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A TYPICAL MEASURE TYPICALLY HAS
NO LOCAL DIMENSION

Abstract

We consider local dimensions of probability measure on a complete
separable metric spaceX: αµ(x) = lim

r→0

log µ(Br(x))
log r

, αµ(x) = lim
r→0

log µ(Br(x))
log r

.

We show (Theorem 2.1) that for a typical probability measure αµ(x) = 0
and αµ(x) = ∞ for all x except a set of first category. Also αµ(x) = 0
almost everywhere and with some additional conditions on X there is a
corresponding result for upper local dimension: in particular, we show
that a typical measure on [0, 1]d has αµ(x) = d almost everywhere (The-
orem 2.4).

There are similar results concerning “global” dimensions of prob-
ability measures. Theorems 2.2 and 2.3 show in particular that the
Hausdorff dimension of a typical measure on any compact separable
space equals 0 and the packing dimension of a typical measure on [0, 1]d

equals d.

1 Introduction and Preliminaries

Throughout this paper X will denote a separable metric space. Let P(X) be
the space of all Borel probability measures on X. Denote by Br(x) the open
ball with center x and radius r, and by Br(x) the corresponding closed ball.

The Hausdorff dimension of a set A is denoted by dimA, and the packing
dimension by DimA. For definitions see e.g. [5], [8]. We will use the “radius”
definition of Dim, as in [8] and [4] as opposed to the “diameter” definition,
since it allows to avoid some pitfalls in general metric spaces; for example, (4)
is not true in general metric space with the “diameter” definition ([4]).

Upper and lower local dimensions of a measure µ ∈ P(X),

αµ(x) = lim
r→0

logµ(Br(x))

log r
and αµ(x) = lim

r→0

logµ(Br(x))

log r
,
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have been extensively studied (see e.g. [3], [8], [12], [16] and many others).
In particular, they are used to construct the so-called multifractal spectrum
functions such as

fµ(α) = dim{x ∈ suppµ | αµ(x) = α},

where αµ(x) = αµ(x) = αµ(x) if they coincide. These limits are the same for
closed and open balls.

The dimensions, αµ(x) and αµ(x), have been shown to coincide almost
everywhere in some particular cases such as the ergodic invariant measures
of smooth diffeomorphisms with nonzero Lyapunov exponents ([16]). If this
happens, a measure is called regular. The multifractal spectrum was also
computed for such constructions as graph-directed fractals and cookie-cutters
(see e.g [8], where Olsen applies his general multifractal formalism to both
cases). The question arises whether αµ(x) and f(α) can be used to describe
more general situations. We will show that this is in fact not the case for a
typical probability measure (in the sense of category).

Some relations between different notions of regularity are discussed in [14].
There are some results as well describing situations where αµ(x) 6= αµ(x). For
example, Taylor in [13] shows that this happens for super Brownian motion.
Shereshevsky in [11] shows that under some conditions, if µ is an invariant
measure of a smooth diffeomorphism, the set where αµ(x) 6= αµ(x) is dense
and has positive Hausdorff dimension. Finally, Haase in [7] shows that if
x ∈ X, then for a typical measure µ ∈ P(X) (that is, all measures up to a set
of first category) αµ(x) = 0 , and if x is a non-isolated point of X, then for a
typical measure αµ(x) =∞. Theorem 2.1 is basically a generalization of this
result.

An interesting question, connected with this, is about the dimension of a
typical measure, especially Hausdorff and packing dimension. The dimensions
on other spaces have been explored before, such as the dimension of typical
compact set or a graph of typical continuous function. For example, Hausdorff
dimension of a typical compact subset of Rd is 0 and the upper entropy di-
mension is d ([6]). We show later in this paper that the probability measures
behave similarly in this matter.

We will use the following well-known relations.

dim({x ∈ X | αµ(x) ≤ α}) ≤ α. (1)

Dim({x ∈ X | αµ(x) ≤ α}) ≤ α. (2)

If µ(A) > 0, A ⊆ {x ∈ X | αµ(x) ≥ α}, then dimA ≥ α. (3)

If µ(A) > 0, A ⊆ {x ∈ X | αµ(x) ≥ α}, then DimA ≥ α. (4)
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For the proof see e.g. [3], [8]. Note that (4) would not be true for all metric
spaces if packing measure were defined using diameters, but true under some
fairly general conditions.

A weak* topology on P(X) is characterized by the following proposition.

Proposition 1.1. Let µ, {µn}∞n=1 be measures in P(X). Then the following
statements are equivalent.

(a) µn → µ in weak* topology.
(b) lim

n→∞

∫
f dµn =

∫
f dµ for any bounded continuous function f .

(c) lim
n→∞

µn(F ) ≤ µ(F ) for every closed set F .

(d) lim
n→∞

µn(G) ≥ µ(G) for every open set G.

(e) lim
n→∞

µn(A) = µ(A) for every Borel set A with boundary of µ-measure

0.

Proof. This is a version of slightly more general Theorem 6.1 in [9].

If X is complete and separable, P(X) is also complete; so we can use an
expression “a typical measure” to signify that all measures except a set of first
category in P(X) have the desired properties.

Proposition 1.2. The probability measures with finite support are dense in
P(X).

Proof. See Theorem 6.3 in [9].

It follows that P(X) is separable since X is separable.
P(X) with weak* topology can be metrized in several ways. In particular

for X separable a Prokhorov metric p can be used:

p(µ, ν) = inf{ε > 0 |µ(A) ≤ ν(Aε) + ε and

ν(A) ≤ µ(Aε) + ε for any Borel set A},

where Aε is the ε-neighborhood of A in X.
The inequalities (1)-(4) can also be used to establish a connection between

the local and “global” dimensions of a measure. The latter can be computed
in a number of ways. We will need the following definitions.

dim∗ µ = inf{dimY | Y ⊆ X, µ(Y ) = 1}.

dim∗ µ = inf{dimY | Y ⊆ X, µ(Y ) > 0}.

Dim∗ µ = inf{DimY | Y ⊆ X, µ(Y ) = 1}.
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Dim∗ µ = inf{DimY | Y ⊆ X, µ(Y ) > 0}.

C(µ) = lim
δ→0

inf{dimB(Y ) | Y ⊆ X, µ(Y ) ≥ 1− δ},

C(µ) = lim
δ→0

inf{dimB(Y ) | Y ⊆ X, µ(Y ) ≥ 1− δ},

where dimY and DimY denote Hausdorff and packing dimensions correspond-
ingly, and dimBY,dimBY denote upper and lower box dimensions.

Ledrappier dimensions are defined as follows. Suppose µ is supported on
a totally bounded set. Let Nµ(ε, δ) be the minimal number of balls of radius
ε which cover a set of measure greater than 1− δ. Then

CL(µ) = lim
δ→0

lim
ε→0

log(Nµ(ε, δ))

log(1/ε)
,

CL(µ) = lim
δ→0

lim
ε→0

log(Nµ(ε, δ))

log(1/ε)
.

(Here lim
δ→0

is the same as sup
0<δ<1

due to monotonicity.)

Proposition 1.3.
dim∗ µ ≤ CL(µ) ≤ C(µ) and

CL(µ) ≤ C(µ) = Dim∗ µ.

Proof. The last equality is proved in [12]; everything else is proved in [16].

Let us introduce also a few more global characteristics of a measure.

CL∗(µ) = lim
δ→1

lim
ε→0

log(Nµ(ε, δ))

log(1/ε)
,

CL∗(µ) = lim
δ→1

lim
ε→0

log(Nµ(ε, δ))

log(1/ε)
,

(Here lim
δ→1

is the same as inf
0<δ<1

.)

C∗(µ) = inf{dimBY | Y ⊆ X,µ(Y ) > 0} and

C∗(µ) = inf{dimBY | Y ⊆ X,µ(Y ) > 0}.

Proposition 1.4.

CL∗(µ) ≤ CL∗(µ) ≤ C∗(µ) = Dim∗ µ.
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Proof. The first two inequalities are obvious, as is the inequality Dim∗ µ ≤
C∗(µ). For any D > Dim∗ µ there is a set Y ⊆ X such that µ(Y ) > 0 and
DimY < D. Note that DimY = inf{supi dimBAi | Y ⊆ ∪Ai} (for proof
see e.g. [5], p.48; it is proved for Y ∈ Rn there, but the proof works for a
general metric space with “radius” definition of packing dimension). Hence
there is at most countable collection of sets {Ai} such that supi dimBAi < D
and µ(∪Ai) ≥ µ(Y ) > 0. It follows that there is an Ai with µ(Ai) > 0,
dimBAi < D. Hence Dim∗ µ ≥ C∗(µ).

Proposition 1.5. Let µ be a probability measure on a compact space X. If
for some d there are numbers c > 0 and R > 0 such that µ(Br(x)) ≤ crd for
all x ∈ X, 0 < r < R, then CL∗(µ) ≥ d.

Proof. Suppose that for some δ lim
ε→0

logNµ(ε,δ)
log(1/ε) < d. Then there are a < d and

εl ↓ 0, εl < R such that Nµ(εl, δ) < ε−al for all l. Hence for any l there are
Nµ(εl, δ) balls {Biεl} with µ(∪iBiεl) > 1− δ. But then

1− δ < µ(
⋃
i

Biεl) ≤ cNµ(εl, δ)ε
d
l < cεd−al for all l,

which contradicts the fact that εd−al → 0.

2 Main Results

Theorem 2.1. Let X be a complete separable metric space. Then for a typical
measure µ in P(X) there is a residual Borel set Aµ in X such that for any
x ∈ Aµ we have αµ(x) = 0. If X has no isolated points, then in addition we
can have αµ(x) =∞ for x ∈ Aµ.

Proof. If µn → µ in weak* topology, then limn→∞µn(G) ≥ µ(G) for all open
G and limn→∞µn(F ) ≤ µ(F ) for all closed F (Proposition 1.1). It follows that

for fixed x and r the ratio log µ(Br(x))
log r is lower semicontinuous and log µ(Br(x))

log r
is upper semicontinuous with respect to µ.

Consider closed balls first. Then

Ωa,x,R =

{
µ ∈ P(X) | sup

r<R

logµ(Br(x))

log r
> a

}
=
⋃
r<R

{
µ ∈ P(X) | logµ(Br(x))

log r
> a

}
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is open for any R > 0, a > 0, x ∈ X. Now we want to show that Ωa,x,R is dense

in P(X). Let µ ∈ P(X) and suppose that µ /∈ Ωa,x,R, that is, log µ(Br(x))
log r ≤ a

for all r < R. Fix any ε > 0. If µ({x}) 6= 0, in case X has no isolated points
we can find a measure ν ∈ P(X) such that ρ(µ, ν) < ε/2, and ν({x}) = 0.
Otherwise let ν = µ. We construct µε ∈ P(X) as follows. Pick some s > a and
some r < R such that ν(Br(x)) < ε/4. Let µε(Br(x)) = rs and µε(A) = Cν(A)
for A ⊆ X\Br(x), where C = (1 − rb)/(1 − µ(Br(x))) so that µε(X) = 1.

Then log µ(Br(x))
log r > a and ρ(µ, µε) ≤ ε/2 + ε/4 + (C − 1)(1 − µ(Br(x))) =

3ε/4 + (1− rb)− 1 + µ(Br(x)) < ε. Hence Ωa,x,R is dense in P(X).
Let {xi}∞i=1 be a countable dense subset of X. Then

Ωa,R =

{
µ ∈ P(X) | sup

r<R

logµ(Br(xi))

log r
> a for all i

}
is a countable intersection of open dense sets, i.e. residual for any a,R > 0.

The same is true for Ωa =
⋂
n

Ωa,1/n. Now log µ(Br(x))
log r is also lower semicontin-

uous with respect to x; so

Aa,µ,R =

{
x ∈ X | sup

r<R

logµ(Br(x))

log r
> a

}
is open for any a > 0, R > 0, µ ∈ P(X). For any fixed µ ∈ Ωa, Aa,µ,1/n is
open and dense (since {xi}∞i=1 ⊆ Aa,µ,1/n). Hence

Aa,µ =
⋂
n

Aa,µ,1/n =

{
x ∈ X | sup

r<1/n

logµ(Br(x))

log r
> a for all n ≥ 1

}

is residual in X. But

Aa,µ ⊆
{
x ∈ X | lim

r→0

logµ(Br(x))

log r
≥ a

}
;

so

Ωa ⊆
{
µ ∈ P(X) | lim

r→0

logµ(Br(x))

log r
≥ a on a residual subset of X

}
.

Now take the intersection Ω = (
⋂∞
n=1 Ω1/n) and let the corresponding subset

of X for a fixed µ ∈ Ω be Aµ =
⋂∞
n=1A1/n,µ. This concludes the proof for the

upper local dimension.
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The proof is similar for the lower local dimension. Using open balls, we
can show that

Ωb =

{
µ ∈ P(X) | lim

r→0

logµ(Br(x))

log r
≤ b on a residual subset of X

}
is residual for any b > 0. We need only to change sup to inf and reverse
inequality signs in the proof above. (Also we will not need to consider the
case µ({x}) 6= 0 separately, just take µε = rs for some s < b and some small
enough r < R; so the condition that X has no isolated points is not necessary
here).

Take the intersection Ω = (
⋂∞
n=1 Ω1/n) to conclude the proof for αµ(x).

Then Ω∩Ω gives the residual set of measures for which αµ(x) = 0, αµ(x) =∞
for most x ∈ X.

The natural question arising next is whether we can take A to be a set of
positive measure. By (4), of course, we cannot have αµ(x) > DimX on a set
of positive measure; so we can hope only to get αµ(x) = DimX. We will show
that we can in fact have αµ(x) = 0 and αµ(x) = DimX almost everywhere
with some additional conditions on X for the latter. To this end we need first
to consider the “global” dimension of a typical measure.

Theorem 2.2. If X is a compact separable metric space, a typical measure
µ ∈ P(X) has dim∗ µ = CL(µ) = 0.

Theorem 2.3. Let X be a compact separable metric space. Suppose there
exists a probability measure λ ∈ P(X) which is positive on all open sets and
has CL∗(λ) ≥ d. Then a typical measure µ ∈ P(X) has Dim∗ µ ≥ CL∗(µ) ≥ d.

Note. This is true, in particular, with λ being a Lebesgue measure on [0, 1]d.
We can also let X be a self-similar fractal set of Hausdorff dimension d, with
λ being a Hausdorff measure Hd. See Proposition 1.5.

We will need several lemmas to prove these theorems. In what follows, we
will use the open balls in definition of Nµ(ε, δ), which does not change the
limits.

Lemma 2.1. For X a compact separable metric space, Nµ(ε, δ) is upper semi-
continuous with respect to µ.

Proof. Let µn → µ and N0(ε, δ) = lim
n→∞

Nµn(ε, δ). Since Nµn(ε, δ) is integer,

taking subsequences if needed, we may assume that Nµn(ε, δ) = N0(ε, δ). For
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any N < N0(ε, δ) the inequality Nµn(ε, δ) > N means that for any N open
balls {Bε(xi)}Ni=1 we have µn(∪Ni=1Bε(xi)) ≤ 1− δ. Hence

µ

(
N⋃
i=1

Bε(xi)

)
≤ lim
n→∞

µn

(
N⋃
i=1

Bε(xi)

)
≤ 1− δ from Proposition 1.1,

so Nµ(ε, δ) > N . It follows that Nµ(ε, δ) ≥ N0(ε, δ).

Proof of Theorem 2.2. Since Nµ(ε, δ) is upper semicontinuous with re-

spect to µ by Lemma 2.1, so is
log(Nµ(ε,δ))

log(1/ε) . Hence

Ωa,ε0,δ =

{
µ ∈ P(X) | inf

ε<ε0

log(Nµ(ε, δ))

log(1/ε)
< a

}
is open for any a, ε0 > 0, 0 < δ < 1. To show that Ωa,ε0,δ is dense in P(X),
let µ ∈ P(X). For any ρ > 0 by Proposition 1.2 there is a measure µρ with
finite support such that p(µ, µρ) < ρ. It means that for any δ, Nµρ(ε, δ) stays
bounded as ε → 0; so for any a > 0, ε0 > 0 there is an ε < ε0 such that
logNµρ (ε,δ)

log(1/ε) < a. Now we have

Ωa,δ =

{
µ ∈ P(X) | lim

ε→0

log(Nµ(ε, δ))

log(1/ε)
≤ a

}
⊇
∞⋂
n=1

Ωa,1/n,δ,

and this intersection is a dense Gδ set for any a > 0, 0 < δ < 1. Taking
intersections ∩∞n=1 ∩∞m=1 Ω1/n,1/m, we get the result.

Note. The result concerning Hausdorff dimension can also be shown as fol-
lows. By Theorem 2.1 and (1) there is a residual Borel set A ⊆ X with
dimA = 0. It can be shown (see proof of Lemma 2 in [2]) that for any residual
Borel set in X there is a residual set of measures in P(X) concentrated on
this set. But then for a typical measure µ ∈ P(X) we have µ(A) = 1; so
dim∗ µ = 0.

Lemma 2.2. For X a compact separable metric space, Nµ(ε, δ) is left contin-
uous with respect to ε.

Proof. Let ε be a discontinuity point of Nµ(ε, δ) and let εn ↑ ε. Let N0 =
limεn→εNµ(εn, δ) (which exists since Nµ(ε, δ) is a decreasing function of ε).
Since Nµ(ε, δ) is integer, for large n we have Nµ(εn, δ) = N0. Pick any N < N0

and any N open balls {Bε(xi)}Ni=1. Then for large n we have µ(∪Ni=1Bεn(xi)) ≤
1− δ. Hence µ(∪Ni=1Bε(xi)) = limn→∞ µ(∪Ni=1Bεn(xi)) ≤ 1− δ; so Nµ(ε, δ) >
N . By monotonicity Nµ(ε, δ) = N0.
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Lemma 2.3. If X is a compact separable metric space, for any µ, {µn}∞n=1

with µn → µ, any ε > 0, 0 < δ < 1, 0 < ν < min(δ, 1− δ) we have

Nµ(ε+ ν, δ + ν) ≤ lim
n→∞

Nµn(ε, δ).

Proof. Let N0(ε, δ) = lim
n→∞

Nµn(ε, δ). Since Nµn(ε, δ) is integer, taking sub-

sequences we can assume that Nµn(ε, δ) = N0(ε, δ). This means that for each

n there are N0(ε, δ) balls Bε(x
n
i ) such that µn(∪N0

i=1Bε(x
n
i )) > 1− δ.

Pick any ν as in the statement of the lemma. For large enough n we have
p(µn, µ) < ν, where p is a Prokhorov metric. For any Borel set A we have

then µn(A) ≤ µ(Aν) + ν. Let A =
N0⋃
i=1

Bε(x
n
i ). Then Aν =

N0⋃
i=1

Bε+ν(xni ); so

we have

µ(

N0⋃
i=1

Bε+ν(xni )) ≥ µn(

N0⋃
i=1

Bε(x
n
i ))− ν > 1− δ − ν.

Hence Nµ(ε+ ν, δ + ν) ≤ N0(ε, δ).

Lemma 2.4. Let X be a compact metric space. Suppose there exists a proba-
bility measure λ ∈ P(X) which is positive on all open sets and has CL∗(λ) ≥ d.
Then the set of measures with CL∗(µ) ≥ d is dense in P(X).

Proof. Pick any µ ∈ P(X) and η > 0. Since λ is positive on balls, using finite

cover of X by balls of radius η/2 we can construct an η-partition {Iηk}
K(η)
k=1 of X

with |Iηk | < η and λ(Iηk ) > 0 for all k. Construct a new measure µη =
∑
k

cηkλ
η
k,

where ληk is λ restricted to Iηk , and cηk = µ(Iηk )/λ(Iηk ). Then p(µ, µη) ≤ η.
Suppose for some δ

lim
ε→0

logNµη (ε, δ)

log(1/ε)
< d.

Then there are a < d and ε0 > 0 such that Nµη (ε, δ) < ε−a for all ε < ε0.
Hence for any such ε there are Nµη (ε, δ) balls {Biε} with µη(∪iBiε) > 1 − δ.
But then

1− δ < µη(
⋃
i

Biε) =
∑
k

cηkλ
η
k(
⋃
i

Biεl) ≤ C(η)λ(
⋃
i

Biε),

where C(η) = max cηk. It means that Nλ(ε, δ0) ≤ ε−a for all ε < ε0, where
δ0 = 1− (1− δ)/C(η). Hence we have

lim
ε→0

logNλ(ε, δ0)

log(1/ε)
≤ a < d,

which contradicts the assumption that CL∗(λ) ≥ d.
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Proof of Theorem 2.3. By Lemmas 2.1,2.3 for any ε, δ, ν, µ, µn → µ as in
the statements of the lemmas we have

Nµ(ε+ ν, δ + ν) ≤ lim
n→∞

Nµn(ε, δ) ≤ lim
n→∞

Nµn(ε, δ) ≤ Nµ(ε, δ)

As ε or δ increase, Nµ(ε, δ) decreases. Fix µ ∈ P(X). Consider all lines
δ = ε + α on the plane with α rational. On each of these lines Nµ(ε, δ) is
monotone; so it has countably many discontinuities there. All but countably
many lines δ = δ0 do not pass through any of these discontinuities. Denote the
set of such δ0’s by Dµ. For each δ0 ∈ Dµ there is a dense set Eµ(δ) = {δ0−α |
α ∈ Q} such that for δ ∈ Dµ, ε ∈ Eµ(δ) we have Nµ(ε+ν, δ+ν)→ Nµ(ε, δ) as
ν → 0. It follows that for δ ∈ Dµ, ε ∈ Eµ(δ) all the inequalities above become
equalities, which means Nµ(ε, δ) = limn→∞Nµn(ε, δ) for any µn → µ, making
N•(ε, δ) continuous at µ.

By Lemma 2.4 we can choose a countable dense set of measures

M⊆
{
µ ∈ P(X) | inf

δ
lim
ε→0

log(Nµ(ε, δ))

log(1/ε)
≥ d
}
.

Let D = ∩{Dµ | µ ∈M}. D contains all but countably many points of (0, 1).
Pick any δ ∈ D. Fix η > 0, ε0 > 0. For any µ ∈M there is ε1 < ε0 such that

logNµ(ε1, δ)

log(1/ε1)
> d− η

2
. (5)

By Lemma 2.2 Nµ(ε, δ) is left continuous. Hence there is an interval (ε2, ε1] on
which Nµ(ε, δ) > d−η/2. But Eµ(δ) is dense in (0, 1); so the set Eµ(δ)∩(0, ε1)

is not empty. For any ε in this set, log(N•(ε,δ))
log(1/ε) is continuous at µ; so there is

an open neighborhood of µ such that for any measure ν in this neighborhood
we have ∣∣∣∣ logNν(ε, δ)

log(1/ε)
− log(Nµ(ε, δ))

log(1/ε)

∣∣∣∣ < η

2
. (6)

Hence by (5) and (6)
logNν(ε, δ)

log(1/ε)
> d− η;

so

sup
ε<ε0

logNν(ε, δ)

log(1/ε)
> d− η.

It follows that for any δ ∈ D, η, ε0 > 0

Ωε0,δ,η =

{
µ ∈ P(X) | sup

ε<ε0

log(Nµ(ε, δ))

log(1/ε)
> d− η

}
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is an open dense set in P(X). Then

Ωδ,η =

{
µ ∈ P(X) | lim

ε→0

log(Nµ(ε, δ))

log(1/ε)
≥ d− η

}
⊇
∞⋂
n=1

Ω1/n,δ,η

is residual in P(X). Taking intersections ∩∞n=1 ∩∞m=1 Ω1/n,1/m concludes the
proof.

Theorem 2.4. If X is a compact separable metric space, then a typical mea-
sure µ ∈ P(X) has αµ(x) = 0 a.e. with respect to µ. If there is a probability

measure λ ∈ P(X) which is positive on all open sets and has CL∗(λ) ≥ d, then
for a typical measure µ ∈ P(X) also αµ(x) ≥ d a.e.

Proof. If dimµ = 0, by (3) we have αµ(x) = 0 a.e.

If Dim∗ µ ≥ d, by (2) we have αµ(x) ≥ d a.e. Theorems 2.3 and 2.2 now
give the desired result.

3 Example

Let us now construct a simple example of a measure µ with αµ(x) < αµ(x)
a.e. The technique used here is common with this type of problem; see, for
instance, Example 5.1 in [15] or a very detailed account of a similar example
in [3].

Consider a Cantor-type set F ⊂ (0, 1) constructed as follows. Let {ai}∞i=1

be a sequence of positive integers. Let p1, p2 be positive integers and r1, r2 > 0
such that p1r1 < 1, p2r2 < 1. Replace I0 = [0, 1] by p1 disjoint intervals of
length r1. Repeat this with each of the resulting intervals and so on. Do this a1
times; then do the same with parameters p2, r2 a2 times; then again with p1, r1
a3 times and so on. Let µ be a probability measure which is equally divided
between all intervals on each step. Let ck =

∑k
i=1 ai, bk =

∑k
i=1 a2i, dk =∑k

i=1 a2i−1. We will denote by In any interval of construction after cn steps.

Then for the length of intervals we have

|I2k| = rdk1 rbk2 , |I2k+1| = r
dk+1

1 rbk2 ,

and for the measure

µ(I2k) = p−dk1 p−bk2 , µ(I2k+1) = p
−dk+1

1 p−bk2 .



536 Julia Genyuk

Hence

α2k :=
logµ(I2k)

log |I2k|
=
−dk log p1 − bk log p2
dk log r1 + bk log r2

= − log p2
log r2

dk
bk

log p1
log p2

+ 1

dk
bk

log r1
log r2

+ 1
,

α2k+1 :=
logµ(I2k+1)

log |I2k+1|
= − log p2

log r2

dk+1

bk

log p1
log p2

+ 1
dk+1

bk

log r1
log r2

+ 1
.

Suppose we choose {ai} so that lim
k→∞

(dk+1/bk) > lim
k→∞

(dk/bk) (that is,

lim
k→∞

(a2k+1/
k∑
i=1

a2i) > 0). Then we have

α = lim
k→∞

logµ(I2k)

log |I2k|
< lim
k→∞

logµ(I2k+1)

log |I2k+1|
= α

For x ∈ F let now {In}∞n=0 be a sequence of intervals converging to x. Let
εk = |I2k|. We have Bεk(x) ⊇ I2k; so

logµ(Bεk(x))

log εk
≤ logµ(I2k)

log |I2k|
.

Hence lim
ε→0

log µ(Bε(x))
log ε ≤ α. After c2k+1 steps the distance between two intervals

of construction is at least c|I2k+1|, where c is the minimal distance between
intervals after the first step. Let δk = c|I2k+1|. Then F ∩Bδk(x) ⊆ I2k+1; so

logµ(Bδk(x))

log δk
≥ logµ(I2k+1)

log c|I2k+1|
.

Hence lim
ε→0

log µ(Bε(x))
log ε ≥ α.

The author thanks Professor G. Edgar for introducing her to this topic and
for his patient guidance of her research.
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