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ON THE DECOMPOSITION THEOREMS
OF LEBESGUE AND JORDAN

Abstract

In the first part of this paper we show a powerful special case of
Lebesgue’s decomposition theorem, namely: if F'is a V' B function, sat-
isfying Lusin’s condition (N) on [a,b], then F(z) — F(a) = sp(x) +
L) [r F (t) dt , where sp is the saltus function of F'. In the second part
we show that if F' satisfies Lusin’s condition (N) on [a, b] then the func-
tions (from the decomposition theorem of Jordan) Ve (x) := V(F}; [a, z])
and G(x) := F(x) — Vr(x) also satisfy (V).

The following decomposition theorem of Lebesgue is well known:

Theorem A (Lebesgue’s decomposition theorem). ([7], p. 119).
If F' is an additive function of bounded variation of an interval, the derivative
F' s summable, and the function F is the sum of a singular additive function
of an interval and of the indefinite integral of the derivative F'.

Moreover, if the function F' is non-negative, we have for every interval I,

F(1,) > / Fl(t)at,

o

equality holding only in the case in which the function F' is absolutely contin-
wous on I,.

In the first part of this paper, for the special case of a function defined on
an interval [a, b], with bounded variation and satisfying Lusin’s condition (V),
Theorem A becomes

F@) = F(a) = sr(0) +(0) [ F(0)ar,
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where s is the saltus function of F (clearly sp is a singular function).
Moreover we obtain

V(Filaa)) = Sp(e) +(£) [ 1F @) ar,

(for the definition of Sy see Lemma 8).
The following decomposition theorem of Jordan is well known:

Theorem B (Jordan’s decomposition theorem). ([6], p. 218). A function
F :[a,b] = R is VB if and only if it is representable as the difference of two
increasing functions.

In fact from the proof of this theorem it follows that if F'is V B on [a, b] then
the functions Vg(x) := V(F;[a,z]) and G(x) := F(z) — Vp(x) are increasing.
The question is which properties of F' will be preserved for Vi and G?7 It is
known that if F is left, right or bilaterally continuous at a point x € [a, b] then
so are Vg and G ([6], p. 223).

In the second part of this paper we show that if F' satisfies Lusin’s condition
(N) then Vp and G also satisfy (V).

1 On Lebesgue’s decomposition theorem

We assume that the reader is familiar with the notions of V B, AC and Lusin’s
condition (N) (see [7], [6]). We denote by C the set of all continuous functions.
If F:[a,b] = R and x, € [a,b) (resp. z, € (a,b]) then we denote by

F(zo+) = lim F(z) (resp. F(z,—) = lim F(x))
w>w: w<z:

Lemma 1. (Theorem 1 of [6], p. 205). The sets of the discontinuity points of
an increasing function F : [a,b] — R is at most countable. If x1, 2, x3,... are
all of the interior discontinuity points then

F(a+) = F(a) + > _(F(ax+) = F(zx—)) + F(b) — F(b—) < F(b) - F(a).
k
Definition 1 (The saltus of an increasing function). ([6], p. 206). Let F' :
[a,b] — R be an increasing function. Let A = {aj1,a2,...} be a countable
subset of [a,b] containing all the interior discontinuity points of F' (that this
is possible follows by Lemma 1). We define sp : [a,b] = R by sp(a) = 0 and
for every = € (a,b],

sp(z)=F(at+)—Fla)+ Y (F(t+) - F(t-)) + F(z) — F(z—).
teAN(a,x)
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The function sp is called the saltus of F'.
Let A, = {a1,a2,...,a,}. We define sg,,(a) =0 and for every = € (a,b],

spn(z) =Flat) — Fla)+ > (F(t+) = F(t-)) + F(z) — F(a—).
teAnn(a,z)
Remark 1. The functions sr and sg, have the following properties:
(i) sp and sp,, are increasing on [a,b], so VB on [a, b];
(i) spn(x) — sp(zx) for every x € [a, b];

(iii) sppn is a constant on each component of the open set (a, b)\ A, (therefore
S is a step-function);

(iv) The function F' —sp is increasing and continuous on [a, b] (see Theorem 2
of [6], p. 206).

Lemma 2 (Sarkhel and Kar). ([8] or [2], [4]).
VBN (N) is a linear space on [a,b].

Lemma 3. Let F : [a,b] — R be an increasing function. Then
sp(zot+) — sp(x0) = Fzo+) — F(z,), w0 € [a,b)
sp(xo) — Sp(To—) = F(x,) — F(xo—), o € (a,b].

PROOF. Let z, € [a,b) and x > z,. Then

sp(z) = sp(xo)+F(xot+)—F(x,)+ Z (F(t+)—F(t—))+F(z)—F(z—).

teAN(z,,x)

It follows that sp(zo+) = limgN 4, sr(x) = sp(z,) + F(zo+) — F(z,). Let
Zo € (a,b] and < z,. Then

sp(wo) = sp(x)+F(a+)—F(x)+ Y (P(t+)=F(t=))+F(2o)—F(z,-).

teAN(z,0)
It follows that sp(x,) = sp(zo—) + F(z,) — F(2o—). O
Lemma 4. For sp defined above we have:
(i) sp € (N) on [a,b] and s =0 a.e. on [a,b];
(i) If F € (N) on [a,b] then F — sp € AC on [a,b].
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PROOF. (i) We have

sﬂ@W§Mw@h(&wwﬂw

O(URZ: (s (@), 5 (@x)) U (sr(ae). sr(ax)) ) U (SF(b—),sF(b))> |
By Lemma 3 we have
sp(at) = F(a+) — F(a),
sp(ar+) — sp(ar—) = F(ax+) — F(ar—) for each k, and
sr(b) — sp(b=) = F(b) — F(b-).

Since
sp(b) = F(a+ —I—i F(ax+) —))+F(b)—F(b—),
k=1

it follows that m(sg([a,b])) = 0, hence sp € (N) on [a,b]. Clearly sp is
derivable a.e. on [a,b]. By Krzyzewski’s Lemma (see [5] or [1], p. 70), we
obtain that sm = 0 a.e. on [a, b)].

(ii) By Lemma 2 and Remark 1, (iv), it follows that F—sp € VBNCN(N) =
AC on [a,b] (see the Banach-Zarecki Theorem [7], p. 227). O

Remark 2. That le = 0 a.e. in the proof of Lemma 4, (i), follows also from
the following theorem of Fubini: If F(x) = ) F,(z) is a convergent series

of monotone nondecreasing functions on [a,b] then F'(z) =, Fi(z) a.e. on
[a,b] ([7], p. 117), and Remark 1, (ii), (iii).

Definition 2. Let A:a =2, < x1 < ... <z, = b be a division of [a, b], and
let g : [a,b] = R. We denote

ga a, b Z |g xk-i-l )|

and
V(g;la,b]) = Sup Va(gila,b]) (see [6], p. 215).

A division Ay :a =y, < y1 < ... < Ym = b is said to be finer than A if
{Zo, 21,y Zn} C{Yo,Y1,- -, Ym} Clearly Va(g;[a,b]) < Va,(g;[a,b]).
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Lemma 5. Let f:[a,b] = R, f € CNVB, and let h : [a,b] — R such that h
is constant on (a,b). Then

V(h;[a, b)) = [h(a+) — h(a)| + [h(b) — h(b—)]
and
V(f+ hi[a,b]) = V(fi[a,b]) + V(h;[a,b]) .
PRrROOF. The first part is obvious. We show the second one. Clearly
V(f+hi[a,b]) < V(fila,b]) + V(h;[a,b]) .

Let € > 0. Since f is continuous on [a,b], there exists § > 0 such that
F(a) = F(@)] < /8 iz € [a,a+0), and | F(b) — f(y)] < /8 if y € (b— 3,0,
Let

Ata=t, <ty <tea<...<tp<tpy1=0>

be a division of [a,b] such that Va(f;[a,b]) > V(f;[a,b]) — €¢/2. We may
suppose without loss of generality that ¢; € (a,a + §) and ¢, € (b — 4,b)
(because if A; is a finer division than A then Va,(f;[a,b]) > Va(f;[a,d])).
Then
Va(f + h;[a,b]) =
|f(t1) = fa) + h(t1) = R(a)| + [ f(t2) = f(t)[ + ...+ [f(tn) = ftn-1)[+
£ (0) = f(tn) + h(b) = h(tn)| = |h(t1) — h(a)| = 2| f(t1) — f(a)| + Va(f;[a, b)) —

=2/f(b) = f(ta)| + [h(®) = h(ta)| > [h(a+) = h(a)] - 25+

FV(flab]) = 5 = 25 + [(B) = hb=)| = V(Fi [0, B]) + V(sfa,b) — e.

2
Therefore V(f + h;[a,b]) > V(f;[a,b]) + V(h;[a,b]), hence V(f + h;[a,b]) =
V(f;la,b]) + V(h;[a,b]). O
Corollary 1. Let f : [a,b] = R, f € CNVB, and let g : [a,b] = R such
that g is constant on each of the intervals (a,c1), (c1,¢2),..., (Cm,b), where

a<cp<cg<...<cy<b Then

V(g;la,b]) = lg(a+) — g(a)|+

+ > (lg(ei) = gleim) [ + lg(et) — gle)l) + lg(b) — g(b-)]

=1
and
V(f+g;la,b]) = V(f;la,b]) + V(g;a,b]).
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PRrOOF. We have

m—1

V(g; [a,0]) = V(gi[a, 1)) + D VI(gi [ei copa]) + V(g; [, B]) =

lg(a+) — g(a)| + |g(c1) — gler=)| + |g(crt) — gler)| + |g(c2) — gle2—) | + ...+
+|g Cm—1+)7g Cm—1 |+|g C1’n Cm |+| Cm+)*g(0m)|+|g(b)*g(b7)| -

= |g(a \+Z|g (ci) — glei=)| + lgleit) — g(ei)]) +|g(b) — g(b-)|

(this equality was used before in [6], p. 231, but without proof). Now by
Lemma 5

VU 9500s) =V gi o) + 30 VU +g3leis i) + V(05 e ) =

m—

= V(fa [avcl]) + V gv a, cl Z cuCH—l ) + V(Q? [Ci7 Ci+1]))+

V(£ lem, b)) + V(g5 [em, b)) = V(f;[a,b]) + V(g; [a, b])

Definition 3 (The saltus of a VB function). ([6], p. 219).
Let F: [a,b] = R, F € VB. Then we define s : [a,b] = R by

sp(x) = svp(z) — sq(z),

where Vp(z) = V(F;[a,z]) and G(x) = Vr(z) — F(x). Clearly Vp and G are
increasing (see Theorem B).

Lemma 6. ([6], p. 233). Let gn, g : [a,b] = R. If {gn}n converges pointwise
to g on [a,b] and there exists a positive number « such that V(gn;[a,b]) < a,
M)y n=1,2,..., then V(g;[a,b]) < a

Lemma 7. Let g,9y, : [a,b] = R such that {gn}n converges pointwise to g on
[a,b] and V (gn;[a,b]) / a for some positive number «. If

liminf V (g, — ¢;[a,b]) =0

then V (g;[a,b]) =



ON THE DECOMPOSITION THEOREMS OF LEBESGUE AND JORDAN 319

PROOF. By Lemma 6 it follows that V (g;[a,b]) < a. We show the converse
inequality. For € > 0 let n be a positive integer such that

V(gn;|a,b]) >af§, (V) n > ne.

For each n > n. we have

oa— % < V(gn;la,b]) = V(g — (g — gn);[a,0]) <

< V(g;[a,b]) + V(g — gn;[a,b]) .

Since lim inf,, V(g—gn; [a, b]) = 0, it follows that there exists a positive number
m > ne such that V(g — gm;[a,b]) < €/2. Therefore

a3 <Viglab)+3,

so a < V(g;la,b]). It follows that o = V(g; [a, b]). O
Lemma 8. Let F', G, and Vg be as in Definition 3.

(i) The set A of the interior discontinuity points of F' is at most countable
and contains the sets of interior discontinuity points of Vg and G. More-
over, if t € AU {a} then there exists F(x+) and for each x € AU {b}
there exists F(x—).

(ii) Let A ={a1,a2,a3,...}. Then sp(a) =0 and for x € (a,b],

sp(x) =F(at) — Fa)+ Y (F(t+) = F(t-)) + F(x) — F(z—).
t€(a,x)NA

(i1i) If A is infinite, let sp, : [a,b] = R such that sp,(a) = 0 and for
x € (a, b,

spn(z) = Fla+) — F(a) + Z (F(t—i—) — F(t—)) + F(z) — F(z—),

te(a,z)NA,

where A, = {a1,as,...,a,}. Let

TEn(x) = sp(x) — spa(z) = Z (F(t—|—) — F(t—)) .
t€(a,z)N(A\An)

We define Sg : [a,b] = R by Sp(a) =0 and for every x € (a,b],

Sp(z) = |F(a+) — F(a)|+
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+ Y (F(t) = F@) + |F(t) = F(t=)]) + |F(2) — F(z-)]
teAN(a,x)

(this series is convergent, see [6], p. 235). Then we have

1) sp is VB on [a,b];
2) sp € (N) on |a,b] and sp = 0 a.e. on [a,b];
3) F — sp is continuous on [a,b];
4) spn(x) — sp(x) for every x € [a,bl;
5) spn is a constant on each component of the open set (a,b)\ A, (there-
fore sp., is a step-function) and
V(spn;la,b]) = [F(a+) — F(a)|+

n

+ Y (1F(as) = Flai=)| + |F(ait) = F(a;)]) + [F(b) = F(b—)] .

6) If n — oo then
V(rem;[a,b]) < > (IF@+) —F@)|+|F(t) = F(t—)]) = 0;
te(a,b)N(A\Ay)
7) V(sp,;la,b]) /7 Sr(b);
8) V(sr;la,b]) = Sr(b).

PROOF. (i) See [6] (Corollary 2, p. 219 and Theorem 1, p. 223).

(ii) See [6] (p. 219).
(iii) 1) See the definition of sp;

2) See Lemma 4, (i) and Lemma 2.
3) See [6] (p. 220).
4) This is obvious.
5) The first part is evident. We show the second part. For i = 1,2,...,n,
spn(a+) — spn(a) = Fla+) — F(a);
sFn(ai) — skalai—) = Fla;) — F(ai—);
sFn(ait) = spn(ai) = Flait) — F(ai);
spn(b) — spn(b—) = F(b) — F(b—).

By Corollary 1 we obtain
V(spn;ila,b)) = |F(at) — F(a)|+
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n

> (IF(ai) = F(a;=)| + |F(ai+) — F(a;)]) + [F(b) — F(b-)] .
=1

6) Let @ < 1 < z9 <b. Then

rEn(t2) — T (r1) = > (F(t+) - F(t-))

telz1,x2)N(A\AR)

< Y. (IF@H) = F@)+|F@#) - F(t-)l)

tE[xl,zz)ﬂ(A\An)

IA

hence

Virpmslab) < Y ([F@+) = F@)| + [F(t) - Ft-)|) =

t€la,b)N(A\A,)

= Z (|F(t+) = F(t)|+ |F(t) — F(t=)]) = 0 for n — occ.
te(a,b)N(A\A,)
7) This is evident.
8) See 4), 6), 7) and Lemma 7. O

Remark 3. Sp € (N) on [a,b] and Sy = 0 a.e. on [a,b] (the proof is similar
to that of Lemma 4, (i)).

Lemma 9. Let F:[a,b] = R, F € VBN (N). Then F — sp € AC on [a,b].
PrOOF. By Remark 1, (iv), the functions Vp — sy, and G — s¢ are continuous

on [a,b]. Let
o= (Vr —svp) = (G —sq).

Then ¢ is continuous on [a, b]. But
F=Vp—-G=Vp—sv, +sv, — (G—3sg+sqg)=

=+ (svp —56) =p+sF.

By Lemma 4, (i) the functions sy, and sg belong to VB N (N) on [a,b],
hence by Lemma 2, sp € VBN (N). Again by Lemma 2, it follows that
p=F—-speVBN(N)NC = AC on [a,b] (see the Banach-Zarecki Theorem
[7], p. 227). O

Lemma 10. Let F': [a,b] = R, F € VBN(N) and let F = H—h, where H and
h are some increasing functions given by Theorem B. Then sp = sg—sp, hence
sp does not depend on the choice of the functions H and h if F € VBN (N).
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PrROOF. By Lemma 9, F —sp € AC on [a,b]. But F—(sg —sp) = (H —sy)—
(h — sp) is continuous (see Remark 1, (iv)). By Lemma 4, (i) and Remark 1,
(i), sg,sn € VBN (N) on [a,b]. Since F € VBN (N), by Lemma 2 it follows
that F' — (sg — sp) € VBN (N) on [a,b]. From the Banach—Zarecki theorem
we obtain that F' — (sg — sp,) € AC on [a,b]. Hence sp — (sg — sp) € AC on
[a,b]. By Lemma 4, (i), it follows that

’ ’ ’
Sp =8y =238, =0a.e. on [a,b].

Then sp — (sg — sp) is constant on [a,b] (see for example Theorem 2 of [6],
p. 246). Since sp(a) = sp(a) = sp(a) = 0, it follows that the above constant
is zero, hence sp = sy — s, on [a, b]. O

Theorem 1. Let F : [a,b] > R, F € VB. Then F € (N) on [a,b] iff

F(z) — F(a) = sp(z) + (L) / ’ F'(t)dt. (1)

PROOF. “=" Suppose that F' € (N) on [a,b] and let ¢ = F' — sp. Then
¢ € AC on [a,b] (see Lemma 9), and by Lemma 4, (i) we have that sj = 0
a.e. on [a,b]. It follows that ¢ = F a.e. on [a, b]. By Theorem 3 of [6] (p. 255),
we obtain that

Therefore we have (1).

“<” Suppose that (1) holds. The function F(a) + (£) [ F'(t)dt is AC on
[a,b] (see for example Theorem 1 of [6], p. 252), hence it is VBN (N) on [a, b
(for the (N) part see Theorem 3 of [6], p. 249). By Lemma 8, (iii), 2), 1), it
follows that sp € VBN (N) on [a,b]. From (1) and Lemma 2, we obtain that
F(z) = sp(z) + F(a) + (£) [T F (t)dt is VBN (N) on [a,b]. O

2 On Jordan’s decomposition theorem

Lemma 11. (Theorem 8 of [6], p. 259). Let f : [a,b] — R be a summable
function, and let

Plz) = (L‘)/If(t)dt, z€lab].
Then N
V(Fila,a) = (0) [ 1f®]dt, @€ lab),
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Lemma 12. Let f,F : [a,b] = R, F, f € VB. If f is continuous on [a,b] then
V(f +spsla,b) = V(f;]a,0]) + V(sp;[a,b]) .

Particularly
V(F;la,b]) = V(sr;la,b]) + V(F = sp; [a,b]) .

PrOOF. Clearly (f + spn)(z) = (f + sp)(z) if n — oo (see Lemma 8, (iii),
4)). By Corollary 1 and Lemma 8, (iii), 7), 8), we have

V(f+ spn;la,b]) =V(f;la,b]) + V(spasila,b]) 7 V(f;la,b]) + Sp(b) =
= V(f3[a,b]) + V(sr3 [a,0])
By Lemma 8, (iii), 6) and Lemma 7, it follows that
V(f + sk [a7 b]) = V(fv [aab]) + V(SF; [CL b]) :

We show the second part. The function f := F — sp is continuous and VB
on [a,b] (see Lemma 8, (iii), 3)). Therefore

V(F;la,b]) =V (F — sp + sp; [a,b]) = V(F — sp;[a,b]) + V(sp;[a,b]) .

O
Theorem 2. Let F: [a bl >R, Fe VBN (N). Then
(i) Vr(z) = L) [, 1F ()l dt;
(i1) Vi € (N) on [a,b].
PrOOF. (i) From Theorem 1 we obtain
(F=se)a) = Pla)+(©) [ Foar. (2)

We have
Vi (z) = V(F;la,z]) = V(sp;a,z]) + V(F — sp;[a,z]) =
= Sp(z)+ V(F = sp;a,z]) = Sp(z) + V(F — sp — F(a);[a,z]) =

/ \F' (1)) dt

(for the second equality see Lemma 12; for the third equality see Lemma 8,
(iil), 8); the fourth equality is obvious; the last equality follows by Lemma 11
and (2).

(ii) This follows since Sp € (V) (see Remark 3), by Lemma 2 and (i). O



324 V. ENE

Corollary 2. Let F : [a,b] - R, F € VB. Then F € (N) on [a,b] if and
only if Vg € (N) on [a,b].

PROOF. “=" See Theorem 2, (ii).
“«<” This follows as the implication “<” in Lemma 6 of [3]. O

Remark 4. Corollary 2 extends Lemma 6 of [3], since here F is not supposed
to be continuous on [a, b].

Theorem 3 (A Jordan type theorem). Let F' : [a,b] = R, F € VBN (N).
Then F is the difference of two increasing functions, each satisfying Lusin’s
condition (N).

PrOOF. By Theorem 2, (ii) we have that Vi € (N) on [a,b], and by Lemma
2, the function G = Vp — F € (N). O
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