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RIGIDITY OF INFINITE
ONE-DIMENSIONAL ITERATED

FUNCTION SYSTEMS

Abstract

In [MU] the concept of infinite conformal iterated function systems
was introduced and developed. In this paper we consider 1-dimensional
systems. We provide necessary and sufficient conditions for such systems
to be bi-Lipschitz equivalent. We extend to such systems the concept
of scaling functions and we pay special attention to the real-analytic
systems.

1 Preliminaries.

In [MU] we provided the framework to study infinite conformal iterated func-
tion systems. Let us recall this notion assuming that X is a 1-dimensional
interval. Let I be a countable index set with at least two elements and let
S = {φi : X → X : i ∈ I} be a collection of injective contractions from X
into X for which there exists 0 < s < 1 such that ρ(φi(x), φi(y)) ≤ sρ(x, y)
for every i ∈ I and for every pair of points x, y ∈ X. Thus, the system S
is uniformly contractive. Any such collection S of contractions is called an
iterated function system. We are particularly interested in the properties of
the limit set defined by such a system. We can define this set as the image
of the coding space under a coding map as follows. Let I∗ =

⋃
n≥1 I

n, the
space of finite words, and for ω ∈ In, n ≥ 1, let φω = φω1 ◦ φω2 ◦ · · · ◦ φωn .
If ω ∈ I∗ ∪ I∞ and n ≥ 1 does not exceed the length of ω, we denote by ω|n
the word ω1ω2 . . . ωn. Since given ω ∈ I∞, the diameters of the compact sets
φω|n(X), n ≥ 1, converge to zero and since they form a descending family, the
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set
⋂∞
n=0 φω|n(X) is a singleton and therefore, denoting its only element by

π(ω), defines the coding map π : I∞ → X. The main object of our interest
will be the limit set

J = π(I∞) =
⋃

ω∈I∞

∞⋂
n=1

φω|n(X).

Observe that J satisfies the natural invariance equality, J =
⋃
i∈I φi(J). No-

tice that if I is finite, then J is compact and this property fails for infinite
systems.

Definition. An iterated function system S = {φi : X → X : i ∈ I} is said to
satisfy the Open Set Condition if there exists a nonempty open set U ⊂ X (in
the topology of X) such that φi(U) ⊂ U for every i ∈ I and φi(U)∩φj(U) = ∅
for every pair i, j ∈ I, i 6= j.

An iterated function system S satisfying the Open Set Condition is said
to be conformal (c.i.f.s.) if the following conditions are satisfied.

(a) U = int(X).

(b) There exists an open connected set X ⊂ V ⊂ R such that all maps φi,
i ∈ I, extend to C1 diffeomorphisms of V into V .

(c) Bounded Distortion Property(BDP). There exists K ≥ 1 such that

|φ′ω(y)| ≤ K|φ′ω(x)|

for every ω ∈ I∗ and every pair of points x, y ∈ V , where |φ′ω(x)| means
the norm of the derivative.

For simplicity and clarity of our exposition we assumed the open set U ap-
pearing in the open set condition is int(X). As was demonstrated in [MU],
conformal iterated function systems naturally break into two main classes,
irregular and regular. This dichotomy can be determined from either the ex-
istence of a zero of a natural pressure function or, equivalently, the existence
of a conformal measure. The topological pressure function, P is defined as
follows. For every integer n ≥ 1 let

ψn(t) =
∑
ω∈In

||φ′ω||t and P (t) = lim
n→∞

1

n
logψn(t).

For a conformal system S, we sometimes set ψS = ψ1 = ψ. The finiteness
parameter, θS , of the system S is defined by inf{t : ψ(t) <∞} = θS . In [MU],
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it was shown that the topological pressure function P (t) is non-increasing on
[0,∞), strictly decreasing, continuous and convex on [θ,∞) and P (1) ≤ 0. Of
course, P (0) = ∞ if and only if I is infinite. In [MU] (see Theorem 3.15) we
have proved the following characterization of the Hausdorff dimension of the
limit set J , which will be denoted by HD(J) = hS .

Theorem 1.1. HD(J) = sup{HD(JF ) : F ⊂ I is finite } = inf{t : P (t) ≤ 0}.
If P (t) = 0, then t = HD(J).

We called the system S regular provided that there is some t such that
P (t) = 0. It follows from [MU] that t is unique. Also, the system is regular
if and only if there is a t-conformal measure. Recall that a Borel probability
measure m is said to be t-conformal provided m(J) = 1 and for every Borel
set A ⊂ X and every i ∈ I

m(φi(A)) =

∫
A

|φ′i|t dm and m(φi(X) ∩ φj(X)) = 0,

for every pair i, j ∈ I, i 6= j. We recall also (see [MU, Theorem 3.8]) that
there exists an invariant measure µ (in the sense that for every measurable
set A, µ(

⋃
i∈N φi(A)) = µ(A) equivalent with m and dµ/dm is bounded away

from zero and infinity.

Finally, we call two iterated function systems {fi : X → X, i ∈ N} and
{gi : Y → Y, i ∈ N} topologically conjugate if and only if there exists a
homeomorphism h : JF → JG such that h ◦ fi = gi ◦ h for all i ∈ N. Then by
induction we easily get that h ◦ fω = gω ◦ h for every finite word ω.

2 General Systems.

The main result of this section is the following assertion.

Theorem 2.1. Suppose that F = {fi : X → X, i ∈ N) and G = {gi : Y →
Y, i ∈ N} are two topologically conjugate one-dimensional conformal iterated
function systems. Then the following 4 conditions are equivalent.

(1) ∃S ≥ 1 ∀ω ∈ N∗

S−1 ≤ diam(gω(Y ))

diam(fω(X))
≤ S.

(2) |g′ω(yω)| = |f ′ω(xω)| for all ω ∈ N∗, where xω and yω are the only fixed
points of fω : X → X and gω : Y → Y respectively.

(3) ∃E ≥ 1 ∀ω ∈ N∗ E−1 ≤ ||g
′
ω||

||f ′ω||
≤ E.
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(4) For every finite subset T of N, HD(JG,T ) = HD(JF,T ) and the conformal
measures mG,T and mF,T ◦ h−1 are equivalent.

Suppose additionally that both systems F and G are regular. Then the following
condition is also equivalent with the four conditions above.

(5) HD(JG) = HD(JF ) and the conformal measures mG and mF ◦ h−1 are
equivalent.

Proof. Let us first demonstrate that conditions (2) and (3) are equivalent.
Indeed, suppose that (2) is satisfied and let KF and KG denote the distortion
constants of the systems F and G respectively. Then for all ω ∈ N∗, ||g′ω|| ≤
KG|g′ω(yω)| = KG|f ′ω(xω)| ≤ KG||f ′ω|| and similarly ||f ′ω|| ≤ KF ||g′ω||. So
suppose that (3) holds and (2) fails, that is that there exists ω ∈ N∗ such
that |g′ω(yω)| 6= |f ′ω(xω)|. Without lose of generality we may assume that
|g′ω(yω)| < |f ′ω(xω)|. For every n ≥ 1 let ωn be the concatenation of n words
ω. Then gωn(yω) = gnω(yω) = yω and similarly fωn(xω) = xω. So, xωn =
xω = πF (ω∞) and yωn = yω = πG(ω∞). Moreover |g′ωn(yω)| = |g′ω(yω)|n and
|f ′ωn(xω)| = |f ′ω(xω)|n. Hence

lim
n→∞

|g′ωn(yω)|
|f ′ωn(xω)|

= 0.

On the other hand, by (3) and the Bounded Distortion Property

|g′ωn(yω)|
|f ′ωn(xω)|

≥
K−1G ||g′ωn ||
||f ′ωn ||

≥ E−1K−1G

for all n ≥ 1. This contradiction finishes the proof of equivalence of conditions
(2) and (3). Since the equivalence of (1) and (3) is immediate, the proof of
the equivalence of conditions (1)-(3) is finished.

We shall now prove that (3) ⇒ (5). Indeed, it follows from (3) that
E−1ψG,n(t) ≤ ψF,n(t) ≤ EψG,n(t) for all t ≥ 0 and all n ≥ 1. Hence
PG(t) = PF (t) and therefore by Theorem 1.1, HD(JG) = HD(JF ). Denote
this common value by h. Although we keep the same symbol for the homeo-
morphism establishing conjugacy between the systems F and G, it will never
cause misunderstandings. Suppose now that both systems are regular (in fact
assuming (3) regularity of one of these systems implies regularity of the other).
Then for every ω ∈ N∗

(KFE)−h ≤
K−hF ||f ′ω||h

||g′ω||h
≤ mF (fω(JF ))

mG(gω(JG))
≤ ||f ′ω||h

K−hG ||g′ω||h
≤ (EKG)h.
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So, the measures mG and mF ◦ h−1 are equivalent, and even more

(KFE)−h ≤ dmF ◦ h−1

dmG
≤ (EKG)h.

Let us show now that (5) ⇒ (3). Indeed, if (5) is satisfied, then the measure
µF ◦ h−1 is equivalent with µG. Since additionally µF ◦ h−1 and µG are both
ergodic (see Theorem 3.8 of [MU]), they are equal. Hence, using the equality
HD(JF ) = HD(JG) := h, we get

||gω||h �
∫
|g′ω|h dmG = mG(gω(JG)) � µG(gω(JG))

= µF ◦ h−1(gω(JG)) = µF (fω(JF )) � mF (fω(JF ))

=

∫
|f ′ω|h dmF � ||f ′ω||h

and raising the first and the last terms of this sequence of comparabilities to
the power 1/h, we finish the proof of the implication (5)⇒ (3).

The equivalence of (4) and conditions (1) - (3) is now a relatively simple
corollary. Indeed, to prove that (3) implies (4) fix a finite subset T of N. By (3)
E−1 ≤ ||f ′ω||/||g′ω|| ≤ E for all ω ∈ T ∗, and as every finite system is regular,
the equivalence of measures mG,T and mF,T ◦h−1 follows from the equivalence
of conditions (3) and (5) applied to the systems {fi : i ∈ T} and {gi : i ∈ T}.
If in turn (4) holds and ω ∈ N∗, then ω ∈ T ∗, where T is the (finite) set of
letters making up the word ω and the measures mG,T and mF,T ◦ h−1 are
equivalent. Hence, by the equivalence of (2) and (5) applied to the systems
{fi : i ∈ T} and {gi : i ∈ T} we conclude that |g′ω(yω)| = |f ′ω(xω)|. Thus (2)
follows and the proof of Theorem 2.1 is finished.

We say that a conformal system {φi : X → X : i ∈ N} is of bounded
geometry if and only if there exists C ≥ 1 such that for all i, j ∈ N, i 6= j

max{diam(φi(X)),diam(φj(X))} ≤ C dist
(
φi(X), φj(X)

)
.

The next theorem provides a necessary and sufficient condition for two systems
of bounded geometry to be bi-Lipschitz equivalent.

Theorem 2.2. If both systems {fi : X → X : i ∈ N} and {gi : Y → Y : i ∈ N}
are of bounded geometry, then the topological conjugacy h : Jf → JG is bi-
Lipschitz continuous if and only if the following two conditions are satisfied.

(a) Q−1 ≤ diam(fω(X))
diam(gω(Y )) ≤ Q for some Q ≥ 1 and all ω ∈ N∗.



280 Pawel Hanus and Mariusz Urbański

(b) D−1 ≤ dist
(
gi(Y ),gj(Y )

)
dist
(
fi(X),fj(X)

) ≤ D for some D ≥ 1 and all i, j ∈ N, i 6= j.

Proof. First notice that, due to the boundedness of geometry of F and G,
(a) and (b) remain true, with modified constants Q and D if necessary, if X
is replaced by JF and Y is replaced by JG respectively. Suppose first that
x ∈ fi(JF ) and y ∈ fj(JF ) with i 6= j. Then

|h(y)− h(x)| ≤ diam(gi(JG)) + dist(gi(JG), gj(JG)) + diam(gj(JG))

≤ Qdiam(fi(JF )) +D dist(fi(JF ), fj(JF )) +Qdiam(fj(JF ))

≤ 2QC dist(fi(JF ), fj(JF )) +D dist(fi(JF ), fj(JF ))

≤ (2QC +D) dist(fi(JF ), fj(JF ))

≤ (2QC +D)|y − x|

Suppose in turn that x 6= y both belong to the same element fk(JF ). Then
there exist ω ∈ I∗ (|ω| ≥ 1) and i 6= j ∈ N such that x, y ∈ fω(JF ), x ∈
fωi(JF ) and y ∈ fωj(JF ). From what has been proved so far we know that
|g−1ω (h(y)) − g−1ω (h(x))| ≤ (2QC + D)|f−1ω (y) − f−1ω (x)|. Since |y − x| �
||f ′ω|||f−1ω (y) − f−1ω (x)| and |h(y) − h(x)| � ||g′ω|||g−1ω (h(y)) − g−1ω (h(x))|, we
get

|h(y)− h(x)| ≤ const
||g′ω||
||f ′ω||

|y − x| � |y − x|,

where the comparability sign we have written due to (a) and equivalence of
conditions (1) and (3) of Theorem 2.1. In the same way we show that h−1 is
Lipschitz continuous which completes the proof of the first part of our theorem.

So suppose now that h is bi-Lipschitz continuous. We show that conditions
(a) and (b) are satisfied. Indeed, to prove (a) suppose that a and b in fω(JF )
are taken so that |h(a)− h(b)| ≥ 1

2 diam(gω(JG)). Then

diam(gω(JG)) ≤ 2|h(a)− h(b)| ≤ 2L|a− b| ≤ 2Ldiam(fω(JF )),

where L is a Lipschitz constant of h and h−1. In the same way it can be
shown that diam(fω(JF )) ≤ 2Ldiam(gω(JG)) which completes the proof of
property (a). In order to prove the right-hand side of property (b) we proceed
as follows. Fix i, j ∈ N, i 6= j and a 6= b ∈ JF . Then

dist(gi(Y ), gj(Y )) ≤ dist(gi(JG), gj(JG)) ≤ |gi(h(a))− gj(h(b))|
= |h(fi(a))− h(fj(b))| ≤ L|fi(a)− fj(b)|
≤ L

(
diam(fi(X)) + dist(fi(X), fj(X)) + diam(fj(X))

)
≤ L(2C + 1) dist(fi(X), fj(X)),
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where the last inequality we wrote due to boundedness of geometry of the
system {fi : i ∈ N}.

Remark 2.3. Notice that Theorem 2.1 and Theorem 2.2 remain true without
assuming that the phase space X is one-dimensional. We only need to know
that the maps fi and gi are conformal and the assumption (2.7) of [MU] is
satisfied.

Remark 2.4. Suppose now that the maps i 7→ φi(X) are monotone; that is
suppose that for all i and j, i < j implies φi(X) < φj(X). We claim that, then
the bounded geometry of the system is equivalent with the following weaker
condition

max{diam(φi(X),diam(φi+1(X)} ≤ C dist(φi(X), φi+1(X)).

Indeed, if i < j, then

max{diam(φi(X),diam(φj(X)}
≤ max
i≤k≤j−1

{max{diam(φk(X)),diam(φk+1(X))}}

≤ max
i≤k≤j−1

{C dist(φk(X), φk+1(X))}

≤ C dist(φi(X), φj(X)),

where writing the last inequality we used the monotonicity of the map i 7→
φi(X). The opposite implication is obvious.

Remark 2.5. If both maps i 7→ fi(X) and i 7→ gi(X) are monotone, then
condition (b) of Theorem 2.2 can be replaced by the following.

(c) C−1 ≤ dist(gk(Y ),gk+1(Y ))
dist(fk(X),fk+1(X)) ≤ C

for some constant C ≥ 1 and all k ∈ N. Indeed, assuming (c) this follows from
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the following computation.

dist(gi(Y ), gj(Y )) =

j−1∑
k=i

dist(gk(Y ), gk+1(Y )) +

j−1∑
k=i+1

diam(gk(X))

≤
j−1∑
k=i

C dist(fk(X), fk+1(X)) +Q

j−1∑
k=i+1

diam(fk(X))

≤max{C,Q}

(
j−1∑
k=i

dist(fk(X), fk+1(X))

+

j−1∑
k=i+1

diam(fk(X))

)
= max{C,Q} dist(fi(X), fj(X))

3 Real-analytic Systems

We call a 1-dimensional system Φ = {φi : X → X, i ∈ N} real analytic if and
only if there exists an open topological disk D such that all the maps φi extend
in a conformal (so 1-to-1) fashion to D into D. Suppose that Φ is regular.
Let m be the conformal measure associated to the system Φ and let µ be the
only probability invariant measure equivalent with m (see [MU,Theorem 3.8],
where this measure was denoted by µ∗). We call the system Φ non-linear

(comp. [S1]) if and only if at least one of the Jacobians Jφi =
dµ ◦ φi
dµ

is not

constant. We shall prove the following theorem which is stronger than both
Theorem 2.1 and Theorem 2.2.

Theorem 3.1. If both systems {fi : X → X : i ∈ N} and {gi : Y → Y : i ∈ N}
are real-analytic, regular, and non-linear, then the following conditions are
equivalent.

(a) The conjugacy between the systems {fi : X → X : i ∈ N} and {gi : Y →
Y : i ∈ N} extends in a real-analytic fashion to the convex hull of JF .

(b) The conjugacy between the systems {fi : X → X : i ∈ N} and {gi : Y →
Y : i ∈ N} is bi-Lipschitz continuous.

(c) |g′ω(yω)| = |f ′ω(xω)| for all ω ∈ N∗, where xω and yω are the only fixed
points of fω : X → X and gω : Y → Y respectively.
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(d) ∃S ≥ 1 ∀ω ∈ N∗ S−1 ≤ diam(gω(Y ))

diam(fω(X))
≤ S.

(e) ∃E ≥ 1 ∀ω ∈ N∗ E−1 ≤ ||g
′
ω||

||f ′ω||
≤ E.

(f) HD(JG) = HD(JF ) and the measures mG and mF ◦ h−1 are equivalent.

(g) The measures mG and mF ◦ h−1 are equivalent.

Proof. The implication (a)⇒ (b) is obvious. That (b)⇒ (c) results from the
fact that (b) implies condition (1) of Theorem 2.1 which in view of this theorem
is equivalent with condition (2) of Theorem 2.1 which finally is the same as
condition (c) of Theorem 3.1. The implications (c) ⇒ (d) ⇒ (e) ⇒ (f) have
been proved in Theorem 2.1. The implication (f)⇒ (g) is again obvious. We
are left to prove that (g)⇒ (a). As the first step we shall show that if a regular
system {φi : i ∈ N} is real-analytic, then the Jacobians Jφω of all the maps φω,
ω ∈ N∗ with respect to the invariant measure µ are also real analytic. Since
d(m ◦ φω)

dm
= |φ′ω|h and since φ′ω �X is a real-valued, either positive or negative,

real-analytic function, the function |φ′ω|h is also real-analytic. Consequently,
to check that

dµ ◦ φω
dµ

=
dµ ◦ φω
dm ◦ φω

· dm ◦ φω
dm

· dm
dµ

=
dµ

dm
◦ φω ·

dm ◦ φω
dm

· dm
dµ

is real-analytic it suffices to check that dµ
dm is real-analytic. Let D ⊂ C be the

open topological disk claimed in the definition of real analytic systems. Since
for each ω ∈ N∗, |φ′ω||X =+

− φ
′
ω|X , all the derivatives extend (complex) analyt-

ically to the corresponding maps ν(ω)φ′ω, where ν(ω) ∈ {1,−1}. Given n ≥ 1
consider the series of (complex) analytic functions Ln(1) =

∑
|ω|=n(ν(ω)φ′ω)h,

where (ν(ω)φ′ω)h are well-defined since D is simply connected. Fix x0 ∈ X.
By the Koebe Distortion Theorem and (3.3) of [MU] for all n ≥ 1 and all
x ∈ D we can write∣∣∣∣∣ ∑

|ω|=n

(ν(ω)φ′ω(x))h

∣∣∣∣∣ ≤ ∑
|ω|=n

|φ′ω(x)|h ≤ Kh
∑
|ω|=n

|φ′ω(x0)|h

= KhLn(1)(x0) ≤ K2h.

Hence, the maps Ln(1) : D → C form a normal family in the sense of Montel.
Since for m-a.e. point x, Ln(1)(x) converges to ρ(x) = dµ

dm (x), we conclude
more, that Ln(1)|D converges to an analytic extension of ρ on D. We will
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keep the same notation ρ for this extension. So, we have proved that all the

Jacobians Jφω =
dµ ◦ φω
dµ

are real-analytic, and in fact, extend analytically

onto D. Now suppose that condition (g) of Theorem 3.1 is satisfied. Then

µF = µG ◦ h meaning that Jh =
dµG ◦ h
dµF

= 1. Since h ◦ fω = gω ◦ h, the chain

rule implies that Jh ◦fω ·Jfω = Jgω ◦h ·Jh and consequently Jfω = Jgω ◦h. Let
now gi be a contraction produced by non-linearity. Notice, then that Jgi has
only finitely many extremal points, since otherwise the equation J ′gi = 0 would
have an accumulation point in Y which in turn would imply that Jgi would
be constant on Y , contrary to the choice of gi. Hence J−1gi ◦ Jfi is well-defined
and 1-to-1 on an open set V ⊂ X, and h = J−1gi ◦Jfi on V ∩JF . Consider now
ω ∈ N∗ such that fω(X) ⊂ V . Denote by CF the convex hull of JF . Then
the map g−1ω ◦ (J−1gi ◦ Jfi) ◦ fω : CF → Y is well-defined, extends h, and is
real-analytic.

4 Scaling Functions

From now on we assume that all our systems satisfy condition (a) of Lemma 2.2
of [MU]. This condition reads as follows.

There are two constants L ≥ 1 and α > 0 such that∣∣|φ′i(y)| − |φ′i(x)|
∣∣ ≤ L||(φ′i)−1||−1|y − x|α, (4.1)

for every i ∈ I and every pair of points x, y ∈ V . As a byproduct of the
demonstration that (b) ⇒ (c) (p. 112 of [MU]) we have shown that for all
ω ∈ N∗, say ω ∈ Nn, and all x, y ∈ X

|log |φ′ω(y)| − log |φ′ω(x)|| ≤
n∑
j=1

||(φ′ωj )
−1|| · |φ′ωj (yn−j)| − |φ

′
ωj (xn−j)|,

where zk = φωn−k+1
◦ · · · ◦ φωn(z). In view of (4.1) this estimate continues as

follows.

| log |φ′ω(y)| − log |φ′ω(x)|| ≤
n∑
j=1

L|yn−j − xn−j |α

≤
n−1∑
j=0

Lsjα|y − x|α

=
L

1− sα
|y − x|α

(4.2)
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or equivalently

exp

(
−L

1− sα
|y − x|α

)
≤ |φ

′
ω(y)|
|φ′ω(x)|

≤ exp

(
L

1− sα
|y − x|α

)
. (4.3)

Now, since for every t ≥ 0 sufficiently small |et − 1| ≤ 2t, we get∣∣|φ′ω(y)| − |φ′ω(x)|
∣∣ =

∣∣∣∣ |φ′ω(y)|
|φ′ω(x)|

− 1

∣∣∣∣φ′ω(x)|

≤ 2L

1− sα
|y − x|α|φ′ω(x)| ≤ 2Ls|ω|

1− sα
|y − x|α

(4.4)

In order to define scaling functions we will need the following basic lemma.

Lemma 4.1. If {φn : X → X : n ≥ 1} is a one-dimensional conformal iter-
ated function system satisfying condition (4.1), then for every closed subinter-
val K of X and every ω ∈ N∞

lim
n→∞

|φωnωn−1...ω0
(K)|

|φωnωn−1...ω0(X)|
:= S(ω,K)

exists and the convergence is uniform with respect to K,n and ω.

Proof. We shall show that the above sequence satisfies an appropriate
Cauchy condition. So, fix k < n. We then have

|φωn...ωk...ω0
(K)|

|φωn...ωk...ω0 (X)|
|φωk...ω0(K)|
|φωk...ω0

(X)|

=

|φωn...ωk+1
(φωk...ω0 (K))|

|φωk...ω0 (K)|
|φωn...ωk+1

(φωk...ω0
(X))|

|φωk...ω0
(X)|

=
|φ′ωn...ωk+1

(xn)|
|φ′ωn...ωk+1

(yn)|

(4.5)

for some xn ∈ φωk...ω0
(K) and yn ∈ φωk...ω0

(X), where the last equality sign we
wrote due to the Mean Value Theorem. Denote now |φωj ...ω0

(K)|/|φωj ...ω0
(X)|

by aj . In view of (4.5) and (4.2) we get

| log an − log ak| ≤
L

1− sα
|xn − yn|α ≤

L

1− sα
|φωk...ω0(X)|α ≤ L

1− sα
skα.

Thus the sequence {log an}∞n=1 is a Cauchy sequence, and consequently {an}∞n=1

itself is also a Cauchy sequence.

Let Ñ∞ denote the set of infinite sequences of the form . . . ωnωn−1 . . . ω1ω0

and let Ñ∗ denote the set of all finite words of the form ωnωn−1 . . . ω1ω0.
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Lemma 4.1 allows us to introduce the scaling function (comp. also [S2] and
[PT]). In this section we will explore this notion. The weaker scaling function

Sw is defined on the space Ñ∞ ×N, takes values in (0, 1), and is given by the
formula

Sw({ωn}∞n=0, i) = lim
n→∞

|φωnωn−1...ω0
(φi(X))|

|φωnωn−1...ω0(X)|
,

where the limit exists due to Lemma 4.1.

The stronger scaling function Ss is defined similarly but on the larger
space Ñ × (N ∪ C), where C denotes the set of all connected components of
X\
⋃∞
i=1 φi(X). Frequently, given ω ∈ N∗ we will consider the function Ss(ω) :

(N ∪ C)→ (0, 1) given by the formula Ss(ω)(Z) = Ss(ω,Z), and similarly we
define the function Sw(ω). The following theorem is an immediate consequence
of Lemma 4.1

Theorem 4.2. Both scaling functions Sw : Ñ∞ ×N and Ss : Ñ× (N ∪ C) are
continuous.

We now pass to consider two systems F = {fi : i ∈ N} and G = {gi : i ∈
N}. Our last theorem reads as follows.

Theorem 4.3. If the topological conjugacy h : JF → JG extends in a diffeo-
morphic fashion onto X, then JF and JG have the same strong scaling func-
tions. If conversely, two topologically conjugate 1-dimensional i.f.s. F and
G of bounded geometry have the same weak scaling functions and condition
(b) of Theorem 2.2 is satisfied, then the topological conjugacy is bi-Lipschitz
continuous.

Proof. Let us first prove the first part of this theorem. Indeed, let us keep
the same notation h for its diffeomorphic extension to X and let D be an
arbitrary closed subinterval of X. For ω ∈ Ñ∞ we can write

S(ω,D)

S(ω, h(D))
= lim
n→∞

|fωn...ω0 (D)|
|fωn...ω0

(X)|
|gωn...ω0 (h(D))|
|gωn...ω0

(Y )|

= lim
n→∞

|fωn...ω0 (D)|
|gωn...ω0

(h(D))|
|fωn...ω0 (X)|
|gωn...ω0

(Y )|

.

Now, by the Mean Value Theorem there exist an and bn respectively in
fωn...ω0

(D) and in fωn...ω0
(X) such that

S(ω,D)

S(ω, h(D))
= lim
n→∞

|fωn...ω0
(D)|

|h(fωn...ω0 (D))|
|fωn...ω0

(X)|
|h(fωn...ω0 (X))|

= lim
n→∞

h′(bn)

h′(an)
.
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Since h′ is uniformly continuous with no zeros and since |bn − an| → 0, the
last limit is equal to 1 which finishes the proof of the first part of our theorem.

In order to show the second part of this theorem it suffices to show that
condition (a) of Theorem 2.2 is satisfied. So, let τ = τ0 . . . τq−1 be an arbitrary
word. Our aim is to show that |(gτ )′(h(xτ ))| = |(fτ )′(xτ )|, where xτ is the
only fixed point of the map fτ : X → X. First notice that for every n

|gτn+1τ0(Y )|
|gτnτ0(Y )|

=
|gτn+1τ0(Y )|
|gτn+1(Y )|

· |gτn+1(Y )|
|gτnτ0...τq−2(Y )|

·
|gτnτ0...τq−2

(Y )|
|gτnτ0...τq−3(Y )|

·· · ·· |gτ
nτ0τ1(Y )|
|gτnτ0(Y )|

.

Hence

lim
n→∞

|gτn+1τ0(Y )|
|gτnτ0(Y )|

= Swτ∞(τ0)Swτ∞τ0...τq−2
(τq−1)Swτ∞τ0...τq−3

(τq−2) . . . Swτ∞τ0(τ1)

(4.6)

and similarly

lim
n→∞

|fτn+1τ0(X)|
|fτnτ0(X)|

= Swτ∞(τ0)Swτ∞τ0...τq−2
(τq−1)Swτ∞τ0...τq−3

(τq−2) . . . Swτ∞τ0(τ1).

(4.7)

Since gτn+1τ0(Y ) = gτ (gτnτ0(Y )) and since fτn+1τ0(X) = fτ (fτnτ0(X)), it
follows from the Mean Value theorem that there exists xn ∈ fτnτ0(X) and
yn ∈ gτnτ0(Y ) such that |gτn+1τ0(Y )| = |g′τ (yn)|·|gτnτ0(Y )| and |fτn+1τ0(X)| =
|f ′τ (yn)| · |fτnτ0(X)|. Thus in view of our assumptions and (4.6) and (4.7) we
get

lim
n→∞

|g′τ (yn)|
|f ′τ (xn)|

= lim
n→∞

|gτn+1τ0
(Y )|

|gτnτ0 (Y )|
|fτn+1τ0

(X)|
|fτnτ0 (X)|

= 1.

Now, a straightforward observation shows that yn → yτ and xn → xτ , where
yτ and xτ are fixed points of gτ and fτ respectively. Hence |g′τ (yτ )| = |f ′τ (xτ )|
and equivalence of this condition with condition (1) of Theorem 2.1 finishes
the proof.
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