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HENSTOCK-TYPE INTEGRAL FOR
VECTOR VALUED FUNCTIONS IN A

COMPACT METRIC SPACE

Abstract

We define a Henstock-type integral for vector valued functions de-
fined in a probability metric compact Radon space, using a suitable
family B of measurable sets which play the role of “intervals”. When B
is the family of all subintervals of [0, 1] we obtain the classical Henstock–
Kurzweil integral on the real line, whereas if B is the family of all subin-
tervals of [0, 1]2, or that of all subintervals of [0, 1]2 with a fixed regular-
ity, we obtain the classical Henstock integral on the plane with respect
to the Kurzweil base or the Kempisty base respectively.

1 Introduction

The theory of integration introduced by Lebesgue in 1902 is a powerful tool
which, perhaps because of its abstract character, does not have the intuitive
appeal of the Riemann integral. Moreover, as Lebesgue himself observed in
his thesis [10], his integral does not integrate all unbounded derivatives and so
it does not provide a solution for the problem of recovering a function from its
derivative. Besides the Lebesgue theory does not cover nonabsolutely conver-
gent integrals. In 1957 Kurzweil [9] and, independently, in 1963 Henstock [8]
gave a new definition of integral, which is more general than that of Lebesgue.
Its construction uses Riemann sums associated to interval partitions which are
pointwise fine instead of uniformly fine (as in case of the classical Riemann in-
tegral). The Henstock-Kurzweil integral has the power of Lebesgue’s one and
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includes it. Moreover it integrates all derivatives. The interval partitions used
in the Riemann sums are closely connected with the topology of the real line
and in an easy way it is possible to generalize the definition of the Henstock
integral to real (or vector) valued functions defined in R2 (see [13]).

When the functions are defined in a more general setting different from
the euclidean one, the situation becomes more complicated. The biggest dif-
ficulties are to find a suitable family of measurable sets which play the role of
“intervals” in the construction of the Riemann sums and to prove the existence
of partitions that are fine with respect to a fixed gauge.

In 2000 N. W. Leng and L. P. Yee, defined a Henstock-type integral on a
metric measure space ([11]). When the space is the plane, their generalized
intervals are the family of polygons with vertical or horizontal edges or the
family of simply connected domains in the plane with piecewise circular edges
(see Remark 1).

The aim of the present paper is to provide a definition of the classical
Henstock integral in the case of vector valued functions defined in a probability
metric compact Radon space.

To this end in Section 3 we define “intervals” the sets of a family B sat-
isfying suitable properties. Then we consider a method of integration (the
BH -integral) which involves finite Henstock partitions by non overlapping sets
of B. If B is the family of all subintervals of [0, 1], the corresponding BH -
integral is the classical Henstock–Kurzweil integral on the real line; whereas if
B is the family of all subintervals of [0, 1]2 or of all subintervals of [0, 1]2 with
a fixed regularity α, where 0 < α < 1, we obtain the Henstock integral on the
plane with respect to the Kurzweil base or the Kempisty base, respectively.
Besides, using the Axiom of Choice, we construct, in any probability metric
compact Radon space, a family of sets satisfying the properties of the “inter-
vals” (see Theorem 1).

In Section 4, using McShane partitions of “intervals” instead of Henstock
partitions, we obtain a kind of McShane integral that is equivalent to the
generalized McShane integral introduced by Fremlin in [3, Theorem 2].

2 Preliminaries

Throughout this paper (Ω, d,Σ, µ) is a probability metric compact Radon
space i.e.:

(i) (Ω, d) is a metric space;

(ii) (Ω,Σ, µ) is a probability complete space;

(iii) T ⊂ Σ, where T is the topology induced by the metric d on X;
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(iv) the measure µ is regular, i.e.

µ(E) = sup{µ(F ) : F ⊆ E F closed} = inf{µ(G) : E ⊆ G G ∈ T }

for every E ∈ Σ;

(v) µ is τ -additive, i.e. if G ⊆ T is non-empty and upwards directed by
inclusion, then

µ(
⋃
G∈G

G) = sup{µ(G) : G ∈ G}.

For A ⊂ Ω, A0, A, Ac and ∂A are the interior part, the closure, the
complement and the boundary of A, respectively. For A,B ⊂ Ω, we denote
by A4B the symmetric difference of A and B.
If A ⊂ Ω, diam(A) := sup{d(x, y) : x, y ∈ A} is the diameter of A. Each set
Br(w) = {z ∈ Ω : d(w, z) < r}, where w ∈ Ω and r > 0, is called an open ball.
Denote by T1 the family of all open balls. Throughout this paper, moreover
we assume that the measure µ satisfies the following property:

(A) µ(S) > 0 and µ(S) = µ(S) for all S ∈ T1.

Denote by Σ∂ the family of all A ∈ Σ such that µ(A) > 0 and µ(∂A) = 0.
We say that two measurable sets A and B are non overlapping if A0 ∩B0 = ∅
and µ(∂A ∩ ∂B) = 0.

Given a non-empty family A ⊆ Σ, a finite collection P = {(An, ωn) : n =
1, . . . , p} of pairwise non overlapping sets An ∈ A and points ωn ∈ An is said
to be a Henstock A-partition (briefly AH-partition). If we assume only that
ωn ∈ Ω, for 1 ≤ n ≤ p, then P is said to be a McShane A-partition (briefly
AMc-partition). If A ∈ A and µ(A4(

⋃p
n=1An)) = 0, we say that P is an

AH-partition (resp. AMc-partition) of A.
Denote by AU the family of all finite unions of non overlapping sets of A.

Each function ∆ : Ω→ T such that ω ∈ ∆(ω) for each ω ∈ Ω is called gauge.
Let ∆ be a gauge and let E ⊂ Ω. An AH -partition (AMc-partition)
P = {(An, ωn) : n = 1, . . . , p} is said to be:

(a) ∆-fine, if An ⊂ ∆(ωn) for each 1 ≤ n ≤ p;

(b) tagged in E, if ωn ∈ E for each 1 ≤ n ≤ p.

For simplicity we write (AH ,∆)-partition ( resp. (AMc,∆)-partition), for an
AH -partition (resp. AMc-partition) that is ∆-fine.

Given f : Ω → Y , where Y is any Banach space, and a partition P =
{(An, ωn) : n = 1, . . . , p}, we set σ(f,P) :=

∑p
n=1 f(ωn)µ(An).



438 Caterina La Russa

3 The family B of “intervals”

One of the most important problems in a theory of gauge integrals is the
existence of partitions, fine with respect to a fixed gauge. So in our framework,
first of all, it is essential to define a suitable family of measurable sets which
play the role of “intervals” in the construction of Riemann sums.

Definition 1. We say that B ⊂ Σ is a family of intervals in (Ω, d,Σ, µ) if it
satisfies the following properties:

(j) B ⊆ Σ∂ ;

(jj) Ω ∈ B;

(jjj) for each B ∈ B, there exist in B non overlapping subsets B1, ..., Bk of B
such that

µ(B \
k⋃
i=1

Bi) = 0 and diam(B) > c · diam(Bi) (1)

for every i = 1, ..., k, where c > 1 is a fixed constant;

(jv) if B ∈ B, for each C ⊆ B and C ∈ BU , then B \C belongs to BU unless
a set of zero measure.

Example 1. Let Ω = [0, 1] be endowed with the Lebesgue measure and the
Euclidean topology and let B be the family of all subintervals of Ω. Then B
satisfies properties (j)–(jv).

Example 2. Let Ω = [0, 1]2 be endowed with the Lebesgue measure and
the Euclidean topology and let B be the Kurzweil base (i.e. the family of all
subintervals of Ω). Then B satisfies properties (j)–(jv).

Example 3. Let Ω = [0, 1]2 be endowed with the Lebesgue measure and
the Euclidean topology and let B be the Kempisty base (i.e. the family of
all the subintervals of [0, 1]2 whose regularity1 is greater than a fixed α, for
0 < α < 1). Then B satisfies properties (j)–(jv).

In [11], N. W. Leng and L. P. Yee consider a metric measure space (Y, d, µ)
that satisfies condition (A) and such that:

1Recall that if I = [a1, b1] × [a2, b2] ⊂ R2 the regularity of I is the number r(I) =
mini=1,2(bi − ai)/maxi=1,2(bi − ai).
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(B) for every measurable set W ⊂ Y and every ε > 0, there exist an open
set U and a closed set Z such that Z ⊂W ⊂ U and µ(U \ Z) < ε.

Note that each probability, metric, compact Radon space (Ω, d,Σ, µ), sat-
isfies condition (B).

In their framework, N. W. Leng and L. P. Yee define the following families of
sets:

H1 =
{
B1 \B2 : B1, B2 ∈ T1 and B1 * B2, B2 * B1

}
,

H2 =

{⋂
i∈Λ

Xi 6= ∅ : Xi ∈ H1 and Λ is a finite index set

}
.

They call the members of H2 generalized intervals and a finite union of mutu-
ally disjoint generalized intervals elementary set. Then using the elementary
sets, they are able to define a Henstock-type integral on Y .

Remark 1. If Y = R2 with the metric d1(x, y) = max{|x1 − y1|, |x2 − y2|}, a
generalized interval ofH2 looks like a polygon with vertical or horizontal edges,
and each edge is not necessarily included. Instead, if we consider Y = R2 with
the metric d2(x, y) = [(x1 − y1)2 + (x2 − y2)2]

1
2 , a generalized interval is a

simply connected domain in the plane with piecewise circular edges and each
edge is not necessarily included. In any case we obtain a base, different from
both the Kurzweil and the Kempisty base.

In [11] the following result is shown:

Lemma 1. ([11], Theorem p. 36) Given a gauge ∆ on a generalized interval
I ∈ H2, there exists a ∆-fine division2 of I.

Lemma 2. Given a gauge ∆ on (Ω, d,Σ, µ), there exists a ∆-fine division of
Ω.

Proof. Taking in account that Ω is compact, the proof follows as in The-
orem on page 36 of [11], after suitable changes. �

Lemma 3. In the space (Ω, d,Σ, µ) the family H2

⋃
Ω satisfies the properties

(j)–(jjj).

Proof. Properties (j) and (jj) hold. In order to show that also the property
(jjj) is satisfied, fix B ∈ H2

⋃
Ω and a constant c > 1. It is enough to consider

2A division of I is a finite collection {(In, xn) : n = 1, . . . , p} of pairwise mutually disjoint
subintervals In ⊂ I and points xn ∈ In such that

⋃p
n=1 In = I.
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a gauge ∆ such that ∆(w) := Br(w) for each w ∈ B, with r = diam(B)
4c and to

apply Lemma 1 or Lemma 2. �

Now, using the Axiom of Choice, we are going to construct, in any proba-
bility metric compact Radon space, a family B of intervals.

Proposition 1. Let A be a family of subsets of Ω satisfying properties (j)–
(jjj). Then there exists a subfamily B ⊆ A which satisfies also the property
(jv).

Proof. We construct the subfamily B by induction.
First step: Let Bk11 = Ω, where k1 = 1.
Second step: Since Ω ∈ A, by the property (jjj), (and the Axiom of Choice)
we can choose in A, non overlapping subsets of Ω, B1

2 , ..., B
k2
2 such that µ(Ω \⋃k2

m=1B
m
2 ) = 0 and diam(Ω) > c · diam(Bm2 ), for every m = 1, ..., k2, and

where c is a fixed constant greater then 1.
Third step: For each Bm2 , with m = 1, 2, ...k2, by the property (jjj) we can
choose in A a finite number of sets satisfying the condition (1) of property
(jjj), with B replaced by Bm2 with m = 1, 2, ...k2. Let call by B1

3 , ..., B
k3
3 ∈ A

all the sets obtained in this step.
Then call by B1

n, ..., B
kn
n ∈ A, with kn ∈ N, the sets obtained in the nth step.

The subfamily B = {Bmn }m,n ⊂ A with n ∈ N and m = 1, 2, ..., kn satisfies
also the property (jv). �

Theorem 1. In any space (Ω, d,Σ, µ), there exists a family of intervals.

Proof. It follows by Proposition 1 and by Lemma 3. �

Proposition 2. Let B be a family of intervals in (Ω, d,Σ, µ). For each B ∈ B
and for each gauge ∆ there exists a (BH ,∆)-partition of B.

Proof. Let B ∈ B and assume by contradiction that there is not such
a partition of B. By property (jjj) there exists in B a set B(1) ⊂ B with
diam(B) > c · diam(B(1)) and such that there is not a (BH ,∆)-partition of
B(1). Proceeding by induction, we can construct a sequence {B(k)}k of B sets

such that B(k) ⊃ B(k+1), diam(B(k)) > c · diam(B(k+1)) and there is not a
(BH ,∆)-partition of B(k) for each k ∈ N.

As Ω is compact,
⋂∞
k=1B

(k) 6= ∅. Let ω0 ∈
⋂∞
k=1B

(k). By construction
limk→∞ diam(B(k)) = 0. So there exists an index k0 such that B(k0) ⊂ ∆(ω0)
and the pair (B(k0), ω0) is a (BH ,∆)-partition of B(k0) and this is a contra-
diction. �

Proposition 3. Let B a family of intervals in (Ω, d,Σ, µ). Let ∆ be a gauge
and let P be a (BH ,∆)-partition of B ∈ B. Then the partition P can be
extended to a (BH ,∆)-partition of Ω.
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Proof. It follows at once from property (jv) and Proposition 2. �

Definition 2. A family F ⊂ Σ is said to be weakly fine on Ω if for each w ∈ Ω
and for each G ∈ T with w ∈ G, there exists F ∈ F such that µ(F ) > 0, ω ∈ F
and F ⊆ G.

Proposition 4. Let B be a family of intervals in (Ω, d,Σ, µ). Then B is weakly
fine on Ω.

Proof. Consider w ∈ Ω andG ∈ T with w ∈ G. By properties (jj) and (jjj)

there exist in B non overlapping sets B1, ..., Bk such that µ(Ω \
⋃k
i=1Bi) = 0

and diam(Ω) > c · diam(Bi), for every i = 1, ..., k and c > 1 fixed constant.
Note that by condition (A), each non empty set of T has positive measure.

Then µ(Ω \
⋃k
i=1Bi) = 0 implies that Ω \

⋃k
i=1Bi = ∅. So w ∈ Bi for some

i = 1, ..., k.

Call I(1) one of such intervals. Then w ∈ I(1) and diam(Ω) > c·diam(I(1)).

By property (jjj) there exist in B non overlapping subsets B1
1 , ..., B

k1
1 of I(1)

such that µ(I(1) \
⋃k1
j=1B

j
1) = 0 and diam(I(1)) > c · diam(Bj1), for every

j = 1, ..., k1.

Call I(2) one of such intervals. Then w ∈ I(2) and diam(I(1)) > c · diam(I(2)).
Now again by property (jjj) there exist in B non overlapping subsets B1

2 , ..., B
k2
2

of I(2) such that µ
(
I(2) \

⋃k2
n=1B

n
2

)
= 0 and diam(I(2)) > c · diam(Bn2 ), for

every n = 1, ..., k2.

Call I(3) one of such intervals. Then w ∈ I(3) and diam(I(2)) > c · diam(I(3)).

Proceeding by induction, we construct a sequence {I(m)}m∈N of B sets with

decreasing diameter such that I(m) ⊃ I(m+1) and w ∈ I(m) for all m ∈ N.
Then taking in account that G is open and w ∈ G, there exists an index m0

such that ω ∈ I(m0) and I(m0) ⊂ G. �

In the following we will use the property:

Definition 3. A family F ⊆ Σ separates points off closed sets if given ε > 0,
ω ∈ Ω and an open set O of positive measure and containing ω, there exists
F ∈ F such that ω ∈ F , F ⊆ O and µ(O \ F ) < ε .

Note that the previous definition is slightly weaker then the definition given
in [1]. In fact there is also the condition that ω ∈ F .

Proposition 5. Let B be a family of intervals in (Ω, d,Σ, µ). Then the family
BU separates points off closed sets.
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Proof. Let ω0 ∈ Ω and O ∈ T be given, with ω0 ∈ O, and let ε > 0 be
fixed. Since µ is regular, let F be a compact F ⊂ O such that µ(O \ F ) < ε.
Now define a gauge ∆ in Ω in the following way: ∆(ω) ⊂ O if ω ∈ O,
∆(ω) ⊂ Ω \ F , if ω ∈ Oc. Since B is weakly fine on Ω (Proposition 4), then
let B0 ⊂ ∆(ω0) be a B set such that ω0 ∈ B0. Applying Proposition 3 to
the partition P = {(B0, ω0)} and to the gauge ∆, P can be extended to a
(BH ,∆)-partition Q of Ω. Set U =

⋃
B where the union is extended to all

the sets B ∈ B such that (B,ω) ∈ Q and B ⊂ O. Therefore U is the required
set. �

4 Henstock and McShane B-integrals

Let B be a fixed family of intervals in (Ω, d,Σ, µ) and let (X, ‖ ·‖) be a Banach
space.

Definition 4. We say that a function f : Ω → X is BH-integrable (BMc-
integrable) on Ω if there exists w ∈ X satisfying the following property:
for each ε > 0 there exists a gauge ∆: Ω→ T such that

‖σ(f,P)− w‖ < ε, (2)

for every (BH ,∆)-partition ((BMc,∆)-partition) P of Ω. We set

w = (BH)

∫
Ω

f dµ

(
w = (BMc)

∫
Ω

f dµ

)
.

Given a measurable set E ⊂ Ω we say that f is BH -integrable (BMc-integrable)
on E if the function fχE is BH -integrable (BMc-integrable) on Ω, where as
usual, χE is the characteristic function of the set E.
We set w(E) = (BH)

∫
Ω
fχE dµ

(
w(E) = (BMc)

∫
Ω
fχE dµ

)
.

Remark 2. If Ω = [0, 1] is endowed with the Lebesgue measure and the
Euclidean topology, X = R and B is the family of all subintervals of Ω, then
the BH -integral is the classical Henstock–Kurzweil integral on the real line. If
Ω = [0, 1]2 is endowed with the Lebesgue measure and the Euclidean topology
and B is the Kurzweil base or the Kempisty base, then the BH -integral is
the Henstock integral on the plane with respect to the Kurzweil base or the
Kempisty base (see [13]).

Proposition 6. A function f : Ω→ X is BH-integrable on B ∈ B if and only
if the following Cauchy condition holds:
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for each ε > 0 there exist a gauge ∆ such that

‖σ(f,P)− σ(f,Q)‖ < ε, (3)

for each couple P, Q of (BH ,∆)-partitions of B.

Proof. The proof follows as in Proposition 2 of [1] after suitable changes. �

The above property guarantees that

Proposition 7. Let f : Ω → X be a BH-integrable function on Ω. Then the
function fχB is BH-integrable on Ω for every set B ∈ B.

Proof. The proof follows from Proposition 3 and Proposition 6. �

Note that the BH -integral is uniquely determined, closed under addition
and scalar multiplication. Moreover also the Henstock Lemma version for
vector valued function holds (see [14]).

In [3] D.H. Fremlin studies, in a σ-finite outer regular quasi-Radon space,
a method of integration for vector-valued functions which is a generalization
of the McShane process of integration [12]. This method involves infinite
McShane partitions by disjoint families of measurable sets of finite measure.
However, in the compact case, the method may use finite McShane partitions
with disjoint measurable sets (see [3, Proposition E1]).

Definition 5. We say that a function f : Ω → X is Fremlin-integrable on Ω
([3, Proposition E1]) if there exists w ∈ X satisfying the following property:
for each ε > 0 there exists a gauge ∆ such that

‖σ(f,P)− w‖ < ε,

for every finite (ΣMc,∆)-partition P of Ω.

Now we compare the BMc-integral with the Fremlin-integral. We need the
following Lemma that may be proved in a standard way (for the case Ω = [0, 1]
and X = IR see [7], p. 323).

Lemma 4. Let f : Ω → X be a function and let N ⊂ Ω. If µ(N) = 0, then
for each ε > 0 there exists a gauge ∆ in N such that σ(‖f‖,P) < ε, for each
(BMc,∆)-partition P tagged in N .

Theorem 2. A function f : Ω → X is BMc-integrable on Ω if and only if it
is Fremlin-integrable on Ω.
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Proof. Let f be Fremlin-integrable on Ω. Since for any gauge ∆, each
(BMc,∆)-partition is also a (ΣMc,∆)-partition, therefore f is BMc-integrable
on Ω.

For the converse, let ε > 0 be fixed and let ∆ be a gauge such that∥∥∥∥σ(f,P)− (BMc)

∫
Ω

f

∥∥∥∥ < ε

4
, (4)

for each (BMc,∆)- partition P of Ω.
Now let Q = {(Ei, ωi) : i = 1, ..., n} be a (ΣMc,∆)-partition of Ω. Put
m = maxi=1,...,n ‖f(ωi)‖ and take 0 < η < (4nm)−1ε.
The proof will be inductive.

Assume that for some 1 ≤ q < n we have already sets A1, . . . , Aq ∈ BU ,
and open sets U1, . . . , Uq satisfying for each j ≤ q the following properties:

Ej ∪ {wj} ⊆ Uj ⊆ ∆(ωj), ωj ∈ Aj , Aj ⊆ Uj \
⋃
k<j

Ak , (5)

µ(Uj \ Ej) <
η

n+ 2
, µ

Uj \ ⋃
k<j

Ak

 \Aj
 <

η

n+ 2
(6)

and
µ(Ej4Aj) < η . (7)

Having these sets, we take an open set Uq+1 such that

Eq+1 ∪ {wq+1} ⊆ Uq+1 ⊆ ∆(ωq+1)

and
µ(Uq+1 \ Eq+1) <

η

n+ 2
.

Moreover by Proposition 5, there exists Aq+1 ∈ BU , such that

ωq+1 ∈ Aq+1 , Aq+1 ⊆ Uq+1 \
⋃
k≤q

Ak

and

µ

Uq+1 \
⋃
k≤q

Ak

 \Aq+1

 <
η

n+ 2
.
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Since the sets Ej are disjoint we have

µ(Eq+14Aq+1)

≤ µ
([
Eq+1

⋂(
Uq+1 \

⋃
k≤q Ak

)]
\Aq+1

)
+µ
([
Eq+1

⋂(
Uq+1

⋂⋃
k≤q Ak

)]
\Aq+1

)
+ µ(Uq+1 \ Eq+1)

< 2η
n+2 + µ

(
Eq+1

⋂⋃
k≤q Ak

)
≤ 2η

n+2 + µ(E14A1) + ...+ µ(Eq4Aq)

< η .

As the first step is similar to the inductive one (we set A0 = ∅), the con-

struction is over. Since Ai ∈ BU , i = 1, ..., n, we have Ai =
⋃pi
j=1 C

(i)
j where

C
(i)
j are non overlapping B sets. Moreover, by property (5), {(C(i)

j , ωi) : i =
1, ..., n, j = 1, ..., pi} is a (BMc,∆)-partition.

If µ(Ω \
⋃n
i=1Ai) = 0, we are done. Otherwise by (5), we have that

Ω \
n⋃
i=1

Ai ⊂
n⋃
i=1

∆(ωi)
⋃
N,

where µ(N) = 0. For each w ∈ Ω \
⋃n
i=1Ai, w /∈ N , we choose an index

i(w) ∈ {1, ..., n} such that w ∈ ∆(ωi(w)). Moreover we apply Lemma 4 to

the set N and we find a gauge ∆(0) in N such that ∆(0)(w) ⊂ ∆(w) for each
w ∈ N and σ(‖f‖,S) < ε/4, for each (BMc,∆)-partition S tagged in N .

Now we define a gauge ∆(1) in Ω in the following way: ∆(1)(w) = ∆(w)
if w ∈

⋃n
i=1Ai, ∆(1)(w) = ∆(w)

⋂
∆(ωi(w)) if w /∈ (

⋃n
i=1Ai

⋃
N), and

∆(1)(w) = ∆(0)(w) if w ∈ N
⋂

(Ω \
⋃n
i=1Ai). Then we apply Proposition 3

with ∆ = ∆(1), and we extend R = {(C(i)
j , ωi) : i = 1, ..., n, j = 1, ..., pi} to

a (BMc,∆
(1))-partition of Ω by adding the couples {(Dj , wj) : j = 1, ..., r}.

We may always assume that for 1 ≤ j ≤ s, wj /∈ N , while for s ≤ j ≤ r,
wj ∈ N . Moreover we set S = {(Dj , wj) : s ≤ j ≤ r}. By construction
R
⋃
{(Dj , ωi(wj)) : j = 1, ..., s}

⋃
S is a (BMc,∆)-partition of Ω.

Then by (4), (5) and (6) we have
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∥∥∥∥∥
n∑
i=1

µ(Ei)f(ωi)− (BMc)

∫
Ω

f dµ

∥∥∥∥
≤

∥∥∥∥∥
n∑
i=1

(µ(Ei)− µ(Ai))f(ωi)

∥∥∥∥∥+

∥∥∥∥∥∥
n∑
i=1

pi∑
j=1

f(ωi)µ(C
(i)
j )+

+

s∑
j=1

µ(Dj)f(ωi(wj)) +

r∑
j=s

µ(Dj)f(ωi)− (BMc)

∫
Ω

f dµ

∥∥∥∥∥∥
+ σ(‖f‖,S) +

∥∥∥∥∥∥
s∑
j=1

µ(Dj)f(ωi(wj))

∥∥∥∥∥∥
< m ·

n∑
i=1

µ(Ei 4Ai) +m · µ(Ω \
n⋃
i=1

Ai) +
ε

2

<
3ε

4
+m · µ

(
(

n⋃
i=1

Ei) \ (

n⋃
i=1

Ai)

)

<
3ε

4
+m ·

n∑
i=1

µ(Ei \Ai) < ε .

Then the function f is Fremlin integrable. �

Remark 3. We observe that in the previous proof we use the fact that the
family BU separates points off closed sets. In [3] it is proved that if Ω is com-
pact it is possible to use in the construction of Riemann sums only suitable
“intervals”, instead of measurable sets. Indeed let A be an algebra of mea-
surable sets such that whenever F ⊆ G, F is closed and G is open there is an
A ∈ A such that F ⊆ A ⊆ G; the ‘intervals’ considered by Fremlin are the
elements of a family C ⊆ A such that every member of A is a finite disjoint
union of members of C. We note that in general a family of sets that separates
points off closed sets not necessarily satisfies the above condition of Fremlin
(see [1]).
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