬F).

We show that A(F) = 2. Since F 6= ∅, it is enough to show that A(F) ≤ 2.
Pick h ∈ H \ {χ∅}. Let F = {χ∅, h} and g ∈ RR be arbitrary. It is enough to
show that g+ f /∈ F for some f ∈ F . If g /∈ F , then g+χ∅ /∈ F . On the other
hand, if g ∈ F , then h + g /∈ F since h 6= χ∅ and F ∩ (g +H) = {g}. So, for
any g ∈ RR either h+ g ∈ ¬F or g + χ∅ ∈ ¬F . Thus A(F) ≤ 2.

An immediate corollary of Proposition 2 is the following fact.
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Corollary 3. There exists families G,F ⊆ RR such that A(F) = A(G) and
A(¬F) 6= A(¬G).

Using a different argument we may extend Proposition 2 to include all
finite cardinals.

Proposition 4. For every 2 ≤ n ≤ ω there is an F ⊆ RR such that A(F) = n
and A(¬F) = 2.

Proof. Let S be the family of constant functions from R into Z and put
Ak = {f ∈ S : f(0) = k modulo n)} for every 0 ≤ k ≤ n − 1. Let T be a
selector of {h + S : h ∈ RR}. Put F =

⋃
{T + Ak : 1 ≤ k ≤ n − 1} and note

that ¬F = T +A0.

We prove that A(F) = n. We first show that A(F) ≥ n. Let F =
{f0, . . . , fn−2} ⊆ RR be arbitrary. We find a g such that g+F ⊆ F . For every
0 ≤ t ≤ n−2 there is a st ∈ S such that ft ∈ st+T . Since |{A0, . . . , An−1}| = n
and |{s0, . . . , sn−2}| = n− 1, there is a k∗ ∈ {0, . . . , n− 1} such that st /∈ Ak∗
for every 0 ≤ t ≤ n− 2. Let s ∈ Ak∗ . Then −s+ st /∈ A0 for all 0 ≤ t ≤ n− 2.
Thus, putting g = −s, we have g + ft ∈ (−s+ st) + T ⊆ F for every ft ∈ F .
So, A(F) ≥ n. We now show that A(F) ≤ n. Let F = {f0, . . . , fn−1} where
fk ∈ Ak for all 0 ≤ k ≤ n− 1. It is enough to show that(

∀g ∈ RR) (∃f ∈ F )(g + f /∈ F). (3)

Let g ∈ RR be arbitrary. Since F ⊆ S, there is a t ∈ T such that g+F ⊆ t+S.
By way of contradiction assume that g + F ⊆ F . Since |g + F | = n and
|{A0, . . . , An−1}| = n and (g+F )∩ (t+A0) = ∅, there exist 0 ≤ i < j ≤ n− 1
such that g + fi, g + fj ∈ t + Ak for some 1 ≤ k ≤ n − 1. So, there exist
si, sj ∈ Ak such that g + fi = si + t and g + fj = sj + t. Then, fi − fj =
(g + fi)− (g + fj) = (si + t)− (sj + t) = si − sj ∈ A0. It follows that there is
some 1 ≤ k ≤ n − 1 such that fi, fj ∈ Ak which contradicts our choice of F .
Thus, F satisfies (3) and A(F) ≤ n.

Since ¬F 6= ∅, by Proposition 1 it is enough to show that A(¬F) ≤ 2. Let
h0 = χ∅ ∈ A0 and h1 ∈ A1. We show that {h0, h1} witnesses A(F) ≤ 2, i.e,

g + h0 ∈ F or g + h1 ∈ F for all g ∈ RR. (4)

Let g ∈ RR be arbitrary. Since h0, h1 ∈ S, there exists a t ∈ T such that
g + h0, g + h1 ∈ (t + S). In particular, there exists s0, s1 ∈ S such that
g+h0 = t+s0 and g+h1 = t+s1. Since s1−s0 = (g+h1)−(g+h0) = h1 ∈ A1,
clearly s0 or s1 is not in A0. Thus, {h0, h1} satisfies (4). So A(F) ≤ 2.
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3 The Results

We will primarily be concerned with calculating the additivities of the follow-
ing families of functions from R into R and their complements. Some combi-
natorial characterizations of these cardinals are also given. We give general
descriptions of these families that will work for any function from one space
to another where the spaces are assumed to have the appropriate structure.

Dar: f ∈ Y X is a Darboux function if and only if f [C] is connected in Y for
any connected subset C of X.

Con: f ∈ Y X is a connectivity function if and only if the graph of f restricted
to C is connected in X × Y for every connected subset C of X.

AC: f ∈ Y X is an almost continuous function if and only if every open set
in X × Y containing f also contains some continuous function g ∈ Y X .

EXT: f ∈ Y X is an extendable function if and only if there is a connectivity
function g : X × [0, 1]→ Y such that f(x) = g(0, x) for every x ∈ X.

PR: f ∈ RR is a perfect road function if and only if for every x ∈ R there is
a perfect set P ⊂ R such that x is a bilateral limit point of P and f |P
is continuous at x.

PC: f ∈ Y X is a peripherally continuous function if and only if for every
x ∈ X and pair of open sets U ⊂ X and V ⊂ Y such that x ∈ U and
f(x) ∈ V there is an open neighborhood W of x with cl(W ) ⊂ U and
f [bd(W )] ⊂ V , where cl(W ) and bd(W ) denote the boundary and the
closure of W , respectively.

SZ: f ∈ Y X is a Sierpiński-Zygmund function if and only if f is continuous
on no set of cardinality c.

The diagrams below describe the relations between the above families in RR

except SZ. The symbol −→ denotes containment. All inclusions are proper.
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We will now discuss what may be said about the additivities of the families
above and their respective complements in RR. The additivities of the families
EXT, PR, PC, Dar, Con, AC and SZ are known, as stated below.

Proposition 5. (i) (Ciesielski, Rec law [4]) A(EXT) = A(PR) = c+ and
A(PC) = 2c;

(ii) (Ciesielski, Miller [2]) A(Dar) = A(Con) = A(AC) = ec;

(iii) (Ciesielski, Natkaniec [3]) A(SZ) = dc.

We first calculate the numbers A(¬EXT), A(¬PR) and A(¬PC), as stated
in the two theorems below.

Theorem 6. A(¬PR) = A(¬EXT) = 2c.

Theorem 7. (Ciesielski [1]) A(¬PC) = ω1.

Next, we prove two theorems relating the additivies of ¬Dar, ¬Con, ¬AC,
and ¬SZ to some cardinal invariants of a combinatorial nature.

Theorem 8. A(SZ) = dc ≤ A(¬Dar) ≤ A(¬Con) ≤ A(¬AC) ≤ d∗c .

Theorem 9. A(AC) = A(Con) = A(Dar) = ec ≤ A(¬SZ) ≤ e∗c .

We then have two purely combinatorial theorems. The first will allow us
to replace the inequalities of Theorems 8 and 9 with equalities under certain
assumptions. The second will allow us to relate the additivies of some of these
families with respect to complementation, e.g. A(¬Dar) ≤ A(Dar), under
certain assumptions. The first part of Theorem 10 is due to Ciesielski [1].

Theorem 10. If |[c]<c| = c, then dc = d∗c and ec = e∗c .

Theorem 11. If |[c]<c| = c and c = λ+, then dc ≤ ec.

Theorem 8 and the first part of Theorem 10 yield:

Corollary 12. If |[c]<c| = c, then

A(SZ) = dc = A(¬Dar) = A(¬Con) = A(¬AC)) = d∗c .

Theorem 9 and the second part of Theorem 10 imply:

Corollary 13. If |[c]<c| = c, then

A(Dar) = A(Con) = A(AC) = ec = A(¬SZ) = e∗c .
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From Theorem 11 and Corollaries 12 and 13 we can also conclude that:

Corollary 14. If |[c]<c| = c and c = λ+, then

A(SZ) = A(¬Dar) = A(¬AC) = dc ≤ ec = A(Dar) = A(AC) = A(¬SZ).

Finally, we quote two consistency results.

Proposition 15. (Ciesielski, Natkaniec [3]) Let λ ≥ κ ≥ ω2 be cardinals such
that cf(λ) > ω1 and κ is regular. Then it is relatively consistent with ZFC+CH
that 2c = λ and A(Dar) = A(SZ) = κ.

Proposition 16. (Ciesielski, Natkaniec [3]) Let λ > ω2 be a cardinal such
that cf(λ) > ω1. Then it is relatively consistent with ZFC+CH that 2c = λ,
and A(SZ) = c+ < 2c = A(Dar).

Since, CH implies that |[c<c]| = c, Propositions 15 and 16 together with
Corollaries 12 and 13 imply immediately the following two corollaries.

Corollary 17. Let λ ≥ κ ≥ ω2 be cardinals such that cf(λ) > ω1 and κ is
regular. Then it is relatively consistent with ZFC+CH that 2c = λ and

A(AC) = A(Dar) = A(SZ) = A(¬(Dar) = A(¬AC) = κ.

Corollary 18. Let λ > ω2 be a cardinal such that cf(λ) > ω1. Then it is
relatively consistent with ZFC+CH that 2c = λ, and

A(¬Dar) = A(¬AC) = A(SZ) = c+ < 2c = A(Dar) = A(AC) = A(¬SZ).

The importance of the assumptions in Theorems 10 and 11 is not clear. In
particular, the following problem is still open.

Problem 1. When does either dc = d∗c or ec = e∗c hold?

4 Families EXT, PR, and PC

To prove Theorem 6 we will use the following lemma which can be found in
[4, Lemma 2.2].

Lemma 19. If B ⊂ R has cardinality c, H ⊂ QB, and |H| < 2c, then there
is a g ∈ QB such that h

⋂
g 6= ∅ for every h ∈ H.
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It may be of interest to notice that Lemma 19 is used in [4] to prove that
A(PC) = 2c.

Lemma 20. Let A ⊂ R, |A| = c, and

κ = min
{
|F | : F ⊂ RA& (∀g ∈ RA)(∃f ∈ F )(g + f ∈ RA is bounded)

}
.

Then κ = 2c.

Proof. It is enough to show that 2c ≤ κ. Let F ∈ [RA]<2c . We will find
g ∈ RA such that f + g is not bounded for every f ∈ F . Let {Bn : n ∈ ω} be
a partition of A such that |Bn| = c for all n ∈ ω. Fix n ∈ ω. For each f ∈ F
choose hfn : Bn → Q such that

f(x) + hfn(x) > n for every x ∈ Bn. (5)

Now by Lemma 19 used with the sets Bn and {hfn : f ∈ F}, there is a gn : Bn →
Q such that,

(∀f ∈ F )(∃x ∈ Bn)(hfn(x) = gn(x)). (6)

Let g =
⋃
{gn : n ∈ ω}. Then, by (5) and (6), for every n ∈ ω and f ∈ F there

exists x ∈ Bn ⊂ A such that f(x) + gn(x) = f(x) + g(x) > n. So, f + g is
unbounded for every f ∈ F . Thus, 2c ≤ κ, and the proof is complete.

Proof of Theorem 6. Notice that, by Proposition 1, to prove Theorem 6
it is enough to show that A(¬PR) ≥ 2c since ¬PR ⊂ ¬EXT and ¬EXT 6= RR.

Let F ⊂ RR and |F | < 2c. Choose a partition {Bα : α ∈ c} of R into disjoint
Bernstein sets, let {Pα : α < c} be an enumeration of the perfect sets in R,
and put Iα = Pα ∩Bα. Note that |Iα| = c and Iα ∩ Iβ = ∅ for α < β < c. Fix
α < c and let Fα = {f |Iα : f ∈ F}. By Lemma 20 there is some gα : Iα → R
such that gα + f |Iα is not bounded for every f |Iα ∈ Fα. Let g ∈ RR extend⋃
{gα : α < c}. Clearly f+g is not bounded on any perfect set for every f ∈ F .

In particular, f + g is nowhere continuous on every perfect set, so f + g /∈ PR
for every f ∈ F . Therefore A(¬PR) = 2c.

Theorem 7 is a corollary of the following lemma.

Lemma 21. There exists a family F = {fξ ∈ RR : ξ ∈ ω1} with the property
that for every g ∈ RR there exists ξ < ω1, such that fξ + g is dense in R2.

Proof. Let {hα : α ∈ c} = {h ∈ ωQ
1 : h is injective} and let {Bα : α < c} be

a partition of R with each Bα dense in R. For each α < c, x ∈ Bα, and ξ < ω1

let fξ(x) = h−1α (ξ) if ξ ∈ hα[Q], otherwise let fξ(x) be arbitrary. We show F
has the desired property.
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Let

Y = {〈p, q〉 × 〈r, s〉 : p, q, r, s ∈ Q, p < q, r < s} = {In × Jn : n < ω}.

By way of contradiction assume there is some g ∈ RR such that fξ + g is not
dense in R2 for every ξ < ω1. Then for every ξ < ω1 there exist Iξ × Jξ ∈ Y
such that,

(fξ + g) ∩ (Iξ × Jξ) = ∅. (7)

So there is some n ∈ ω such that the set S = {ξ ∈ ω1 : Iξ × Jξ = In × Jn}
is uncountable. Let S0 be a countable subset of S and let h : Q → S0 be a
bijection. Then there is an α < c such that h = hα. Pick x ∈ Bα ∩ In. Then,
by the definition of fξ, we have

{fξ(x) + g(x) : ξ ∈ S0} = {fξ(x) : ξ ∈ hα[Q]}+ g(x) = Q + g(x).

Since Q + g(x) is dense in R, there exists y ∈ (Q + g(x)) ∩ Jn. Therefore,
〈x, (fξ + g)(x)〉 ∈ In × Jn = Iξ × Jξ, which contradicts (7).

Proof of Theorem 7. It is easy to see that if f ∈ RR is dense in the plane,
then f ∈ PC. So by Lemma 21 there is a family F ∈ RR of cardinality ω1

such that
(∀g ∈ RR)(∃f ∈ F)(g + f ∈ PC).

Thus, A(¬PC) ≤ ω1.
To see the other inequality let {fn : n ∈ ω} be a countable family of func-

tions in RR. It is enough to find a g ∈ RR such that fn + g /∈ PC for every
n ∈ ω. Define g so that, |(fn + g)[(n, n+ 1)] ∩ (0, 1)| = 1 for every n ∈ ω and
extend g arbitrarily. Clearly g is as desired.

5 Families Dar, Con, and AC

In this section we prove Theorem 8. By containment, we immediately have
A(¬Dar) ≤ A(¬Con) ≤ A(¬AC). Thus, it is enough to prove the inequalities
dc ≤ A(¬Dar) and A(¬AC) ≤ d∗c .

For the proof of dc ≤ A(¬Dar) we need the following definitions. For A ⊆ R
let LIN(A) denote the linear subspace of R over Q spanned by A. Given a
linear subspace S of R over Q we call any set of the form t + S, with t ∈ R,
a translation of S. Let Dar∗ ⊆ RR stand for the family of nowhere-constant
Darboux functions and Dar(c) for the family of functions f ∈ RR such that

|f−1(y) ∩ (a, b)| = c

for all a, b, y ∈ RR, with a < b. In the proof we will also use the following
lemmas.
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Lemma 22. Let H be a linear base of R over Q and H1 ⊆ H be such that
|H \ H1| = c. Then LIN(S ∪ H1) 6= R for any linear subspace S such that
|S| < c.

Proof. Let H0 = H\H1 and N = LIN(H1). By the linear independence of H,
we have that {h+N : h ∈ H0} is a collection of pairwise disjoint translations of
N . In particular, N has c-many pairwise disjoint translations. Since |S| < c,
there is a translation T of N such that (s+N)∩T = ∅ for every s ∈ S. Thus,
T ∩ (

⋃
{s+N : s ∈ S}) = ∅. Since

⋃
{s+N : s ∈ S} = LIN(S ∪H1), we have

LIN(S ∪H1) 6= R.

Lemma 23. Let N be a linear subspace of R over Q with |N | = c. Then
|I ∩N | = c for every non-degenerate interval I ⊆ R.

Proof. Let H be a linear base for N over Q. Note that |H| = c. Since
H is linearly independent, {h · (Q \ {0}) : h ∈ H} is a collection of pairwise
disjoint dense subsets of R. Since

⋃
{h · (Q \ {0}) : h ∈ H} ⊆ N , it follows

that |I ∩N | = c for all non-degenerate intervals I ⊆ R.

Lemma 24. A(¬Dar) > c.

Proof. Let H be a linear base for R over Q and H1 ⊆ H be such that
|H1| = |H \ H1| = c. Let F = {fα ∈ RR : α < c} be an arbitrary family of
functions of cardinality c. It is enough to find a g ∈ RR such that f + g /∈ Dar
for all f ∈ F .

Let N = LIN(H1) and Pα,x = {fβ(x) : β ≤ α} for every α < c and x ∈ R.
Let {xα : α < c} be an enumeration of R. Define g ∈ RR so that

g(xα) ∈ R \ LIN(Nα,xα ∪N), (8)

where Nα,xα
= LIN(Pα,xα

∪ {(fα − g)(x0)}).
We may make such a choice since H1 and S = Nα,xα

satisfy the hypothesis
of Lemma 22. We show g is the desired function. Fix α < c. If α ≤ β < c, then,
by (8), g(xβ) /∈ Nβ,xβ

. Since fα(xβ) ∈ Nβ,xβ
and g(xβ) /∈ LIN(Nβ,xβ

∪ N),
we have fα(xβ) + g(xβ) /∈ LIN(Nβ,xβ

∪N). In particular, fα(xβ) + g(xβ) /∈ N
for all β > α. Thus, |(fα + g)[R]

⋂
N | < c. Since |N | = c, by Lemma 23,

|I ∩ N | = c for every non-degenerate interval. It follows that the range of
fα + g contains no non-degenerate interval. But, by (8), fα + g takes at least
two values and so, it is not constant. Therefore, g+fα /∈ Dar which completes
the proof, since α < c was arbitrary.

Lemma 25. A(¬Dar) = A(¬Dar∗).
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Proof. Since ¬Dar ⊆ ¬Dar∗, the inequality A(¬Dar) ≤ A(¬Dar∗) is obvious.
We show the other inequality.

Let F ⊆ RR be a family of cardinality κ = A(¬Dar) witnessing the defini-
tion of A(¬Dar), i.e.,

(∀g ∈ RR)(∃f ∈ F )(f + g ∈ Dar). (9)

It is enough to find a family F ∗ ⊆ RR of cardinality κ such that,

(∀g ∈ RR)(∃f ∈ F ∗)(f + g ∈ Dar∗). (10)

Let I be the family of collections of mutually disjoint non-degenerate open
intervals. Since there are continuum many open intervals and the cardinality
of any disjoint collection of open intervals is at most ω, it follows that |I| = c.
For each I ∈ I pick hI ∈ Dar(c) such that hI(x) = 0 if x is an endpoint of
any i ∈ I. Let kI be defined by kI(x) = χ⋃

I(x)hI(x) for each x ∈ R. Let
K = {kI : I ∈ I}. Note that |K| = c. Define F ∗ = {f + h : f ∈ F & h ∈ K}.
Since |K| = c and, by Lemma 24, c < κ we have |F ∗| = κ. So it is enough to
show that F ∗ satisfies (10).

Let g ∈ RR be arbitrary. By (9), there exists an f ∈ F such that f + g ∈
Dar. The set of points at which f+g is constant form a countable collection J
of mutually disjoint non-degenerate open intervals such that f + g is constant
on each j ∈ J and is nowhere-constant on R \

⋃
J . Since (f + kJ) ∈ F ∗, it

is enough to show that (f + kJ) + g ∈ Dar∗. We first show that (f + kJ) + g
is nowhere-constant. Let x ∈ R be arbitrary. If x ∈ cl (

⋃
J), then any open

neighborhood U about x contains a non-degenerate sub-interval i of some
j ∈ J . Thus,

((f + g) + kJ)[U ] ⊇ ((f + g) + kJ)[i] = {r}+ kJ [i] = {r}+ R = R, (11)

where {r} = (f + g)[j]. So (f + kJ) + g is not locally constant at x. If
x /∈ cl (

⋃
J), then there is a neighborhood U ⊆ R \ cl (

⋃
J) of x such that kJ

is equal to 0 on U , and (f + kJ + g)|U = (f + g)|U which is non-constant on
U . So, f + g is non-constant at x. Thus, (f + kJ) + g is nowhere-constant.

We now must show that (f + kJ) + g is Darboux. Let i ⊆ R be a non-
degenerate open interval. If i ∩ j 6= ∅ for some j ∈ J , then i contains a non-
trivial sub-interval of j, so, arguing as in (11), ((f+kJ)+g)[i] = R. If i∩j = ∅
for all j ∈ J , then ((f + kJ) + g)[i] = (f + g)[i]. In either case ((f + kJ) + g)[i]
is an interval. Thus, (f + kJ) + g is Darboux. So, (f + kJ) + g ∈ Dar∗ and F ∗

satisfies (10) completing the proof.

Lemma 26. There exists an additive function Θ ∈ RR such that Θ◦f ∈ Dar(c)
for every f ∈ Dar∗.
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Proof. Let Θ ∈ Dar(c) be an additive function. Such a function may be
constructed as follows. Pick a linear base H for R over Q. Partition H into
two sets H1 and H2 of size c and define f : H → R so that f [H1] = 0 and
f [H2] = R. The unique additive extension Θ of f belongs to Dar(c).

We show that Θ has the desired property. Let f ∈ Dar∗ be arbitrary. For
any a < b and y ∈ R, we have,

|(a, b)
⋂

(Θ ◦ f)−1(y)| = |{x ∈ (a, b) : Θ(f(x)) = y}|
≥ |{z ∈ f [(a, b)] : Θ(z) = y}|
= c.

The last equality follows from the facts that f [(a, b)] is a non-degenerate in-
terval since f ∈ Dar∗ and that Θ ∈ Dar(c).

Lemma 27. A(¬Dar) = A(¬Dar(c)).

Proof. Since ¬Dar ⊆ ¬Dar(c), we have A(¬Dar) ≤ A(¬Dar(c)). We show
the other inequality.

Let F ⊆ RR have cardinality κ = A(¬Dar). We may assume, by Lemma 25,
that F witnesses the definition of A(¬Dar∗), i.e.,

(∀g ∈ RR)(∃f ∈ F )(f + g ∈ Dar∗). (12)

It is enough to find a family F ∗ of cardinality at most κ such that F ∗ witnesses
the definition of A(¬Dar(c)), i.e.,

(∀g ∈ RR)(∃f∗ ∈ F ∗)(f + g ∈ Dar(c)). (13)

Define F ∗ = {Θ ◦ f : f ∈ F} where Θ is the additive function from
Lemma 26. Clearly |F ∗| ≤ κ. It is enough to show that F ∗ satisfies (13).
Let g ∈ RR be arbitrary. Pick g1 ∈ RR so that Θ ◦ g1 = g. By (12) there is an
f ∈ F such that f + g1 ∈ Dar∗. By our choice of Θ, we have

(Θ ◦ f) + g = Θ ◦ f + Θ ◦ g1 = Θ ◦ (f + g1) ∈ Dar(c).

Thus, F ∗ satisfies (13), completing the proof.

Proof of dc ≤ A(¬Dar). Since A(¬Dar) = A(¬Dar(c)), it is enough for us
to show that dc ≤ A(¬Dar(c)). Let κ = dc and F ⊆ R be such that |F | < κ.
By definition of dc there is a g ∈ RR such that |[f = g]| < c for all f ∈ F . Let
g1 = −g. Now |(f + g1)−1(0)| < c for all f ∈ F . Thus, f + g1 ∈ ¬Dar(c) for
all f ∈ F . Since F was an arbitrary set of cardinality less than κ, we have
κ < A(¬Dar(c)). It follows that dc ≤ A(¬Dar(c)).

We now prepare to prove that A(¬AC) ≤ d∗c .
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Lemma 28. Let {Pα : α < c} be a partition of c into c-many sets of cardinality
c and let

κ = min{|F | : F ⊆ cc

& (∀G ∈ [cc]c)(∃f ∈ F )(∀g ∈ G)(∀α < c)(|Pα ∩ [f = g]| = c)}.

Then κ = d∗c .

Proof. We first show that κ ≤ d∗c . Let F ⊆ cc witness the definition of d∗c ,
i.e. |F | = d∗c and

(∀G ∈ [cc]c)(∃f ∈ F )(∀g ∈ G)(|[f = g]| = c). (14)

It is enough to find a family F ∗ ⊆ cc such that |F ∗| = |F | and,

(∀G ∈ [cc]c)(∃f∗ ∈ F ∗)(∀g ∈ G)(∀α < c)(|Pα ∩ [f∗ = g]| = c). (15)

For every α < c enumerate Pα as {x〈α,β〉 : β < c}. For each f ∈ F let
f∗ ∈ cc be given by f∗(x〈α,β〉) = f(β) for all 〈α, β〉 ∈ c2. Clearly |F ∗| = |F |.
We show that F ∗ satisfies (15). Let G ∈ [cc]c be arbitrary. Enumerate G
by {gξ : ξ < c}. For each 〈α, ξ〉 ∈ c2 define g〈α,ξ〉 ∈ cc so that g〈α,ξ〉(β) =
gξ(x〈α,β〉) for all β < c. By (14) there exists f ∈ F such that |[g〈α,ξ〉 = f ]| = c
for all 〈α, ξ〉 ∈ c2. Fix 〈α, ξ〉 ∈ c2. Then |[g〈α,ξ〉 = f ]| = c and for every
β ∈ [g〈α,ξ〉 = f ],

f∗(x〈α,β〉) = f(β) = g〈α,ξ〉(β) = gξ(x〈α,β〉).

Thus, |Pα ∩ [f∗ = gξ]| = c. Since 〈α, ξ〉 ∈ c2 was arbitrary, we conclude that
F ∗ satisfies (15). So κ ≤ d∗c .

We now show the other inequality. Let F ⊆ cc witness the definition of κ,
i.e., F satisfies (15). It is enough to show that F satisfies (14). Let G ∈ [cc]c

be arbitrary. Let {gα : α < c} be an enumeration of G. Pick f ∈ F so that
|Pα

⋂
[f = g]| = c for every α < c. Clearly, we have |[f = g]| = c for all g ∈ G.

Thus, F satisfies (14). The proof is complete.

We will need a fact about almost continuous functions which may be found
in [5].

Proposition 29. (Natkaniec [5]) If f ∈ RR has non-empty intersection with
every upper semi-continuous function u defined on a non-degenerate interval,
then f ∈ AC.
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Proof of A(¬AC) ≤ d∗c . Let κ = d∗c and {Pα : α < c} be a partition of R
into c-many sets of cardinality c so that for every open interval I there is an
α < c such that Pα ⊆ I. By Lemma 28 there is an F ∈

[
RR]κ such that(

∀G ∈
[
RR]c) (∃f ∈ F )(∀g ∈ G)(∀α < c)(|Pα ∩ [f = g]| = c). (16)

It is enough to show that(
∀g ∈ RR) (∃f ∈ F )(f + g ∈ AC). (17)

Let U denote the family of upper semi-continuous functions in RR defined
on a non-degenerate interval. We extend the domain of any partial function
u ∈ U to all of R in an arbitrary manner. Note that |U | = c. Let g ∈ RR be
arbitrary and put G = {u − g : u ∈ U}. By (16) there is an f ∈ F such that
for every α ∈ c and u ∈ U we have |Pα

⋂
[f = u − g]| = c. So, [f + g = u] is

dense for each u ∈ U by our choice of {Pα : α < c}. Thus, by Proposition 29,
f + g ∈ AC. Therefore, F satisfies (17) which completes the proof.

Proof of Theorem 8. We have proved dc ≤ A(¬Dar) and A(¬AC) ≤ d∗c
while, by containment, we have A(¬Dar) ≤ A(¬Con) ≤ A(¬AC).

6 The family SZ

To prove Theorem 9 we quote a theorem about SZ functions which may be
found in [6].

Proposition 30. (Sierpiński, Zygmund [6]) f ∈ RR is in SZ if and only if
|[f = h]| < c for every continuous function defined on a Gδ set of cardinality c.

Proof of Theorem 9. We first show that A(¬SZ) ≤ e∗c . Let H stand for
the family of all functions h ∈ RR such that h is continuous on a Gδ set of
cardinality c and equal to zero elsewhere. Note that |H| = c. Let F ⊆ RR

witness the definition of e∗c , i.e., |F | = e∗ and(
∀G ∈

[
RR]c) (∃f ∈ F )(∀g ∈ G)(|[f = g]| < c). (18)

It is enough to show that F satisfies

(∀g ∈ G)(∃f ∈ F )(f + g ∈ SZ). (19)

Let g ∈ RR be arbitrary. Let G = {h − g : h ∈ H}. By (18), there exists an
f ∈ F such that |[f = h − g]| < c for each h ∈ H. So, |[f + g = h]| < c for
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each h ∈ H. Thus, by Proposition 30, f + g ∈ SZ and F satisfies (19). So,
A(¬SZ) ≤ e∗c .

Next we show that ec ≤ A(¬SZ). Let F ⊆ RR witness the definition of
A(¬SZ), i.e., |F | = A(¬SZ) and F satisfies (19). It is enough to show that F
satisfies

(∀g ∈ RR)(∃f ∈ F )(|[f = g] < c). (20)

Let g ∈ RR be arbitrary. By (19) there is an f ∈ F such that −g + f ∈ SZ.
Then |[−g + f = χ∅]| < c, so |[f + g]| < c. Thus, F satisfies (20).

7 Combinatorics

We now prove Theorems 10 and 11.

Proof of Theorem 10. Let W =
⋃
{Rα : α < c}. Note that |W | = c by our

assumption that |[c]<c| = c. Let V = {〈α, ξ〉 : ξ ≤ α < c}. We will use these
sets throughout the proofs of dc = d∗c and ec = e∗c .

We prove dc = d∗c . Since the inequality dc ≤ d∗c is obvious, we prove only
that d∗c ≤ dc. Let F ⊆W c witness the definition of dc, i.e., |F | = dc and

(∀g ∈W c)(∃f ∈ F )(|[f = g]| = c). (21)

It is enough to find a family F ∗ ⊆ cV of cardinality less than or equal to |F |
witnessing the definition of d∗c , i.e.,

(∀G ∈ [cV ]c)(∃f ∈ F ∗)(∀g ∈ G)(|[f = g]| = c). (22)

For each f ∈ F let f∗ ∈ cV be such that f∗(α, β) = f(α)(β) if β ∈
dom(f(α)) and zero otherwise. Let F ∗ = {f∗ : f ∈ F}, note |F ∗| ≤ |F |. We
show that F ∗ satisfies (22) which will complete the proof. Let G ∈ [cV ]c be
arbitrary and let {gα : α < c} be an enumeration of G. Define h ∈W c so that

h(α) ∈ cα and h(α)(β) = gβ(α, β) for all β < α. (23)

By (21), there exists an f ∈ F such that |[f = h]| = c. We claim that
|[f∗ = gα]| = c for all α < c. Fix α < c. Since |[f = h]| = c, the relations

α < β < c and f(β) = h(β) (24)

are satisfied by c-many β < c. Consider β satisfying (24). By (23), h(β) ∈ cβ .
So,

f∗(β, α) = f(β)(α) = h(β)(α) = gα(β, α).
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We conclude that |[f∗ = gα| = c. Thus, F ∗ satisfies (22), completing the proof
of dc = d∗c .

We prove ec = e∗c . The inequality ec ≤ e∗c is obvious. To prove e∗c ≤ ec let
F ⊆ cV witness the definition of ec, i.e., |F | = ec and

(∀g ∈ cV )(∃f ∈ F )(|[f = g]| < c). (25)

It is enough to find a family F ∗ ⊂W c of cardinality less than or equal to |F |
witnessing e∗c , i.e.,

(∀G ∈ [W c]c)(∃f∗ ∈ F ∗)(∀g ∈ G)(|[f∗ = g]| < c). (26)

For each f ∈ F let f∗ ∈ W c be such that f∗(α) ∈ cα for every α < c and
let f∗(α)(β) = f(α, β) for every β < α. Let F ∗ = {f∗ : f ∈ F} and note that
|F ∗| ≤ |F |. We show that F ∗ satisfies (26). Let G ∈ [W c]c and let {gα : α < c}
enumerate G. We find an f∗ ∈ F ∗ such that

|[f∗ = gα]| < c for every α < c. (27)

Define g ∈ cV by g(β, α) = gα(β)(α) if α ∈ dom(gα(β)) and zero otherwise. By
(25) there is some f ∈ F such that |f ∩g| < c. We claim that f∗ satisfies (27),
which will complete the proof. Fix α < c. For any α < β < c f∗(β) = gα(β)
implies that f∗(β)(γ) = f(β, γ) = gα(β)(γ) for every γ < β. In particular,
f(β, α) = gα(β)(α) so f(β, α) = g(β, α). Since |[f = g]| < c, there must be
less than c many β > α such that f∗(β) = gα(β). Thus, |[f∗ = gα]| < c. Since
α < c was arbitrary, f∗ satisfies (27) completing the proof.

To prove Theorem 11 we will need three more lemmas and define two more
cardinals.

Dκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(|[f ≤ g]| < κ)},

bκ = min{|F | : F ⊆ κκ & (∀g ∈ κκ)(∃f ∈ F )(|[g ≤ f ]| = κ)}.

The numbers bc and Dc are analogs of the bounding number b = bω and
the dominating number D = Dω.

Lemma 31. If c = λ+, then for every f ∈ cc the set {〈α, β〉 ∈ c2 : β ≤ f(α)}
is the union of λ-many functions in cc.

Proof. Let f ∈ cc be arbitrary. We find a family {fζ ∈ cc : ζ < λ} such that

{〈α, β〉 ∈ c2 : β ≤ f(α)} =
⋃
{fζ : ζ < λ}. (28)
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For each α < c let {γ〈α,ζ〉 : ζ < λ} be an enumeration of f(α) + 1. For each
ζ < λ define fζ ∈ cc so that fζ(α) = γ〈α,ζ〉. We show that {fζ : ζ < λ} satisfies
(28). Fix α < c. Then for any β < c we have

β ≤ f(α)⇔ (∃ζ < λ)(γ〈α,ζ〉 = β)⇔ (∃ζ < λ)(fζ(α) = β).

Thus, (28) is satisfied.

Lemma 32. If cf(c) = c, then bc > c.

Proof. Let F ∈ [cc]c be arbitrary. It is enough to find g ∈ cc such that
|[g ≤ f ]| < c for every f ∈ F . Let {fα : α ∈ c} be an enumeration of F . Define
g ∈ cc so that g(α) > fβ(α) for all β ≤ α. We may make such a choice since
cf(c) = c. To see that g is as desired let α < c be arbitrary. Then g(β) > fα
for all β > α.

The first part of the next lemma is due to Ciesielski [1].

Lemma 33. If c = λ+, then bc = dc, and Dc = e∗c .

Proof. We prove bc = dc. To show that dc ≤ bc let F ⊆ cc witness the
definition of bc, i.e., |F | = bc and

(∀g ∈ cc)(∃f ∈ F )(|[g ≤ f ]| = c). (29)

It is enough to find F ∗ ⊆ cc such that |F | = |F ∗| and

(∀g ∈ cc)(∃f∗ ∈ F ∗)(|[f = g]| = c). (30)

For each f ∈ F let {fζ : ζ < λ} be as in Lemma 31 and let F ∗ =
⋃
{{fζ : ζ <

λ} : f ∈ F}. By Lemma 32, |F | = |F ∗|. We show that F ∗ satisfies (30). Let
g ∈ cc be arbitrary. By (29), there is an f ∈ F such that |[g ≤ f ]| = c. Since
|g
⋂
{〈α, β〉 : β ≤ f(α)}| = c and {〈α, β〉 : β ≤ f(α)} =

⋃
{fζ : ζ < λ}, there

is some ζ < λ such that |[fζ = g] = |fζ ∩ g| = c. Thus, F ∗ satisfies (30). So
dc ≤ bc. To see the other inequality notice that any family F satisfying (30)
also satisfies (29).

We prove Dc = e∗c . To show that Dc ≤ e∗c let F ⊆ cc witnesses the
definition of e∗c , i.e., |F | = e∗c and

(∀G ∈ [cc]c)(∃f ∈ F )(∀g ∈ G)(|[f = g]| < c). (31)

It is enough to find F ∗ ⊆ cc such that |F | = |F ∗| and

(∀g ∈ cc)(∃f ∈ F )(|[f ≤ g]| < c). (32)
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We show that F itself satisfies (32). Let g ∈ cc be arbitrary. Let {gζ : ζ < λ}
be as in Lemma 31. By (31) there exists an f ∈ F such that |[f = gζ ]| < c
for every ζ < λ. Since, cf(c) = c and {〈α, β〉 : β ≤ g(α)} =

⋃
{gζ : ζ < λ},

we have |[f ≤ g]| < c. Thus, F satisfies (32). So, Dc ≤ e∗c . We show that
e∗c ≤ Dc. It is enough to prove that any family F satisfying (32) also satisfies
(31). Suppose F satisfies (32). Let G ∈ [cc]c be arbitrary and {gα : α < c} be
an enumeration of G. By Lemma 32 there is an h ∈ cc such that |[h ≤ gα]| < c
for each α < c. By (32) there exists an f ∈ F such that |[f ≤ h]| < c. It
follows that |[f ≤ gα]| < c for all α < c. In particular, |[f = g]| < c for every
g ∈ G, so F satisfies (31). Thus, e∗c < Dc.

Proof of Theorem 11. Clearly bc ≤ Dc. By Lemma 33 we have dc ≤ e∗c .
By the second part of Theorem 10, e∗c = ec. Thus, dc ≤ ec.
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