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A TYPICAL MEASURE TYPICALLY HAS
NO LOCAL DIMENSION

Abstract

We consider local dimensions of probability measure on a complete
separable metric space X: @, (x) = ?@w,gu (z) = %%.
We show (Theorem 2.1) that for a typical probability measure o, (z) = 0
and @, (r) = oo for all x except a set of first category. Also o, (x) =0
almost everywhere and with some additional conditions on X there is a
corresponding result for upper local dimension: in particular, we show
that a typical measure on [0, 1]¢ has @, (z) = d almost everywhere (The-
orem 2.4).

There are similar results concerning “global” dimensions of prob-
ability measures. Theorems 2.2 and 2.3 show in particular that the
Hausdorff dimension of a typical measure on any compact separable
space equals 0 and the packing dimension of a typical measure on [0, l]d
equals d.

1 Introduction and Preliminaries

Throughout this paper X will denote a separable metric space. Let P(X) be
the space of all Borel probability measures on X. Denote by B,.(x) the open
ball with center z and radius r, and by B,.(z) the corresponding closed ball.
The Hausdorff dimension of a set A is denoted by dim A, and the packing
dimension by Dim A. For definitions see e.g. [5], [8]. We will use the “radius”
definition of Dim, as in [8] and [4] as opposed to the “diameter” definition,
since it allows to avoid some pitfalls in general metric spaces; for example, (4)
is not true in general metric space with the “diameter” definition ([4]).
Upper and lower local dimensions of a measure y € P(X),

a(x) = T 1285 @) g a,(z) = i 08 (B ()

r—0 logr r—0 logr

Key Words: measure, dimension, category
Mathematical Reviews subject classification: 28A33, 28A80
Received by the editors June 4, 1997

525



526 JuLiA GENYUK

have been extensively studied (see e.g. [3], [8], [12], [16] and many others).
In particular, they are used to construct the so-called multifractal spectrum
functions such as

fu(e) = dim{z € supp p | au(z) = af,

where o, (z) = a,,(z) = @, () if they coincide. These limits are the same for
closed and open balls.

The dimensions, a,,(z) and @,(x), have been shown to coincide almost
everywhere in some particular cases such as the ergodic invariant measures
of smooth diffeomorphisms with nonzero Lyapunov exponents ([16]). If this
happens, a measure is called regular. The multifractal spectrum was also
computed for such constructions as graph-directed fractals and cookie-cutters
(see e.g [8], where Olsen applies his general multifractal formalism to both
cases). The question arises whether o, (z) and f(a) can be used to describe
more general situations. We will show that this is in fact not the case for a
typical probability measure (in the sense of category).

Some relations between different notions of regularity are discussed in [14].
There are some results as well describing situations where o, (z) # @, (z). For
example, Taylor in [13] shows that this happens for super Brownian motion.
Shereshevsky in [11] shows that under some conditions, if x is an invariant
measure of a smooth diffeomorphism, the set where a,,(z) # @,(z) is dense
and has positive Hausdorff dimension. Finally, Haase in [7] shows that if
x € X, then for a typical measure p € P(X) (that is, all measures up to a set
of first category) o, () = 0, and if x is a non-isolated point of X, then for a
typical measure @, (x) = co. Theorem 2.1 is basically a generalization of this
result.

An interesting question, connected with this, is about the dimension of a
typical measure, especially Hausdorff and packing dimension. The dimensions
on other spaces have been explored before, such as the dimension of typical
compact set or a graph of typical continuous function. For example, Hausdorff
dimension of a typical compact subset of R? is 0 and the upper entropy di-
mension is d ([6]). We show later in this paper that the probability measures
behave similarly in this matter.

We will use the following well-known relations.

dim({z € X | a,(r) <a}) <a. 1
Dim({z € X | a,(z) <a}) <
If p(A) >0,AC{r e X |a,(z) > a}, then dimA > a.

If p(A) >0,AC{zx e X |a,(z) > a}, then DimA > a.
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For the proof see e.g. [3], [8]. Note that (4) would not be true for all metric
spaces if packing measure were defined using diameters, but true under some
fairly general conditions.

A weak* topology on P(X) is characterized by the following proposition.

Proposition 1.1. Let p, {p,}52, be measures in P(X). Then the following
statements are equivalent.
(a) pn — p in weak™ topology.
(b) li_>m [ fdun = [ fdp for any bounded continuous function f.
(c) Tim p,(F) < u(F) for every closed set F.
n—oo
(d) lim p,(G) > u(G) for every open set G.
n—oo
(e) lim p,(A) = u(A) for every Borel set A with boundary of u-measure
n—oo
0.

PROOF. This is a version of slightly more general Theorem 6.1 in [9]. O

If X is complete and separable, P(X) is also complete; so we can use an
expression “a typical measure” to signify that all measures except a set of first
category in P(X) have the desired properties.

Proposition 1.2. The probability measures with finite support are dense in

P(X).
PROOF. See Theorem 6.3 in [9]. O

It follows that P(X) is separable since X is separable.
P(X) with weak* topology can be metrized in several ways. In particular
for X separable a Prokhorov metric p can be used:
p(p,v) =inf{e > 0 |u(A) < v(A¢) + € and
v(A) < u(Ae) + € for any Borel set A},
where A is the e-neighborhood of A in X.
The inequalities (1)-(4) can also be used to establish a connection between

the local and “global” dimensions of a measure. The latter can be computed
in a number of ways. We will need the following definitions.

dim* p = inf{dimY | Y C X, u(Y) =1}
dim, p = inf{dimY | Y C X, u(Y) > 0}.
Dim* g = inf{DimY | Y C X, u(Y) =1}.
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Dim, = inf{DimY | Y C X, u(Y") > 0}.

C(p) = }ir%inf{diimB(Y) Y CX, w(Y)>1-46},
—
C(p) = lim inf{dimp (Y) | Y € X, u(Y) 21 -4},
—
where dim Y and Dim Y denote Hausdorff and packing dimensions correspond-
ingly, and dimpY,dimzY denote upper and lower box dimensions.
Ledrappier dimensions are defined as follows. Suppose pu is supported on
a totally bounded set. Let N, (€, ) be the minimal number of balls of radius
€ which cover a set of measure greater than 1 — 4. Then
_ . =—log(N,(e,0))

Crip) = él—% lg% log(1/€)

e log(Ny(€,9))
Crlw) = Jim I = e

(Here lim is the same as sup due to monotonicity.)
60 0<d<1

Proposition 1.3.
dim® pu < Cp () < C(p) and

Cr(p) < C(p) = Dim”" p.

PROOF. The last equality is proved in [12]; everything else is proved in [16].
O

Let us introduce also a few more global characteristics of a measure.

_ . ——log(N,(e,0))
Cra(p) = Jim Ty = 70

. log(Ny(e, )
= lim lim =220
Crli) = Jios T = (1)

(Here lim is the same as inf .)
0—1 0<o<1

C.(u) = inf{dimgY | Y C X, u(Y) > 0} and

C. (1) = inf{dimpY | Y € X, u(Y) > 0}.

*

Proposition 1.4.
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PrOOF. The first two inequalities are obvious, as is the inequality Dim, p <
C.(p). For any D > Dim, i there is a set Y C X such that p(Y) > 0 and
DimY < D. Note that DimY = inf{sup,dimp4; | Y C UA;} (for proof
see e.g. [5], p.48; it is proved for Y € R,, there, but the proof works for a
general metric space with “radius” definition of packing dimension). Hence
there is at most countable collection of sets {4;} such that sup, dimp4; < D
and p(UA;) > w(Y) > 0. Tt follows that there is an A; with p(4;) > 0,
dimpA; < D. Hence Dim, p > C,(p). O

Proposition 1.5. Let p be a probability measure on a compact space X. If

for some d there are numbers ¢ > 0 and R > 0 such that u(B,(z)) < crd for

allz e X,0<r <R, then C,(n) >d.

PROOF. Suppose that for some & liim% < d. Then there are a < d and
e—0

e 1 0, < R such that N,(e,0) < ¢ @ for all I. Hence for any [ there are

Ny (e, 0) balls {B! } with pu(U;B!) > 1— 4. But then

1-46< ,u(U B!) < eNy(e,0)ef < el for all [,
i
which contradicts the fact that e;i*“ — 0. O

2 Main Results

Theorem 2.1. Let X be a complete separable metric space. Then for a typical
measure v in P(X) there is a residual Borel set A, in X such that for any
x € Ay we have o, (z) = 0. If X has no isolated points, then in addition we

can have @, (x) = oo forx € A,.

PrOOF. If p, — p in weak™ topology, then lim,, , 1, (G) > p(G) for all open
G and limy,_, oo pin (F') < p(F) for all closed F' (Proposition 1.1). It follows that

for fixed x and r the ratio W is lower semicontinuous and %
is upper semicontinuous with respect to u.
Consider closed balls first. Then

Qa,z,R = {/14 S P(X) | sup M > a}

r<R 10571
- U {ﬂ eP(X)| log‘iig;(x)) > a}

r<R
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is open for any R > 0,a > 0,2 € X. Now we want to show that €, ; r is dense
in P(X). Let u € P(X) and suppose that u ¢ Qg g, that is, % <a
for all < R. Fix any € > 0. If u({z}) # 0, in case X has no isolated points
we can find a measure v € P(X) such that p(p,v) < €/2, and v({z}) = 0.
Otherwise let v = . We construct pe € P(X) as follows. Pick some s > a and
some r < Rsuch that v(B,(z)) < €/4. Let pu(By(z)) = r® and p.(4) = Cv(A)
for A C X\B,(z), where C = (1 —7%)/(1 — pu(B,(z))) so that u.(X) = 1.
Then 54580 > g and p(p, pe) < €/2 + e/4+ (C = 1)(1 — p(B,(x))) =
3e¢/4+ (1 —1r%) — 1+ u(B,(z)) < e. Hence Q, , g is dense in P(X).
Let {x;}52, be a countable dense subset of X. Then

Qa,R - {/J S P(X) | sup w

> q for all z}
r<R 1Ogr

is a countable intersection of open dense sets, i.e. residual for any a, R > 0.
The same is true for Q, = (1Qq,1/,. Now W is also lower semicontin-
n

uous with respect to x; so

1 B,
A r = {JJEX | supM > a}
r<r  logr

is open for any @ > 0, R > 0, € P(X). For any fixed u € Qq, Ay p1/n 18
open and dense (since {x;}72; C A, 1/5). Hence

1 B
vy = (VAupa o — {xem wp 081(Br ()

>aqaforalln>1
r<l/n IOgT

is residual in X. But

—1 B
Awg{xexmmwm};
’ r—0 logr

SO

—1 B
Q, C {,u ePX) | limM > g on a residual subset of X} .
r—0 log r

Now take the intersection Q = (7", €y/,) and let the corresponding subset
of X for afixed p € Q be 4, = ﬂflo:l Aj/n,u- This concludes the proof for the
upper local dimension.
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The proof is similar for the lower local dimension. Using open balls, we
can show that

| lim log 11(By(z))
r—o  logr

Q= {u € P(X) < b on a residual subset of X}

is residual for any b > 0. We need only to change sup to inf and reverse
inequality signs in the proof above. (Also we will not need to consider the
case p({x}) # 0 separately, just take pue = r® for some s < b and some small
enough r < R; so the condition that X has no isolated points is not necessary
here).

Take the intersection Q = (), Q1/,) to conclude the proof for a,(x).
Then QN1 gives the residual set of measures for which a,(x) = 0,@,(z) = oo
for most z € X.

O

The natural question arising next is whether we can take A to be a set of
positive measure. By (4), of course, we cannot have @, (z) > Dim X on a set
of positive measure; so we can hope only to get @, (z) = Dim X. We will show
that we can in fact have a,(r) = 0 and @,(r) = Dim X almost everywhere
with some additional conditions on X for the latter. To this end we need first
to consider the “global” dimension of a typical measure.

Theorem 2.2. If X is a compact separable metric space, a typical measure
p € P(X) has dim* p = C;(n) = 0.

Theorem 2.3. Let X be a compact separable metric space. Suppose there
exists a probability measure X € P(X) which is positive on all open sets and
has Cr.(\) > d. Then a typical measure p € P(X) has Dim, p > Cpr.(p) > d.

Note. This is true, in particular, with A being a Lebesgue measure on [0, 1]<.
We can also let X be a self-similar fractal set of Hausdorff dimension d, with
A being a Hausdorff measure H?. See Proposition 1.5.

We will need several lemmas to prove these theorems. In what follows, we
will use the open balls in definition of N, (e, d), which does not change the
limits.

Lemma 2.1. For X a compact separable metric space, N, (e, ) is upper semi-
continuous with respect to .

PROOF. Let pi,, — p and No(e,6) = lim N, (e,d). Since N, (€, 0) is integer,
n— oo

taking subsequences if needed, we may assume that N, (¢,6) = Ny(¢, ). For
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any N < Ny(e, 6) the inequality N, (e¢,0) > N means that for any N open
balls {B.(x;)}, we have y,, (UN.,B.(z;)) <1— 6. Hence

N N
1 (U BE(:EZ')> < lim fiy, (U BE(LUZ')> <1-06 from Proposition 1.1,
i=1

so N, (€,6) > N. It follows that N, (e,6) > Noy(e, 0). O

PROOF OF THEOREM 2.2. Since N, (e,d) is upper semicontinuous with re-

spect to p by Lemma 2.1, so is %. Hence

i o EVu(e.9)
Qacos = {M € P(X) | elgﬁfo log(1/e) =4

is open for any a,ep > 0,0 < § < 1. To show that Q, , s is dense in P(X),
let p € P(X). For any p > 0 by Proposition 1.2 there is a measure u, with
finite support such that p(u, p1,) < p. It means that for any §, N, (e, §) stays

bounded as ¢ — 0; so for any a > 0,¢9 > 0 there is an € < ¢y such that
log N, (€,6) N h
W < a. OwW we nave

. log(N,(e,9)) } ~
Qs = dpePX) | lim-22e0) U Yo, s
0 {:u’ ( ) | % log(l/e) >ap 2 Ql ,1/n,6

and this intersection is a dense Gy set for any @ > 0,0 < § < 1. Taking
intersections N3% 4 MYy Q1/n,1/m, We get the result. O

Note. The result concerning Hausdorff dimension can also be shown as fol-
lows. By Theorem 2.1 and (1) there is a residual Borel set A C X with
dim A = 0. Tt can be shown (see proof of Lemma 2 in [2]) that for any residual
Borel set in X there is a residual set of measures in P(X) concentrated on
this set. But then for a typical measure p € P(X) we have u(A) = 1; so
dim* p = 0.

Lemma 2.2. For X a compact separable metric space, N, (¢,0) is left contin-
uous with respect to €.

PROOF. Let € be a discontinuity point of N, (¢,0) and let €, T €. Let Ny =
lim,, ¢ N, (e, 60) (which exists since N, (€, 0) is a decreasing function of e).
Since N, (e, 9) is integer, for large n we have N, (e,,d) = Ny. Pick any N < Ny
and any N open balls { B.(z;)}}¥.,. Then for large n we have u(UY | B, (z;)) <
1 — 6. Hence p(UN | Be(;)) = limp, 00 p(UN | B, (2;)) <1 —8; 80 Ny(€,6) >
N. By monotonicity N, (e, d) = No. O
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Lemma 2.3. If X is a compact separable metric space, for any p, {p,}32
with iy, — pu, any € > 0,0 <5 < 1,0 <v <min(d,1—0) we have

N,(e+v,0+v)< lim Ny, (e 9).

n— oo

PROOF. Let Ny(e,d) = lim Ny, (e, 6). Since N, (€,0) is integer, taking sub-
n—oo
sequences we can assume that N, (€,0) = Ny(e,d). This means that for each
n there are No(e,d) balls B (x}) such that p, (UN°, Bc(27)) > 1 - 4.
Pick any v as in the statement of the lemma. For large enough n we have

p(pin, ) < v, where p is a Prokhorov metric. For any Borel set A we have

N N
then pn,(A4) < pu(4,) +v. Let A = UO B.(z?). Then A, = UO By (2); so
i=1 i=1

we have
No No
M(U Beiy(27)) > ,un(U Be(z})) —v>1-6—v.
i=1 i=1
Hence N, (e +v,0 +v) < Ny(e, 9). O

Lemma 2.4. Let X be a compact metric space. Suppose there exists a proba-
bility measure A € P(X) which is positive on all open sets and has Cr.(A) > d.
Then the set of measures with Cp.(u) > d is dense in P(X).

PROOF. Pick any p € P(X) and i > 0. Since A is positive on balls, using finite

cover of X by balls of radius 7/2 we can construct an 7-partition {I,Z}f:(?) of X
with |I'] < nand A(I}) > 0 for all k. Construct a new measure u, = > ¢J A},
k

where A} is X restricted to I}, and ¢ = p(I;)/A(I}). Then p(p, py) < 0.
Suppose for some ¢
T IOg Nﬂn (63 5)
im——2——=
—0 log(1/e)
Then there are a < d and ¢y > 0 such that N, (e,6) < e for all € < €.
Hence for any such e there are N, (e,0) balls {B:} with p,(U;B) > 1 — 4.
But then

<d.

L=0 < uy(JB) =D MU B < e B,
i k i i
where C'(n) = maxc]. It means that Ny(e,dp) < ¢ for all € < ¢, where

0o =1—(1-0)/C(n). Hence we have

i 108 Nax(e, do)

_— d
20 log(1/€) sasa

which contradicts the assumption that Cr.()\) > d. O
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PRrROOF OF THEOREM 2.3. By Lemmas 2.1,2.3 for any €, 9, v, i1, b, — 4 as in
the statements of the lemmas we have
Ny(e+v,6+v) < lim N, (e,0) < lim N, (€,6) < N,(e,0)
n—oo n—00
As € or § increase, N, (e,6) decreases. Fix p € P(X). Consider all lines
0 = €+ o on the plane with « rational. On each of these lines N,(e,9) is
monotone; so it has countably many discontinuities there. All but countably
many lines § = dg do not pass through any of these discontinuities. Denote the
set of such d¢’s by D,,. For each 6y € D,, there is a dense set E,(0) = {dp — ¢ |
a € Q} such that for § € D, e € E,(0) we have N, (e+v,0+v) — N,(€,0) as
v — 0. It follows that for § € D,,e € E,(6) all the inequalities above become
equalities, which means N, (¢, d) = limy, o0 Ny, (€,9) for any g, — p, making
No(€,0) continuous at p.
By Lemma 2.4 we can choose a countable dense set of measures
—log(N,(e,6
M {pepx) it i R ) 5 41
5 =0 log(1/e)
Let D =n{D, | p € M}. D contains all but countably many points of (0, 1).
Pick any § € D. Fix n > 0,¢9 > 0. For any p € M there is €1 < ¢y such that

log N, (€1, 9) 7
1og(1/611) ~d=3 (5)

By Lemma 2.2 N, (¢, ) is left continuous. Hence there is an interval (ez, €] on
which N, (e, ) > d—n/2. But E,,(6) is dense in (0, 1); so the set E,(5)N (0, €1)
log (N (€,9))

log(1/€)
an open neighborhood of u such that for any measure v in this neighborhood
we have

is not empty. For any € in this set, is continuous at p; so there is

log N, (e, 0) B log(N,(e,9)) 7

log(1/¢) log(1/) | -2 (©)
Hence by (5) and (6)
log Nu(ea 5) .
log(1/e) =47
> log N, (e, 5
Sup Og V(E, ) > d_n

e<eo  log(1/e)
It follows that for any § € D,n,eg > 0

log(N, (e, 9)) }
Qoo = P(X S s -
o,é,n {/’L € ( ) | ESEGI()) IOg(l/E) > 77
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is an open dense set in P(X). Then

——log(Nu(€,0))
7) X > — ) Q
Qs {M € P( ) | ehnol log(1/e) >d—mnp2 L 1/n,6,m

is residual in P(X). Taking intersections NS, N3°_; Q4 /5 1/m concludes the
proof. [

Theorem 2.4. If X is a compact separable metric space, then a typical mea-
sure 1 € P(X) has a,(v) =0 a.e. with respect to p. If there is a probability
measure X\ € P(X) which is positive on all open sets and has C.(\) > d, then
for a typical measure pn € P(X) also @,(x) > d a.e.

Proor. If dimu =0, by (3) we have o, () =0 a.e.
If Dim, g > d, by (2) we have &,(x) > d a.e. Theorems 2.3 and 2.2 now
give the desired result. O

3 Example

Let us now construct a simple example of a measure p with o, (z) < @,(z)
a.e. The technique used here is common with this type of problem; see, for
instance, Example 5.1 in [15] or a very detailed account of a similar example
in [3].

Consider a Cantor-type set F' C (0,1) constructed as follows. Let {a;}2,
be a sequence of positive integers. Let p1, p2 be positive integers and 71,79 > 0
such that py1m < 1, pare < 1. Replace Iy = [0,1] by p; disjoint intervals of
length r1. Repeat this with each of the resulting intervals and so on. Do this a;
times; then do the same with parameters ps, 72 as times; then again with pq, 7y
as times and so on. Let p be a probability measure which is equally divided
between all intervals on each step. Let ¢ = Zle a;, by = Zle a9, dy, =
Zle azi—1. We will denote by I,, any interval of construction after ¢, steps.

Then for the length of intervals we have

dp.
Lo = r{*rye . |Tapqa| = ri* ' rds,

and for the measure

_ b —d _
(Lon) = py ®p3 %, p(lart1) = py py
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Hence

aop - 108 u(l2r) _ —dilogpi — by logps
2k log | Io| dy logry + by log rg

dy logpy
o 710gp2 by, log pa +1

T ro di logr: ’
0872 by log ra +1

dis1 1
log p(Iok+1) _ logps b lzgg; +1

log |1 ~ logry riilogm 4 g7
g [ Lok 11| gy Sl OBTL 4]

Q2k 41 =

Suppose we choose {a;} so that km (di41/br) > lim (dg/bg) (that is,
— 00

k—o0

. k
lim (agk+1/ D a2:) > 0). Then we have
k—o0 i=1

o= lim 08U g logp(lakg)

=
koo 10g|Iox|  k—oo log|Iog1]

For z € F let now {I,}52, be a sequence of intervals converging to . Let
€x = |I2x|. We have B, (z) D Ia; so

log (Be, (z)) _ log p(L2)
log e, ~ log| Izl

Hence lim w
Lim ===

e—0
of construction is at least c|Ia;11|, where ¢ is the minimal distance between

intervals after the first step. Let 0 = ¢|Ia+1|. Then F N By, (z) C Iagy1; SO

< a. After cop41 steps the distance between two intervals

log 1(Bs, (¢))  log p(I2k+1)
log Oy, ~ loge|lagy1]

Hence lim
e—0

The author thanks Professor G. Edgar for introducing her to this topic and
for his patient guidance of her research.

log (Be()) ~
loge -

References

[1] P. Billingsley, Convergence of Probability Measures (Wiley, 1968).

[2] J. B. Brown, Baire category in spaces of probability measures, Fund. Math,
96 (1977), 189-193.



A TypricaL MEASURE TyPIicALLY HAaS No LocAL DIMENSION 537

[3]

[10]

[11]

[12]

[13]

[15]

[16]

C. D. Cutler, Measure disintegration with respect to o-stable monotone

indices and the pointwise representation of packing dimension, Rend. Circ.
Mat. Palerno(2) Suppl., 28 (1992), 319-339.

C. D. Cutler, The density theorem and Hausdorff inequality for packing
measure in general metric spaces, Illinois J. Math, 39 (1995), 676-694.

K. Falconer, Fractal Geometry: Mathematical Foundations and Applica-
tions (Wiley, 1990).

P. M. Gruber, Dimension and structure of typical compact sets, continua
and curves, Monatsh. Math, 108 (1989), 149-164.

H. Haase, A survey on the dimension of measures, In Topology, Measures
and Fractals, Math. Res. 66 (Akademie Verlag, 1992).

L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), 82-196.

K .R .Parthasarathy, Probability Measures on Metric Spaces (Academic
Press, 1967).

Ya. B. Pesin. On rigorous mathematical definitions of correlation dimen-
sion and generalized spectrum for dimensions, J. Stat. Phys., 71 (1993),
529-547.

M. A. Shereshevsky, A complement to Young’s theorem on measure di-
mension: the difference between lower and upper pointwise dimensions,
Nonlinearity 4 (1991), 15-25.

M. Tamashiro, Dimensions in a separable metric space, Kyushu J. Math
49 (1995), 143-162.

S. J. Taylor, Super Brownian motion is a fractal measure for which the
multifractal formalism is invalid, Fractals 3 (1995), 737-746.

S. J. Taylor, The fractal analysis of Borel measures in R%, J. Fourier Anal.
Appl., Special Issue (1995), 553-568.

S. J. Taylor and C. Tricot, The packing measure of rectifiable subsets of
the plane, Math. Proc. Camb. Phil. Soc., 99 (1986), 285-296.

L-S. Young, Dimension, enthropy and Lyapunov exponents, Ergod. Th.
Dyn.Syst. 2 (1982), 109-124.



