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RESONANCES FOR GRAPH DIRECTED
MARKOV SYSTEMS

Abstract

In this paper we introduce and study a certain zeta function and
its zeros for conformal graph directed Markov systems (GDMS). These
zeros are referred to as resonances.

We specify a list of geometric, combinatoric and analytic conditions
on the GDMS under which this zeta function is indeed well defined and
even holomorphic on the whole complex plane. In addition, we prove
that there is a half-plane where there are no zeros. Finally, we transfer a
result of Guillopé et al. in [15] on the zeros of the Selberg zeta function
to our setting. More precisely, we give an upper bound for the number
of resonances in a strip in terms of the Hausdorff dimension of the limit
set of the GDMS.

We also briefly discuss relations to other zeta functions, in particular
to the Selberg zeta function associated to a Kleinian group of Schottky
type and to the geometric zeta function associated to a fractal string.
Since the definition of the zeta function introduced in our paper is based
on the transfer operator associated to the GDMS, these relations to other
zeta functions indicate that our zeta function is a natural generalization
of these zeta functions to conformal GDMSs.

1 Introduction

Graph directed Markov systems (GDMS) were introduced by Mauldin and
Urbanski (see e.g. [20]). These systems form a significant generalization of
the concept of an iterated function system (IFS) in fractal geometry. A large
class of fractals can be described as limit sets obtained by iterating the maps
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of such systems. Examples range from the well known middle third Cantor
set to limit sets of certain types of Kleinian groups and Julia sets of a wide
class of maps called parabolically semi hyperbolic generalized polynomial-like
maps (c.f.g. [34]).

In this paper we consider a certain kind of zeta function associated to a
finitely generated conformal GDMS which, in addition, satisfies a geometric
condition referred to as nestedness condition (NC). This type of zeta function
will be a kind of Ruelle zeta function, and hence, can be considered as a
dynamical zeta function. The zeros of this function will be called resonances.
We generalize a result in [15] on zeros of the Selberg zeta function to this type
of Ruelle zeta function for the above mentioned GDMSs.

This zeta function will be defined via the determinant of the identity oper-
ator minus the complexified Frobenius-Perron-Ruelle-operator, which we shall
refer to as FPR-Operator. The latter operator will act on a Hilbert space of
complex valued functions defined in a complex neighborhood of the limit set of
the GDMS. The main results of this paper are summarized in the following the-
orems (for the definitions see Section 2). Throughout, we write a(w) � b(w)
if there is a constant c > 0 (i.e. independent of w) with a(w) ≤ c · b(w). We
also write a(w) � b(w) if a(w)� b(w) and b(w)� a(w).

Main Theorem 1. Let S be a finitely generated conformal GDMS acting on
Rm, which satisfies the strong separation condition (SSC) and the nestedness
condition (NC). Then the complexification Lw of the Frobenius-Perron-Ruelle-
operator associated to S as defined in Definition 12 is of trace class and the
zeta function ζ : w 7→ det(1 − Lw) is analytic on the whole complex plane.
Moreover, there exists c > 0 such that ζ has no zeros in the half-plane {w ∈
C | Re(w) > c}.

If the GDMS S is primitive, we investigate some relations between this zeta
function and the Hausdorff dimension of the limit set of S, which we denote
by δ(S).

Main Theorem 2. Let S be as in Main Theorem 1. Further assume that S
is primitive, then the following holds.

1. The zeta function ζ has no zeros in the half-plane

{w ∈ C | Re(w) > δ(S)}.

2. Let c > 0 be fixed, then for every w ∈ {z ∈ C | Re(z) > −c and
| Im(z)| > 1} we have

log |ζ(w)| � eδ(S)·log(| Im(w)|).
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Finally, for fixed c > 0 we consider the set of resonances in the half-plane
{z ∈ C | − c < Re(z)}, which by the first statement of Main Theorem 2
equals the set of resonances in {z ∈ C | − c < Re(z) < δ(S)}. Since in general
there are infinitely many resonances in this half-plane, we rather consider the
number of resonances in the area

Ac(k) := {z ∈ C | − c < Re(z) and | Im(z)| ≤ k}.

Let nζ(Ac(k)) denote the number of zeros of ζ in Ac(k) counted with multiplic-
ity. By combining Main Theorem 2 with standard techniques from complex
analysis, we give the following upper bound for the growth of the number of
resonances.

Main Theorem 3. Let S be as in Main Theorem 2. For fixed c > 0 and for
all k sufficiently large the number of resonances in Ac(k + 1) \ Ac(k) counted
by multiplicity is bounded by a constant multiple of kδ(S), where the constant
does not depend on k, namely

nζ (Ac(k + 1) \Ac(k))� kδ(S).

In Section 2.1.1 we give a quick introduction to conformal GDMSs. In
Section 2.1.3 we introduce the zeta function which we consider for finitely
generated conformal GDMSs. In Sections 2.2.1 and 2.2.2 we recall all geo-
metric and analytic preliminaries necessary for the proofs of our results. In
Section 2.2.3 we prove Main Theorem 1 and the first statement of Main The-
orem 2, while the proofs of the estimates stated in Main Theorem 2 and Main
Theorem 3 are presented in Section 2.3. More precisely, in Section 2.3.2 we
derive the upper bound for the modulus of this zeta function. This upper
bound will be the main ingredient in the proof of the upper bound for the
number of resonances in Main Theorem 3.

We conclude the paper by presenting a short comparison of ζ to other zeta
functions. In Section 3.1 we mention some of the differences between ζ and
the zeta function obtained if one does not consider the complexification. In 3.2
we give a short review of the geometric zeta function associated to a fractal
string, while in 3.3 we recall that in the case of a GDMS coming from the
action of a Kleinian group of Schottky type ζ actually equals the Selberg zeta
function.

2 Resonances for GDMSs

Throughout this paper we study a finitely generated conformal GDMS S acting
on Rm. For the convenience of the reader we include a short introduction to
such systems.
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2.1 Basic notions

2.1.1 Basic notions of finitely generated GDMSs

In this section we collect some of the important basic geometric concepts
necessary for the proof of our results. We begin by giving a detailed definition
of a finitely generated GDMS. Note that each of these systems is based on a
directed multigraph and not a graph. The finite multigraph consists of a finite
set V of vertices and a finite set of directed edges E.

Definition 1. A finitely generated graph directed Markov system (fgGDMS)
S is defined by an octuple (V,E, i, t, A, {Xv}v∈V , `, {φe}e∈E) given by the fol-
lowing list.

• A non-empty finite set V of vertices.

• A finite set E of directed edges.

• Two maps i, t : E → V, which assign to each edge e ∈ E its initial vertex
i(e) and terminal vertex t(e).

• A (cardE)×(cardE)-matrix A with entries in {0, 1}, which is also called
transition matrix or edge incident matrix, since it determines which paths
are to be admissible, that is, which edges may follow a given edge, and
which satisfies that whenever Ae,f = 1 then t(e) = i(f).

• A collection {Xv}v∈V of pairwise disjoint non-empty compact connected
subsets Xv ⊂ Rm of a fixed Rm, which are closures of open sets, that is
Xv = Int(Xv).

• Some constant ` ∈ (0, 1) .

• Injective contractions φe : Xi(e) → Xt(e) with Lipschitz constants less
than ` ∈ (0, 1) .

We now recall some basic facts about fgGDMSs. For fgGDMSs these are
well known, and we refer to the textbook [20] for the proofs and details.

For a fgGDMS S, we define the set of admissible words of length n ∈ N by

En :=
{

(e1, . . . , en) | ei ∈ E such that Aei,ei+1 = 1 for all i ≥ 1
}
.

Also, let E∞ denote the set of infinite (admissible) words, and define the set
of finite (admissible) words by E∗ :=

⋃
n∈NE

n.
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Definition 2. We define the limit set L(S) of a fgGDMS S by

L(S) :=
⋂
n∈N

⋃
(e1,...,en)∈En

φen ◦ . . . ◦ φe1
(
Xi(e1)

)
.

It is well known that the set L(S) can be identified with the set of infinite
words E∞ (see e.g. [20, p.2]). We require the following properties.

Definition 3. A fgGDMS S satisfies the strong separation condition (SSC)
if for all e, f ∈ E with e 6= f,

φe
(
Xi(e)

)
∩ φf

(
Xi(f)

)
= ∅.

Definition 4. A fgGDMS S satisfies the bounded distortion property (BDP)
if there exists a constant c ≥ 1 such that

1

c
· ‖φ′e (y) ‖ ≤ ‖φ′e (x) ‖ ≤ c · ‖φ′e (y) ‖,

for all e ∈ E∗ and x, y ∈ Xi(e). Here, ‖φ′e (x) ‖ is any norm on the linear
mappings on Rm (all such norms are equivalent).

Definition 5. A fgGDMS S satisfies the nestedness condition (NC) if for
each e ∈ E there is an open set U ⊂ Xt(e) such that φe

(
Xi(e)

)
⊂ U.

Definition 6. A fgGDMS S is said to be primitive if there exists a p ≥ 1
such that all entries of Ap are positive.

Note that in order for a fgGDMS to be primitive it is necessary that the
multigraph (V,E) is connected.

Finally, we adapt the definition of a conformal GDMS of [20] to our setting
as follows.

Definition 7. A fgGDMS S is said to be conformal if the following conditions
are satisfied.

• For every vertex v ∈ V there exists an open set Wv such that Xv ⊂
Wv. Moreover, for every e ∈ E the map φe extends to a C1-conformal
diffeomorphism from Wi(e) to Wt(e).

• (Cone property) For every v ∈ V there exist l > 0, γ ∈ (0, π/2), such
that for every x ∈ Xv there exists an open cone Cone(x, γ, l) ⊂ Int(Xv)
with vertex x, central angle of measure γ, and altitude l.
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• There exists a constant c > 0 such that for every e ∈ E and all x, y ∈
Xi(e) the following holds:

| ‖φ′e (x) ‖ − ‖φ′e (y) ‖ | ≤ c|x− y|.

• The strong separation condition (SSC) is satisfied.

Remark: Definition 7 is a restricted version of the definition of a finitely
generated conformal GDMS in [20, p.72]. The only difference is that we require
SSC, while in [20] only the weaker open set condition was assumed. Hence,
the conformal fgGDMSs as defined above are conformal GDMSs in the sense
of [20]. It is well known that every conformal GDMS satisfies BDP (see [20,
(4f),p73]).

Let us recall that a C1 diffeomorphism φ : U → Rm, where m ≥ 1, from an
open connected set U ⊂ Rm to Rm is conformal if its derivative at every point
of U is a similarity map (cf. [20, p.62]). Note that for m = 1, C1-conformality
means that the maps φe are monotone C1 diffeomorphisms, for each e ∈ E. For
m = 2, C1-conformal maps are holomorphic or antiholomorphic. For m ≥ 3,
conformal maps between domains in Rm are of the form x 7→ λAi (x)+b, where
λ > 0, b ∈ Rm, A ∈ O (m) and i is either the identity or an inversion. Here,
O (m) denotes the orthogonal group. (This is Liouville’s Theorem; a proof can
be found for example in [6](Theorem A.3.7).) Recall that the inversion at the
unit circle around zero is given by x 7→ x

‖x‖2 , and this is C∞ in Rm \ {0} (see

[6, Proposition A.3.1]). Since ‖x‖2 = x2
1 + . . .+x2

m, it immediately follows that
this inversion is real analytic on Rm \ {0}. Also, since it maps zero to ∞ and
since in a fgGDMS the maps φe map compact sets to compact sets, it follows
that the centre of the circle associated to the inversion is not included in the
corresponding compact domain. This implies that for conformal fgGDMSs
the maps φe are real analytic on the open sets Wi(e), and that the ‖φ′e‖ are
non-zero.

2.1.2 Basic notions of functional analysis

In this section we recall the main definitions and facts from functional analy-
sis which will be required later. (For a comprehensive introduction to func-
tional analysis we refer to [24], [25] and [13].) In what follows, let H, H1

and H2 denote Hilbert spaces. The inner product in H will be denoted
by 〈 ·, · 〉H and we drop the subscript if it is clear from the context which
Hilbert space is meant. The operator norm of A : H1 → H2 is defined by
‖A‖ := sup {‖Af‖H2

| f ∈ H1, ‖f‖H1
= 1} . A linear operator A : H1 → H2

is called compact if for any bounded subset X ⊂ H1 the image A (X) is
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relatively compact in H2, that is, the closure A (X) is compact. Such an op-
erator is necessarily a bounded operator, and it is therefore continuous. To
each such A corresponds a unique A∗ : H2 → H1, called the adjoint of A,
which is compact and satisfies 〈Ax, y〉H2

= 〈x,A∗y〉H1
, for all y ∈ H2 and

all x ∈ H1. Furthermore, ‖A∗‖ = ‖A‖ (see [26, 4.10]). Also, for a compact
operator A : H → H there is an expansion

A =

N∑
n=0

χn (A) 〈xn, · 〉yn,

where N ∈ N ∪ {0,∞}, χn (A) ∈ R and χn (A) ≥ χn+1 (A) > 0, for all
n ∈ N∪{0} (see [32, Theorem 1.4]). Moreover, {xn}n∈N∪{0} and {yn}n∈N∪{0}
are orthonormal sets in H. Furthermore, the χn (A) are uniquely determined,
and they are referred to as singular values (see [32, Theorem 1.4]). For ease
of exposition, let us only consider the case N = ∞. The resolvent set of A is
defined by ρ (A) := {µ ∈ C | ∃ (µ−A)

−1}. The spectrum of A is defined by
σ (A) := C \ ρ (A) . If A (f) = λ · f, then we call λ = λ (A) an eigenvalue of A
and f ∈ H its associated eigenvector. The dimension of {f ∈ H | A (f) = λf}
is called the geometric multiplicity of λ. Note that if λ is an eigenvalue of
A, we necessarily have that λ ∈ σ (A) . By the well known spectral theorem
for compact operators (see [32, Theorem 1.1]), we have that each non-zero
λ ∈ σ (A) is an eigenvalue of A of finite multiplicity, that σ (A) is countable,
that 0 is the only accumulation point of the non-zero eigenvalues, and hence,
the function z 7→ (z −A)

−1
has a pole at λ. The order of the pole is called the

algebraic multiplicity. In what follows, we always refer to the algebraic mul-
tiplicity only, unless stated otherwise. Furthermore, {λn (A)}n∈N∪{0} refers
to the collection of all non-zero eigenvalues of A repeated according to their
algebraic multiplicity.

Let us make a few more comments about compact operators between two
Hilbert spaces. For this let A : H1 → H2 be a compact operator. Then A∗A :
H1 → H1 is self-adjoint, and hence has only real, non-negative eigenvalues
which are equal to the eigenvalues of AA∗. Therefore, the eigenvectors of
A∗A form an orthonormal basis (see [32, Theorem 1.1]). Let {xn}n∈N∪{0} be

an orthonormal basis of eigenvectors of (A∗A)
1/2

and let {yn}n∈N∪{0} be an

orthonormal basis of eigenvectors of (AA∗)
1/2

. Then we have an expansion
A =

∑∞
n=0

√
λ (A∗A)〈xn, · 〉H2 yn (cf. [32, Proof of Theorem 1.4]). From

this one also sees that the singular values {χn (A)}n∈N∪{0} are the non-zero

eigenvalues of (A∗A)
1/2

, counted according to their multiplicity.
We now recall the min-max principle for singular values (see [32, Theorem

1.5]), which follows from the fact that the singular values of A are exactly the
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non-zero eigenvalues of (A∗A)
1/2

and from the min-max-Theorem for eigen-
values (c.f.g. [25, Theorem XIII.1]).

Lemma 8. Let A : H1 → H2 be a compact operator. Then the singular values
of A form a decreasing sequence with 0 being the only accumulation point.
Also, the n-th singular value χn (A) of A is given by

χn (A) = min
dim(H1,n)=n

max
f∈H⊥1,n

‖A (f) ‖H2

‖f‖H1

.

Here, the minimum is taken over all n-dimensional subspaces H1,n of H1,
while the maximum is taken over all elements in the orthogonal complement
of H1,n.

From this it immediately follows that for any orthonormal basis {xn}n∈N∪{0}
of H1 we have

χn(A) ≤
∞∑
j=n

‖Axj‖. (1)

Remark: Note that in the literature one often finds dim (H1,n) = n + 1,
rather than dim (H1,n) = n. Consequently, one then has that χ1 is the first
singular value, while in our definition the first singular value is χ0.

Recall that a compact operator A : H → H is said to be of trace-class if

‖A‖1 :=

∞∑
n=0

χn (A) <∞.

Let A =
∑∞
n=0 χn (A) 〈xn, · 〉yn be of trace-class. Then, for any choice of or-

thonormal basis {ηn}n∈N∪{0}, the sum
∑∞
n=0 |〈ηn, Aηn〉| converges. Moreover,

the trace

Tr (A) :=

∞∑
n=0

〈ηn, Aηn〉 =

∞∑
n=0

χn (A) 〈xn, yn〉

is independent of the basis (cf. [32, Theorem 3.1]). Furthermore, one can show
that if A is of trace-class, then the series

∑
n∈N∪{0} λn (A) ≤

∑
n∈N∪{0} χn (A)

is absolutely convergent, and the trace ofA satisfies Tr (A) =
∑
n∈N∪{0} λn (A) .

This is Lidskii’s equality (see e.g. [32, Theorem 3.7]). The following definition
is adopted from [13].

Definition 9. For an operator A of trace-class we define the determinant
det (1 +A) by

det (1 +A) :=

∞∏
n=0

(1 + λn (A)) .
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Remark: There are several ways to define det (1 +A) for a trace-class ope-
rator A. For example, in [9] one finds det (1 + zA) := exp (Tr (ln (1 + zA))) ,
for z ∈ C with |z| small, and one then considers an analytic continuation of
this locally holomorphic function.

We finish this section by recalling a well known fact which we need later.
The following is an immediate implication of [32, (5.12)].

Lemma 10. Let A be of trace-class and ‖A‖1 < 1, then we have that

det (1−A) = exp

(
−
∞∑
k=1

1

k
Tr
(
Ak
))

.

2.1.3 Definition of the zeta function

In this section we introduce the zeta function for a conformal fgGDMS used in
the main theorems. This zeta function is a type of Artin-Mazur zeta-function
(cf. [1]), which was generalized by Ruelle in [31], and hence is a type of
dynamical zeta function. For a more comprehensive introduction to dynamical
zeta-functions we refer to [31] and [5] (for further details also see [17]). Roughly
speaking, the zeta function is defined as the Fredholm determinant of the
difference of the identity and the complexified FPR-operator. In the definition
of this function, the particular choice of the underlying function space will be
essential. Here, the functions under consideration are holomorphic, square-
integrable functions defined on a complex neighborhood of the limit set, rather
than on the limit set only. One of the key facts in our investigation will be
that the space of holomorphic L2-functions is a Hilbert space. Furthermore,
it turns out that this function space is somehow more natural, since the so
obtained zeta-function coincides with the Selberg zeta function in the case in
which S represents the action of a convex co-compact Schottky group (see
Section 3.3).

Definition of the real valued FPR-operator

We start by recalling the definition of the usual (that is, not complexified)
version of the FPR-operator. At this point we would like to remark that one
can find many different names attached to this operator in the literature. Often
it is referred to as the Ruelle transfer operator or just the Ruelle operator, since
it was formally introduced by Ruelle in [27]. We refer to it as the Frobenius-
Perron-Ruelle-operator (FPR-operator) in order to stress that one can prove
a kind of Frobenius-Perron theorem for it.
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Definition 11 (Frobenius-Perron-Ruelle-operator). The Frobenius-Perron-
Ruelle operator (FPR-operator) Ls for a conformal fgGDMS S is defined for
s ∈ R, x ∈ L(S) and u : L(S)→ R by

Ls (u) (x) :=
∑
e∈E
‖φ′e (x) ‖su (φe (x)) .

Here, we use the convention that if x /∈ Xi(e), then u (φe (x)) := 0.

Definition of the complexified FPR-operator

Recall that the compact sets Xv of a conformal fgGDMS S are subsets of
Rm. We now want to embed Rm into Cm. For this, let e ∈ E be fixed and
recall that the maps φe and ‖φ′e‖ are real analytic on Wi(e) (see the discussion
following Definition 7). Hence, we can complexify the real power series of
φe and in this way we obtain a complex power series which converges in a
complex neighborhood of its real domain (see [18, Proposition 2.3.15], see also
the discussion at the beginning of [18, Section 2.3.1]). Choose a domain of
convergence for the complexified power series of ‖φ′e‖ and intersect it with a
domain for the complexified power series of φe. This gives a complex domain,
say (Xe)C , on which both, φe and ‖φ′e‖, have holomorphic extensions. These
holomorphic extensions will be denoted by (φe)C , and (‖φ′e‖)C respectively.

Since φe is a contraction on Xi(e) with ‖φ′e‖ < ` < 1, it follows that (φe)C is
contracting on some sufficiently small complex domain containing Xi(e) (with

Lipschitz constant less than `+1
2 ). Therefore, we have that |(‖φ′e‖)C(z)| <

`+1
2 < 1 on some sufficiently small complex domain containing Xi(e). Without

loss of generality, we can assume that this domain is (Xe)C , since otherwise
we can choose (Xe)C to be the intersection of both domains. Moreover, recall
that by Definition 7 we have | ‖φ′e(x)‖ − ‖φ′e(y)‖ | ≤ c|x− y|. In other words,
the maps ‖φ′e‖ are Lipschitz continuous with a uniform Lipschitz constant
c > 0. Hence, without loss of generality we can assume that the holomorphic
extensions (‖φ′e‖)C are also Lipschitz continuous with some uniform Lipschitz
constant. Furthermore, since ‖φ′e‖ > 0, we can assume that | (‖φ′e‖)C (z)| is
bounded away from zero uniformly for all e ∈ E and z ∈ (Xe)C .

For v ∈ V let (Xv)C :=
⋂
e∈E,i(e)=v (Xe)C . Note that this intersection

is again an open domain, since E is finite. For ε > 0, let Bε
(
Xi(e)

)
:=

{z ∈ Cm | dist
(
z,Xi(e)

)
≤ ε}. If the fgGDMS satisfies the nestedness condi-

tion (NC), then by combining the nestedness condition and the observation
that (φe)C

(
Bε
(
Xi(e)

)
∩
(
Xi(e)

)
C

)
⊂ B`·ε

(
Xt(e)

)
with the fact that E is fi-

nite, it follows that one can choose the elements of the sequence {(Xv)C}v∈V
sufficiently small such that the sequence

{
(φe)C

((
Xi(e)

)
C

)}
e∈E is nested in
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(
Xt(e)

)
C . That is, we have that (φe)C

((
Xi(e)

)
C

)
⊂ Ũ ⊂

(
Xt(e)

)
C for some

open set Ũ ⊂
(
Xt(e)

)
C .

Note that by choosing the sets (Xv)C sufficiently small, if necessary, we can
further assume that the sets (Xv)C are pairwise disjoint. This can be done,
since the finitely many sets Xv are pairwise disjoint and hence have a positive
distance to each other.

Finally, let XC :=
⋃
v∈V (Xv)C ⊂ C be the union of the pairwise disjoint

complex sets (Xv)C.

Definition 12 (Complexified FPR-operator). Let H (XC) denote the Hilbert
space of holomorphic L2-functions on XC. Further let Φe denote the com-
position operator on H (XC) given by (Φe (u)) (z) := u ((φe)C (z)) , for each
u ∈ H (XC) , and let De : XC → C be given by De (z) := (‖φ′e‖)C (z) . More-

over, define zw :=
(
|z| · eıArg(z)

)w
with −π ≤ Arg (z) < π.

Then for w ∈ C, z ∈ XC and u ∈ H (XC) , we define the complexified
FPR-operator Lw : H (XC)→ H (XC) by

Lw (u) (z) :=
∑
e∈E

(De (z))
w

(Φe (u)) (z) .

Similarly to Definition 11, we use the convention that if z /∈
(
Xi(e)

)
C , then

(Φe (u)) (z) := 0.

Remark: Note that with −π ≤ Arg (z) < π and the above mentioned
facts regarding (‖φ′e‖)C , we can (by reducing XC if necessary) assume that
the argument Arg ((‖φ′e‖)C (z)) is bounded away from ±π.

One can prove that Lw is a compact operator (see eg. [28, p.234]). In
Proposition 20 we shall show that Lw is of trace-class. With this in mind, we
can now define the zeta function as follows.

Definition 13. The zeta function ζ : C→ C is given for w ∈ C by

ζ (w) := det (1− Lw) .

The zeros of ζ will be referred to as resonances.

2.2 Preparations for the proofs of the main results

2.2.1 Geometric preliminaries

An important tool for studying fractal sets is provided by fractal measures.
Well studied examples of these measures are the Frostman measure for IFSs
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and the Patterson measure for Kleinian groups. As a consequence of the mass
distribution principle, there is a direct connection between these measures
and the Hausdorff dimension of the limit set. We use this connection when we
apply the following theorem.

Theorem 14. Let S be a finitely generated primitive conformal GDMS. Then
there exists an Ahlfors-regular Borel probability measure µ supported on L(S).
Here, Ahlfors-regular means that the measure µ satisfies the following condi-
tion:

µ (B (x, r)) � rdimH L(S) for all x ∈ L(S)

and 0 < r <
1

2
min{diamXv | v ∈ V }.

For the proof we refer to [20, proof of Theorem 4.2.11, p.79].

Using this theorem, we can prove the following lemma.

Lemma 15. For a finitely generated primitive conformal GDMS S acting on
Rm, let φmin := mine∈E ‖φ′e‖∞, and for r > 0 define

E (r) := {e ∈ E∗ | r ≥ diam
(
φe
(
Xi(e)

))
≥ r · φmin}.

We then have that cardE (r) � r−δ(S), where δ (S) := dimH L(S) refers to the
Hausdorff dimension of the limit set L(S) of S.

Proof. Clearly,
⋃
e∈E(r) φe

(
Xi(e)

)
is a cover of Ldyn(S) and hence of L(S),

since the φe(Xi(e)) are compact and E is finite. For 1 > φmax := maxe∈E ‖φ′e‖∞
note that φmax ·diam(A) ≤ diamφf (A) ≤ φmin ·diam(A), for all sets A ⊂ Xi(f)

and all f ∈ E. Hence, a straight forward calculation shows that the multiplic-

ity of this cover is at most log(|φmax|)
log(|φmin|) . By Theorem 14, we have that there exists

an Ahlfors-regular Borel probability measure µ on L(S). Hence, we have

1 = µ (L(S)) = µ

 ⋃
e∈E(r)

φe
(
Xi(e)

) � ∑
e∈E(r)

µ
(
φe
(
Xi(e)

))
� cardE (r) · rδ(S).

2.2.2 Functional analytic preliminaries

In this section we present some important facts from functional analysis which
will be required later. The main aim is to show the following inequality, which
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will be crucial in the proofs of our main results. Namely, for non-empty finite
index sets I and J, and for a family of trace-class operators {Ai,j}(i,j)∈I×J ,
we have that∣∣∣∣∣∣det

1−
∑
i∈I

⊕
j∈J

Ai,j

∣∣∣∣∣∣ ≤
∞∏
l=0

(
1 + ]I max

i∈I,j∈J
χ[ l

]I·]J ] (Ai,j)

)
. (2)

Here, [x] denotes the Gauss bracket (or floor function), and ]I refers to the
cardinality of I. In what follows we require the following lemma.

Lemma 16. Let A : HA → HA and B : HB → HB be compact operators.
For all l ∈ N∪{0}, we have for the l-th singular value χl (A⊕B) of the direct
sum of A and B that

χl (A⊕B) = min {max {χj (A) ;χn (B)} | j + n = l} . (3)

Proof. One easily verifies that the set of singular values of A⊕B is equal to
the union of the singular values of A and B. The assertion in (3) now follows
by a straight forward combinatoric argument.

Proposition 17. For a compact operator A : H → H, let {χn (A)}n∈N∪{0}
denote the decreasing set of singular values. Moreover, let {Aj}j∈{1,...,k} refer
to some finite family of compact operators. Then the following inequalities
hold for all l ∈ N ∪ {0}.

1. |det (1 +A) | ≤
∏∞
n=0 (1 + χn (A)) .

2. χl

(∑k
j=1Aj

)
≤ k ·max

{
χ[ lk ] (Aj) | j ∈ {1, . . . , k}

}
.

3. χl

(⊕k
j=1Aj

)
≤ max

{
χ[ lk ] (Aj) | j ∈ {1, . . . , k}

}
.

Proof. The assertion in 1 is well known and can be found in the literature,
for example in [32] (see there the equation following (3.8), where one has to
set z = 1). In contrast, the assertions of 2 and 3 are less well known, and we
therefore include their proofs.

To prove the assertion in 2, we use Fan’s inequality [32, Theorem 1.7] (see
also [10] and [11]), which states that for compact operators A and B we have
for all l, j ∈ N ∪ {0} that

χl+j (A+B) ≤ χl (A) + χj (B) . (4)
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Now, let {Aj}j∈{1,...,k} be some family of compact, normal operators of
trace-class. For all l ∈ N ∪ {0}, we then have that

χl

 k∑
j=1

Aj

 ≤ min
j1+...+jk=l

{χj1 (A1) + . . .+ χjk (Ak)}

≤ k · max
j=1,...,k

χ[ lk ] (Aj) .

This completes the proof of the assertion in point 2.
In order to prove the assertion in point 3, observe that it is implied by (3),

since for all l ∈ N ∪ {0} we have

χl

 k⊕
j=1

Aj

 = min {max {χj1 (A1) , . . . , χjk (Ak)} | j1 + . . .+ jk = l}

≤ max
j=1,...,k

χ[ lk ] (Aj) .

This completes the proof of the proposition.

Note that we can now use Proposition 17 to obtain the statement in (2) as
follows. By applying first part 1, then part 2, and finally part 3 of Proposition
17, we derive for the family {Ai,j} of bounded normal operators∣∣∣∣∣∣det

1−
∑
i∈I

⊕
j∈J

Ai,j

∣∣∣∣∣∣ ≤
∞∏
l=0

1 + χl

∑
i∈I

⊕
j∈J

Ai,j


≤

∞∏
l=0

1 + ]I max

χ[ l]I ]

⊕
j∈J

Ai,j

 | i ∈ I



≤
∞∏
l=0

(
1 + ]I max

{
χ[ l

]I·]J ] (Ai,j) | i ∈ I, j ∈ J
})

.

In the proof of Main Theorem 2 we also need the following lemma.

Lemma 18. Let {Aj}j∈J be a finite family of trace-class operators. Then, for
each c0 > 0, there exists a constant c1 > 0 such that for all j ∈ J and k ∈ N,
we have that

∞∑
l=0

log

(
1 + c0 ·max

j∈J
χ[ lk ](Aj)

)
≤ c1 · k ·max

j∈J

∞∑
l=0

χl(Aj)� k.
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Proof. Recall that the singular values are positive and bounded from above.
This implies that for each j ∈ J we have

c0 · χ[ lk ](Aj) � log
(

1 + c0 · χ[ lk ](Aj)
)
.

Since J is finite, we obtain that

∞∑
l=0

log

(
1 + c ·max

j∈J
χ[ lk ](Aj)

)
�

∞∑
l=0

c0 ·max
j∈J

χ[ lk ](Aj)

= c0

∞∑
l=0

k ·max
j∈J

χl(Aj)

= c0 · k
∞∑
l=0

max
j∈J

χl(Aj).

Now we have
∑∞
l=0 maxj∈J χl(Aj) ≤

∑∞
l=0

∑
j∈J χl(Aj), which is finite, since

J is finite and the operatorsAj are of trace-class. This completes the proof.

We end this section by giving an estimate for the determinant of a partic-
ular type of finite dimensional matrix, which we shall use in Section 2.2.3.

Lemma 19. Let U ⊂ Rm be open, and let g : U → U be differentiable
and Lipschitz with Lipschitz constant less than 0 < ` < 1. Let g′ denote the
Jacobian of g. We then have for all x ∈ U that

|det (1− g′ (x))| ≥ (1− `)m . (5)

Proof. Since ` > 0 is the Lipschitz-constant of g, we have that each eigen-
value λ(g′) of g′ satisfies the inequality |λ(g′)| < `. Therefore, |1−λ(g′)| ≥ 1−`.
Since the Jacobian g′ is an m×m-matrix, it has exactly m (complex) eigenval-
ues. Hence, det(1 − g′) =

∏m
j=1 (1− λj(g′)) . Combining these observations,

we obtain |det(1− g′)| ≥ (1− `)m.

2.2.3 Combining geometric and analytic facts

In this section we show how the nestedness condition (NC) of the conformal
fgGDMS S comes into play. Namely, we show that Lw is of trace-class, and
the proof mainly relies on the nestedness condition (NC). Furthermore, we
show that there is some half-plane {z ∈ C | Re (z) > c} on which ζ has no
zeros. The proof of this fact will mainly rely on the nestedness condition (NC)
and on an Atiyah-Bott-type fixed point theorem of Ruelle from [28].
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Proposition 20. Let S be a conformal fgGDMS satisfying the nestedness
condition (NC). Then Lw is of trace-class for all w ∈ C.

Proof. The proof will be given in several steps. First fix w ∈ C and note that
it is enough to show that the sum

∑∞
l=1 χl (Lw) is finite. Hence, it is enough

to find appropriate bounds for χl (Lw) . Recall that Lw =
∑
e∈E (De)

w
Φe.

Combining this with (4) (Fan’s inequality), we have that

χl (Lw) ≤ card (E) ·max{χl ((De)
w

Φe) | e ∈ E}.

Clearly, we have that χl ((De)
w

Φe) ≤ ‖ (De)
w ‖∞ · χl (Φe) (see [32, Theo-

rem 1.6]). Also, one immediately verifies that for every w ∈ C we have
‖ (De)

w ‖∞ = supz∈XC
| (De (z))

w |. Moreover, the latter supremum is bounded
from above by some finite constant, since (De)

w
is a continuous map defined

on a compact set. Therefore, we only have to find bounds for χi (Φe) .
For this, we study Φe : H

((
Xt(e)

)
C

)
→ H

((
Xi(e)

)
C

)
. Without loss of ge-

nerality, we can assume that for each e ∈ E there exists a family of open sets
{Bk (e)}Nk=1, for some N ∈ N, which does not depend on e ∈ E, such that

the following holds. Let Bk (e) denote the closure of Bk (e), then
(
Xt(e)

)
C =⋃N

k=1Bk (e) and
(
Xt(e)

)
C \ ∂

(
Xt(e)

)
C =

⋃N
k=1Bk (e), and each Bk (e) is bi-

holomorphic to B1 (0), the closed unit ball in Cm. Let be,k denote this bi-

holomorphic map, so that be,k : Bk (e) → B1 (0). Recall from the discus-
sion preceding Definition 12 that the nestedness condition (NC) implies that
(φe)C

((
Xi(e)

)
C

)
is nested in

(
Xt(e)

)
C and note that this implies that

(φe)C
((
Xi(e)

)
C

)
⊂

N⋃
k=1

be,k
−1
(
Bρ (0)

)
for some ρ ∈ (0, 1) . We can take ρ to be independent of e ∈ E (by taking the
maximum of the ρ’s), since E is finite.

We can express Φe as a composition of maps in the following way.

H
(⋃N

k=1Bk (e)
)

//⊕N
k=1H

(
Bk (e)

)
//⊕N

k=1H
(
B1 (0)

)
⊕N
k=1 Rρ

��

H
(
(φe)C

((
Xi(e)

)
C

))
Φ̃e

��

H
(⋃N

k=1 be,k

(
Bρ (0)

))
oo ⊕N

k=1H
(
Bρ (0)

)
oo

H
((
Xi(e)

)
C

)



Resonances for Graph Directed Markov Systems 99

Here, the restriction operator Rρ : H
(
B1 (0)

)
→ H

(
Bρ (0)

)
is given by

Rρ(f) := f|
Bρ(0)

.

Note that the norms of the bi-holomorphic maps be,k are uniformly bounded,
as are the norms of the natural restrictions (that is, all maps corresponding
to horizontal arrows in the above diagram are uniformly bounded). In order

to see that Φ̃e is bounded, note that by substitution one has

sup
‖u‖=1

‖u ◦ (φe)C‖ = sup
‖u‖=1

∫
XC

u2((φe)C(z))dz

= sup
‖u‖=1

∫
(φe)C(XC)

1

‖(φe)′C(y)‖
u2(y)dy

≤ sup
‖u‖=1

1

‖(φe)′C‖∞
‖u‖ =

1

‖(φe)′C‖∞
.

Note that the latter expression is uniformly bounded for each e ∈ E. Therefore,
it is enough to find bounds for the singular values of the operator Rρ. We now

show that there exists γ ∈ (0, 1) such that χl (Rρ)� γl
1/m

, for all l ∈ N∪{0}.
This is sufficient, since

∑∞
l=0 γ

l
1
m is a convergent series, which then implies

that Rρ is of trace-class, and hence that Φe is of trace-class as well.
Since the polynomials form a basis of H, it follows from (1) that it is

sufficient to consider, for each multi-index α = (α1, . . . , αm) ∈ (N ∪ {0})m ,
the normalized polynomials uα, given by uα (z) := cα

∏m
i=1 z

αi
i for cα ∈ C,

z = (z1, . . . , zm) ∈ Cm . With |α| :=
∑m
i=1 αi, we have that

‖Rρ (uα) ‖2L2 =

∫
B(0,ρ)

∣∣∣∣∣cα
m∏
i=1

zαii

∣∣∣∣∣
2

dz

≤
∫
B(0,ρ)

|cα|2
∣∣∣∣∣
m∏
i=1

|z|αi
∣∣∣∣∣
2

dz

=

∫
B(0,ρ)

|cα|2|z|2
∑m
i=1 αidz

= |cα|2
∫
S2m−1

∫ ρ

0

r2|α| · r2m−1 dr dω

= |cα|2 · vol
(
S2m−1

)
· 1

2(|α|+m)
ρ2(|α|+m).

Clearly, we can assume that the basis of polynomials is ordered such that
{ûj}j∈N := {uα}α and deg(ûj) ≤ deg(ûj+1), where deg refers to the degree of
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a polynomial. Combining this with the estimate above and with (1), we have
for all l ∈ N ∪ {0} that

χl (Rρ) ≤
∞∑
j=l

‖Rρûj‖L2 �
∑

|α|≥l1/m
ρ|α|+m.

Also, observe that card{|α| = k} � km−1. Hence, we have∑
|α|≥l1/m

ρ|α|+m �
∑

k≥l1/m
km−1ρk+m.

We require the following estimate:∫ ∞
l1/m

xm−1ρxdx� l · ρ(l1/m), for all l ∈ N ∪ {0}. (6)

This estimate is well known, since the left hand side of the latter inequality
is equal to the well known upper incomplete gamma function. (For an in-
troduction to the incomplete gamma function we refer to [35, Chapter 11.2].)
However, for sake of completeness, we include an elementary proof of this in-
equality. Indeed, this estimate can be obtained by integration by parts, as
follows,∫ ∞
l1/m

xm−1ρxdx =

[
m∑
i=1

xm−i ln (ρ)
−i
ρx

(m− 1)!

(m− i)!
(−1)

i−1

]∞
l1/m

=: [I (x)]
∞
l1/m .

Since limx→∞ xm−iρx = 0 for all i ∈ {1, . . . ,m}, it follows that limx→∞ I (x) =
0. Hence, the integral in the equation above is equal to −I

(
l1/m

)
. Finally,

observe that

−I
(
l1/m

)
= −

m∑
i=1

(
l1/m

)m−i
(ln (ρ))

−i
ρ(l1/m) (m− 1)!

(m− i)!
(−1)

i−1

≤ l · ρ(l1/m) · (m− 1)! ·
m∑
i=1

| ln (ρ) |−i

� l · ρ(l1/m).

This verifies (6).
To finish the proof of the proposition, note that for ρ̃ ∈ (ρ, 1) there exists

some c̃ such that
l · ρ(l1/m) ≤ c̃ · ρ̃(l1/m).
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Hence, for all l ∈ N ∪ {0} we have that

χl (Rρ)�
∑

k≥l1/m
km−1ρk+m �

∫ ∞
l1/m

xm−1ρxdx� l · ρ(l1/m) � ρ̃(l1/m).

Since
∑
l ρ̃

(l1/m) is a convergent series, this implies that Rρ is of trace-class.
Recall that we expressed Φe as a composition of several operators, and these
were all bounded. Hence, we can use the fact that χl (AB) ≤ ‖A‖ · χl (B) to
bound the singular values of Φe by χl (Rρ) . Hence, Φe is of trace-class, since
Rρ is of trace-class. From the discussion at the beginning of this proof it now
follows that

∑∞
l=0 χl (Lw) <∞, and hence, that Lw is of trace-class.

For the proof of the next proposition we need the following theorem, which
is due to Ruelle ([28]). Its proof is based on a fixed point theorem by Atiyah
and Bott [2](see also [3],[4] and [16, Theorem 4.1]).

Theorem 21. Let U ⊂ Cm be a non-empty open bounded complex domain.
Let ψ : U → C and φ : U → U be holomorphic functions with continuous
extensions to U, and assume that φ

(
U
)
⊂ U. Then φ has a unique fixed point

z∗ ∈ U, and the weighted composition operator T : H (U) → H (U) , given by
(Tu) (z) := ψ (z) (u ◦ φ) (z) , is of trace-class with trace given by the Atiyah-
Bott type fixed point formula

Tr (T ) =
ψ (z∗)

det (1− φ′ (z∗))
.

We use this theorem to prove the following proposition.

Proposition 22. Let S be a conformal fgGDMS satisfying the nestedness
condition (NC). With the notion as above we then have that there exists a
constant c ∈ R such that for all w with < (w) > c, we have |ζ (w) | > c̃, for
some c̃ > 0. If, in addition, S is primitive then there are no zeros of ζ in the
half-plane {w ∈ C | < (w) > dimH L(S)}.

Proof. Combining Lemma 10 and the fact that det(1 − Lw) is analytic (cf.
[14], see also [28]), one easily verifies that

det (1− Lw) = exp

(
−
∞∑
n=1

1

n
Tr (Lnw)

)
.

In order to evaluate the traces, we use the notation from Definition 12 and
write

Lw (u) (z) =
∑
e∈E

(De (z))
w · Φe (u) (z) ,
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where Φe : H
((
Xt(e)

)
C

)
→ H

((
Xi(e)

)
C

)
. We use an idea similar to the one of

Ruelle in [28]. For ease of notation, we define the operator Le by Le(u)(z) :=
(De (z))

w · Φe(u(z)). With this notation we then have that (see [28, p. 235])

Tr (Lnw) =
∑

(e1,...,en)∈En
i(e1)=t(en)

Tr (Le1 . . . Len) .

For each e := (e1, . . . , en) ∈ En we have that

Le1 . . . Len(u) (z) =
((
De

)
(z)
)w · (u ◦ (φen)C ◦ . . . ◦ (φe1)C) (z) ,

where De(z) = De1(z) ·De2 ((φe1)C (z)) · . . . ·Den

((
φen−1

)
C ◦ . . . ◦ (φe1)C (z)

)
.

Note that Le := Le1 . . . Len has the form of a weighted composition operator T
given by T (u) (z) = h (z) · (u ◦ gC) (z) , for functions h : U → C and gC : U →
U. Further, note that gC(U) ⊂ U, since S satisfies the nestedness condition
(NC). Hence, by Theorem 21, we have that

Tr (Le1 . . . Len) =

(
De

(
z∗e

))w
det
(

1− (gC)
′
(
z∗e

)) ,
where z∗e is the unique fixed point of gC = (φe)C = (φen)C ◦ . . . ◦ (φe1)C and

(gC)
′
(
z∗e

)
denotes the Jacobian of gC at z∗e . Recall that the maps φe are real

analytic and that (φe)C are holomorphic maps defined via exactly the same
power series. Therefore, the fixed point z∗e of gC is equal to the fixed point of
g := φen ◦ . . . ◦ φe1 , and thus z∗e belongs to Rm (in particular, z∗e ∈ L(S)). Let

us now evaluate the determinant det
(

1− (gC)
′
(
z∗e

))
. Since (φe)C is defined

via the power series of φe, it follows that the entries of their Jacobian coincide
(in the sense that each entry of the Jacobian is an analytic function and so it
is a power series; for g′ and g′C the coefficients of these power series coincide).
Hence, the Jacobian of gC evaluated at z∗e ∈ Rm equals the Jacobian of g at

z∗e . It therefore suffices to evaluate det
(

1− g′
(
z∗e

))
. By Lemma 19, we now

have ∣∣∣det
(

1− ((φe)C)′
(
z∗e

))∣∣∣ =
∣∣∣det

(
1− (gC)

′
(
z∗e

))∣∣∣ ≥ (1− `)m . (7)

This follows, since all maps of the fgGDMS S are contracting at least by some
factor ` < 1.

Recall that De (z) = (‖(φ′e)‖)C (z) . Since (‖(φ′e)‖)C is a holomorphic ex-
tension of ‖(φ′e)‖ , we have that (‖(φ′e)‖)C evaluated at a real z∗e is the same
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as ‖(φ′e)‖ evaluated at z∗e , that is ‖(φ′e)‖ (z∗e ) = (‖(φ′e)‖)C (z∗e ). Therefore, we

have that De

(
z∗e

)
=
∥∥∥(φ′e)(z∗e)∥∥∥ ∈ R. Hence,∣∣∣De

(
z∗e

)w∣∣∣ =
∥∥∥(φ′e)(z∗e)∥∥∥<(w)

≤ `<(w).

We are now ready to complete the proof. First recall that

ζ (w) = det (1− Lw) = exp

(
−
∞∑
n=1

1

n
Tr (Lnw)

)
.

Now we can bound the exponent of the right hand side of the above equa-
tion in the following way:∣∣∣∣∣

∞∑
n=1

1

n
Tr (Lnw)

∣∣∣∣∣ =

∞∑
n=1

1

n

∑
e=(e1,...,en)∈En

i(e1)=t(en)

∣∣∣∣∣∣
(
De

(
z∗e

))w
det
(

1− (gC)
′
(
z∗e

))
∣∣∣∣∣∣

≤
∞∑
n=1

1

n

∑
e∈En

i(e1)=t(en)

∣∣∣∣∣∣∣
∥∥∥(φ′e)(z∗e)∥∥∥Re(w)

(1− `)m

∣∣∣∣∣∣∣
≤ 1

(1− `)m
∑
e∈E?

1

|e|

∥∥∥(φ′e)(z∗e)∥∥∥Re(w)

.

If the fgGDMS is primitive, then it follows from [20, Proposition 4.2.8] (com-
bined with [20, Theorem 4.2.13]) that the latter sum converges for all Re(w) >
dimH L(S). If the fgGDMS is not primitive, note that∑

e∈E?

1

|e|

∥∥∥(φ′e)(z∗e)∥∥∥Re(w)

≤
∞∑
n=1

(
card (E) · `<(w)

)n
.

The series in the latter expression is a geometric series, so it converges for
< (w) large enough. Hence, there exists a positive constant c̃ such that for
< (w) sufficiently large, we have |ζ (w) | > c̃ > 0.

2.3 Proofs of main results

2.3.1 Refinement of the FPR-operator

For the following lemma, recall that in Definition 12 we defined H (YC) to
be the Hilbert space of holomorphic L2-functions on a complex neighborhood
YC ⊂ Cm.
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Lemma 23. Let S be a conformal fgGDMS which satisfies (SSC) and (NC).
Then for each e ∈ E and r > 0 sufficiently small, there exists a refinement
Ẽr (i (e)) ⊂ E∗ and a refined FPR-operator L̃w which is of the form

L̃w =
∑
e∈E

⊕
f∈Ẽr(i(e))

(
De,f

)w
· Φe,f .

Here, w ∈ C and De,f is given for z ∈
(
Xi(f)

)
C

by De,f (z) := (‖(φ′e)‖)C (z) ,

and Φe,f : H
(
(φe)C

((
Xi(e)

)
C

))
→ H

((
φf

)
C

((
Xi(f)

)
C

))
is given by u (z) 7→

u ((φe)C (z)) . Furthermore, we have

det(1− Lw) = det(1− L̃w).

Proof. Recall that the FPR-operator was defined by

Lw (u) (z) =
∑
e∈E

((‖(φ′e)‖)C (z))
w
u ((φe)C (z)) =

∑
e∈E

(De (z))
w · Φe (u) (z) .

Let us concentrate on the composition operator Φe in one of these summands
for the moment. For this we have that

Φe : H
(
(φe)C

((
Xi(e)

)
C

))
→ H

((
Xi(e)

)
C

)
.

Recall that we defined Lw and all associated operators on functions which
are defined on small neighborhoods of the limit set. We now refine these
neighborhoods. For this, let r > 0 and define

Er (i (e)) :=
{
f ∈ E∗ | φf

(
Xi(f)

)
⊂ Xi(e) and diam

(
φf

(
Xi(f)

))
� r
}
.

Then
⋃
f∈Er(i(e)) φf

(
Xi(f)

)
is a cover of L(S) ∩Xi(e). Therefore, we can re-

strict Lw to the space H
(⋃

e∈E
⋃
f∈Er(i(e))

(
φf

)
C

((
Xi(f)

)
C

))
, which corre-

sponds to restricting Φe to H
(⋃

f∈Er(i(e))

(
φf

)
C

((
Xi(f)

)
C

))
. Since S sat-

isfies SSC, we have for f, g ∈ Er (i (e)) that either φf
(
Xi(f)

)
and φg

(
Xi(g)

)
are disjoint, or one is a subset of the other. In the latter case, if φf

(
Xi(f)

)
⊂

φg
(
Xi(g)

)
, we write f < g. Since the cardinality of Er (i (e)) is finite, this

partial ordering allows us to determine maximal elements in Er (i (e)), and
this allows us to define the set Ẽr (i (e)) of maximal elements in Er (i (e)).

We then have that
⋃
f∈Ẽr(i(e)) φf

(
Xi(f)

)
is a cover of L(S)∩Xi(e) consisting
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of pairwise disjoint sets. Therefore, instead of considering the function space
H
((
Xi(e)

)
C

)
, we consider the direct sum⊕

f∈Ẽr(i(e))

H
((
φf

)
C

((
Xi(f)

)
C

))
.

For this we have

Φ̃e : H
(
(φe)C

((
Xi(e)

)
C

))
→

⊕
f∈Ẽr(i(e))

H
((
φf

)
C

((
Xi(f)

)
C

))
,

given by u (z) 7→ u ((φe)C (z)) . Hence, we have for each e ∈ E that

((‖(φ′e)‖)C (z))
w · Φ̃e (u) (z) =

⊕
f∈Ẽr(i(e))

((‖(φ′e)‖)C (z))
w · Φe,f (u) (z)

=
⊕

f∈Ẽr(i(e))

(
De,f (z)

)w
· Φe,f (u) (z) ,

with Φe,f : H
(
(φe)C

((
Xi(e)

)
C

))
→ H

((
φf

)
C

((
Xi(f)

)
C

))
given by u (z) 7→

u ((φe)C (z)) .

In order to prove that det(1 − Lw) = det(1 − L̃w), recall that with the
notation as in the proof of Proposition 22, we have that

det(1− Lw) =

∞∑
n=1

1

n

∑
e=(e1,...,en)∈En

i(e1)=t(en)

((
De

) (
z∗e

))w
det
(

1− (gC)
′
(
z∗e

)) .
Note that here the inner sum is actually taken over the unique fixed points
of φe, e ∈ En and the summands are traces of weighted composition oper-
ators. Recall that these traces are given by evaluating certain expressions
at the fixed points. Let us now compare these expressions with the corre-
sponding expressions for L̃w. Let e ∈ En be given and let z∗e be the unique
fixed point of (φe)C. Recall that we have z∗e ∈ L(S). Recall that we have

Φ̃e =
⊕

f∈Ẽr(i(e)) Φe,f . Note that there is a unique f1 ∈
⋃
e∈E Ẽr (i (e)) such

that z∗e ∈ (φf )C(Xi(f)), since {φf (Xi(f))}f∈Ẽr(i(e)) is a cover of L(S) ∩Xi(e)

(and {Xi(e)}e∈E is a cover of L(S)) by pairwise disjoint sets. From this it is
easy to see that there is a unique operator Φen,fn ◦ . . . ◦Φe1,f1 with associated
contraction having the unique fixed point z∗e and e = (e1, . . . , en). Note that
Φen,fn ◦ . . . ◦ Φe1,f1 is a composition operator. Applying the formula from
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Theorem 21, it is clear that its trace coincides with the trace of Φe. From

this it follows that Tr(Lnw) = Tr(L̃w
n
), for all n ∈ N. Hence, we have that

det(1− Lw) = det(1− L̃w). This completes the proof.

2.3.2 An upper bound for the zeta function

The following lemma gives the key observation of this section. It will allow us
to show that if the refinements in Lemma 23 are chosen appropriately, then
|Dw

e,f (z) | can be bounded from above by some uniform constant.

Lemma 24. Let S be a conformal fgGDMS which satisfies (SSC) and (NC).
Let e ∈ E be fixed and let c > 0 be given. Let De,f be as in Lemma 23,

with f ∈ Er (i (e)) for some r > 0 sufficiently small. If for w ∈ C we have

< (w) ≥ −c and | Im(w)| � r−1, then

|(De,f (z))w| � 1, for all z ∈
(
φf

)
C

((
Xi(f)

)
C

)
.

In particular, ‖(De,f (·))w‖∞ � 1.

Proof. Although the following calculation is relatively straightforward, we
present the details here for the sake of completeness. Here, Arg (z) denotes
the number −π ≤ Arg (z) < π with z = |z| ·eıArg(z). For two complex numbers
z, w ∈ C we have that

|zw| =
∣∣∣ (|z| · e(ı·Arg(z))

)w∣∣∣
≤ |z|<(w) ·

∣∣∣e(ı·w·Arg(z))
∣∣∣

≤ |z|<(w) ·
∣∣∣e(− Im(w)·Arg(z))

∣∣∣
≤ |z|<(w) · e(| Im(w)|·|Arg(z)|).

Applying this inequality to the operator De,f given in Lemma 23, for e, f , w
and z as stated in the lemma, we obtain that

|(De,f (z))w| ≤
∣∣∣De,f (z)

∣∣∣Re(w)

· e(| Im(w)|·|Arg(Dwe,f (z))|)
. (8)

Recall from the discussion preceding Definition 12 that (‖φ′e‖)C was a holomor-
phic extension of ‖φ′e‖ on a small neighborhood

(
Xi(e)

)
C and that |(‖φ′e‖)C(z)| <

1, for all z ∈
(
Xi(e)

)
C. Therefore, for < (w) ≥ −c we have∣∣∣∣∣∣∣De,f (z)

∣∣∣<(w)
∣∣∣∣ =

∣∣∣ |(‖φ′e‖)C (z)|<(w)
∣∣∣ ≤ ∣∣ | (‖φ′e‖)C (z) |−c

∣∣� 1. (9)
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Note that for Im(w) = 0 this already proves the assertion in the theorem.
Hence, assume | Im(w)| > 0. Recall that by Definition 7 we have | ‖φ′e(x)‖ −
‖φ′e(y)‖ | ≤ c|x − y|. In other words, the maps ‖φ′e‖ are Lipschitz continuous
with a uniform Lipschitz constant c > 0. Hence, we assumed that the holo-
morphic extensions (‖φ′e‖)C are also Lipschitz continuous with some uniform

Lipschitz constant (see 2.1.3). Therefore, for all z1, z2 ∈
(
φf

)
C

((
Xi(f)

)
C

)
,

we have that

|(‖φ′e‖)C (z1)− (‖φ′e‖)C (z2)| � |z1 − z2| ≤ diam
((
φf

)
C

((
Xi(f)

)
C

))
� r.

Further recall from the discussion following Definition 7 that ‖φ′e‖ is non-zero.
In particular, by combining the bounded distortion property and the fact the
S is finitely generated, we have that ‖φ′e(x)‖ is uniformly bounded away from
zero, for all e ∈ E and all x ∈ Xi(e). Hence, we assumed that | (‖φ′e‖)C (z)| is
bounded away from zero uniformly, say by some constant c0 > 0, for all e ∈ E
and z ∈ XC (see 2.1.3). Combining these observations, we conclude that for

all z ∈
(
φf

)
C

((
Xi(f)

)
C

)
we have that

∣∣∣Arg
(
De,f (z)

)∣∣∣ ≤ arctan
(

diam
(
φf

)
C

(
Xi(f)

)
/c0

)
� r.

Finally, for | Im (w) | > 0 we can choose r � | Im (w) |−1 and then the previous

estimate implies that | Im (w) | ·
∣∣∣Arg

(
De,f (z)

)∣∣∣� 1. Combining this with the

inequalities (8) and (9), the lemma follows.

2.3.3 Proof of the main theorems

We are now ready to prove the main theorems. First note that Main Theorem
1 and the first statement of Main Theorem 2 follow directly from Proposition
22. Recall that the remaining statement of Main Theorem 2 is as follows.

Let S be a primitive conformal fgGDMS acting on Rm and satisfying the
strong separation condition (SSC) and the nestedness condition (NC).
For each c > 0 and w ∈ {z ∈ C | < (z) > −c, | Im(z)| > 1} , we then
have

log |ζ (w) | � eδ(S)·log(| Im(w)|).

Let S be as stated in Main Theorem 2. For the estimate in Main Theorem
2, let w ∈ {z ∈ C | < (z) > −c, | Im(z)| > 1}, for some c > 0. Combining
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Lemma 23 and equation (2) with the definition of the zeta function, we have
for all r > 0 that

|ζ (w) | ≤
∞∏
l=0

1 + ]E · max
e∈E,

f∈Ẽr(i(e))

χ[
l

]E·]Ẽr(i(e))

] ((De,f

)w
· Φe,f

) .

By Lemma 24, we have that if r−1 � | Im(w)| then there is some c2 > 0 such
that for every f ∈ Er (i (e)) we have ‖(De,f )w‖∞ < c2. Hence, let us choose r

in this way, that is, let r−1 � | Im(w)|. This can be done, since we have seen
before that ζ is independent of the choice of r. Combining this with the fact
that χl (AB) ≤ ‖A‖χl (B) , we have that

|ζ (w) | ≤
∞∏
l=0

1 + c2 · ]E · max
e∈E,

f∈Ẽr(i(e))

χ[
l

]E·]Ẽr(i(e))

] (Φe,f

) .

Note that since Φe,f is a restriction of Φe, we have that χl

(
Φe,f

)
≤ χl (Φe) ,

for all l ∈ N ∪ {0}. Hence, we have

|ζ (w) | ≤
∞∏
l=0

1 + c2 · ]E · max
e∈E,

f∈Ẽr(i(e))

χ[
l

]E·]Ẽr(i(e))

] (Φe)

 .

Applying Lemma 18, we obtain the estimate

|ζ (w) | � e]E·]Ẽr(i(e)).

Taking the logarithm on both sides of the above inequality and recalling that
we have ]Ẽr (i (e)) ≤ ]Er (i (e)), it follows that

log(|ζ(w)|)� ]E · ]Er (i (e)) + const. � const.+ ]Er (i (e)).

Applying Lemma 15, we then have

log(|ζ (w) |)� const. + r−δ(S).

Since r−1 � | Im(w)| we hence have log(|ζ (w) |) � const. + | Im(w)|δ(S).
Note that | Im(w)|δ(S) + const. � | Im(w)|δ(S), since | Im(w)| > 1. From this
the inequality in Main Theorem 2 follows. This completes the proof of Main
Theorem 2.
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For the proof of Main Theorem 3, let us define the rectangle Qa,bc,d ⊂ C for
a, b, c, d ∈ R by

Qa,bc,d := {z ∈ C | a ≤ < (z) ≤ b, c ≤ Im (z) ≤ d} .

Moreover, let c be a fixed positive constant. We claim that for all sufficiently
large k ∈ R, the following upper bound for the growth of the number of
resonances within the strip Q−c,∞k,k+1 (counted with multiplicity) holds:

nζ

(
Q−c,∞k,k+1

)
� kδ(S).

To show this, first recall that by Proposition 22, there exist two real constants
c4, c̃4 such that |ζ (z) | > c̃4 > 0 on the half-plane {z ∈ C : < (z) ≥ c4}.
Consequently, the strip Q−c,∞k,k+1 can be replaced by the rectangle Q−c,c4k,k+1. Let

us now consider the ball Bc5 (ık + c4) such that Q−c,c4k,k+1 ⊂ Bc5 (ık + c4) . In
order to be able to apply certain standard techniques from complex analy-
sis, let us normalize the situation as follows. With Z : C → C given by
Z (w) := ζ (w + ık + c4) , we have that

nζ

(
Q−c,c4k,k+1

)
≤ nZ (Bc5 (0)) .

Let nZ (t) denote the number of zeros of Z inside the ball Bt (0) , for t positive,
counted with multiplicity. Applying Jensen’s Formula (see for example [36,
3.62(2)]), we obtain∫ t

0

nZ (x)

x
dx =

1

2π

∫ 2π

0

log |Z
(
t · eıθ

)
|dθ − log |Z (0) |.

Note that |Z (0) | = |ζ (ık + c4) | > c̃4 > 0. Therefore, we have − log |Z (0) | <
− log (c̃4) , and hence − log |Z (0) | is finite. However, if − log |Z (0) | > 0, then
there is at least one zero. Hence, for t sufficiently large, we have that∫ t

0

nZ (x)

x
dx� 1

2π

∫ 2π

0

log |Z
(
t · eıθ

)
|dθ.

Moreover, one immediately verifies that

nZ (t) ≤ 1

log 2

∫ 2t

t

nZ (x)

x
dx ≤ 1

log 2

∫ 2t

0

nZ (x)

x
dx.

Combining these two observations, it follows that

nZ (t)� 1

2π

∫ 2π

0

log |Z
(
2t · eıθ

)
|dθ � max

θ∈[0,2π]
log |Z

(
2t · eıθ

)
|.
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This implies for c6 ≥ c5 sufficiently large, that

nZ (Bc6 (0)) = nZ (c6)� max
θ∈[0,2π]

log |Z
(
2c6 · eıθ

)
|.

Also, by the definition of Z, we have that

max
θ∈[0,2π]

log |Z
(
2c6 · eıθ

)
| ≤ max

w∈B2c6
(ık+c4)

log |ζ (w) |.

Furthermore, note that if w ∈ B2c6 (ık + c4) then < (w) ≥ −2c6 + c4, and
hence

B2c6 (ık + c4) ⊂ Qc4−2c6, c4+2c6
k−2c6, k+2c6

.

This shows that

max {log |ζ (w) | : w ∈ B2c6 (ık + c4)} ≤ max
{

log |ζ (w) | : w ∈ Qk−2c6, k+2c6
c4−2c6, c4+2c6

}
.

Combining these observations with the estimate in Main Theorem 2, it now
follows that for k sufficiently large, we have

nζ

(
Q−c4,∞k,k+1

)
� max

w∈B2c6
(ık+c4)

log |ζ (w) |

≤ max
<(w)>c4−2c6,

Im(w)∈[k−2c6,k+2c6]

log |ζ (w) | � kδ(S),

where, as always in this paper, the resonances are counted with multiplicities.
Exactly the same calculation can be done for Q−c4,∞−k−1,−k. This completes the
proof of Main Theorem 3.

Remark: Note that the setting we have used in this paper is a special case
of the setting used by Ruelle in [28] (see also [29] and [30]). More precisely, in
[28] Ruelle considered more general transfer operators on exterior forms and
has used arbitrary holomorphic functions instead of the very special functions
(‖φ′e‖)wC which we have used in this paper. However, Ruelle studied trans-
fer operators on the Banach-space of holomorphic functions with continuous
extensions to the boundary of the domain of definition equipped with the uni-
form norm. In contrast, we have followed the approach of Guillopé et al. to
study Lw on the Hilbert space of holomorphic L2-functions. Note that the
techniques we have used here are generalizations of the techniques used in [15]
to conformal fgGDMSs.
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3 Comparison to some other zeta functions

3.1 Comparison to the (not-complexified) Ruelle zeta function

One might wonder why we went to such length in Section 2.1.3 to complexify
the transfer operator and then used this complexified operator in the definition
of the zeta function. There are of course several reasons for this, one of which
will become clear in Section 3.3. However, in principle there is no problem
defining the zeta function using the non-complexified transfer operator. Note
however, that for the analytic part to work one would prefer to consider a
Hilbert space of functions on L(S), and hence the canonical choice would be
L2(L(S), µ), where µ is the unique measure mentioned in Theorem 14.

In this case Proposition 20 would still hold and the zeta function wold still
be well defined. As for Proposition 22, our proof of Proposition 22 relies in
particular on the Athiya-Bott type Theorem 21 and hence on the special choice
of function space. An analog of Theorem 21 for functions on L2(L(S), µ) seems
yet unknown. Since the proofs of Section 2.3 including the main theorems rely
on the Athiya-Bott type Theorem 21, these results might not hold for the
non-complexified zeta function.

Finally, let us remark that in the special case of a fgGDMS which consists
of only a single contraction, one easily calculates that the set of zeros of the

non-complexified zeta function equals
{
ık 2π
‖φ′‖ , k ∈ Z

}
, while the set of zeros

of ζ equals
{
ık 2π
‖φ′‖ −m, k ∈ Z,m ∈ N ∪ {0}

}
. Note that a similar discrepancy

turns up in the next section.

3.2 Comparison to the geometric zeta function on fractal strings

Given a fractal in the unit interval the complement of the fractal is a disjoint
union of (open) intervals. The set of length L := l1, l2, . . . of these intervals is
called a fractal string. Associated to a fractal string is the so called geometric
zeta function which is the meromorphic continuation of the map ζL : s 7→∑
j l
s
j . The poles of ζL are referred to as complex dimensions (c.f.g [19] and

references therein).
If C is the fractal string associated to the 1/3-Cantor set, then the set of

complex dimensions is given by{
log 2

log 3
+ ık

2π

log 3
| k ∈ Z

}
.

If S := {S1, . . . , Sn} is a self-similar IFS and if all Si share the same
contraction ratio 1/S′i =: r ∈ (1,∞), then the set of resonances of the zeta
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function ζ defined in this paper can be easily calculated. Namely, it is given
by {

log n

log r
+ ık

2π

log r
−m | k ∈ Z,m ∈ N ∪ {0}

}
.

Hence, at least in these situations, the set of resonances of the zeta function
studied in this paper contains all information given by the complex dimensions
of a fractal string.

3.3 Comparison to the Selberg zeta function for convex co-compact
Schottky groups

Finally, we like to remark that if a fgGDMS comes from the action of a Kleinian
group of Schottky type Γ (c.f.g. [20, Example 5.1.5]), then the zeta function
ζ defined above coincides with the Selberg zeta function associated to the
hyperbolic manifold Hn+1/Γ. (This is essentially proven in [15, Proposition
3.4], where the transfer-operator is considered with respect to the Bowen-Series
map [7] associated to the action of Γ. For further details on the Bowen-Series
map we refer to [33] and references given therein. Also note that a Kleinian
group of Schottky type is necessarily free. For non-free groups, the associated
zeta functions are slightly more complicated, c.f.g. [17].)

For the Selberg zeta function there is an extensive literature on the the
distribution of the poles and zeros, (c.f.g. [21] and references therein). In
particular note, that in these cases the distribution of resonances in the direc-
tion of the negative real axis seems (in most cases) not to exhibit the simple
lattice-like behavior observed above, where the dependence on m ∈ N ∪ {0}
was always given by a shift by −m, with m ∈ N ∪ {0} (c.f.g. [15]).

Remark: It seems possible to extend the results of this paper at least
to (Gromov)-hyperbolic convex co-compact groups which satisfy analogs of
(SSC) and (NC) or to subshifts of finite type. On the one hand, one would
need a suspension of the shift in order to get the geodesic flow (c.f.g. [22], [23]
and references given therein). On the other hand, one would need to ensure
the existence of an Ahlfors regular measure (as in Theorem 14).

Acknowledgements I am grateful to the unknown referee for valuable
constructive comments on the first draft of this paper.
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