ON THE LATTICE GENERATED BY HAMEL FUNCTIONS

Abstract

We say that $f: \mathbb{R} \rightarrow \mathbb{R}$ is LIF if it is linearly independent over \mathbb{Q} as a subset of \mathbb{R}^{2} and that it is a Hamel function (HF) if it is a Hamel basis of \mathbb{R}^{2}. In this paper we present a discussion on the lattices generated by the classes HF and LIF. We also investigate extensions of partial LIF functions to HF and LIF functions defined on whole \mathbb{R}.

1 Introduction.

Let us establish some of the terminology to be used. Symbols \mathbb{R} and \mathbb{Q} stand for the set of real and rational numbers, respectively. Ordinal numbers will be identified with the set of their predecessors and cardinal numbers with the initial ordinals. The symbol $|X|$ denotes the cardinality of a set X. In particular, the symbol \mathfrak{c} stands for $|\mathbb{R}|$ and $|\mathbb{Q}|=\omega$. For a set X and a cardinal $\kappa,[X]^{\kappa}$ is the family of all subsets of X with cardinality κ. Similarly we define the family $[X]^{<\kappa}$. No distinction is made between a function and its graph. For any function $f: X \rightarrow Y$ symbols $\operatorname{rng}(f)$ and $\operatorname{dom}(f)$ denote the range and the domain of f respectively. The symbol $f_{\mid A}$ denotes the restriction of f to A. Suppose V is linear space over some field K and $W \subset V$ is a linear subspace. Then the symbol $\operatorname{codim}_{\mathrm{V}}(\mathrm{W})=\operatorname{dim}(V / W)$ will stand for the codimension of the subspace W.

We will consider $\mathbb{R}\left(\mathbb{R}^{2}\right)$ as a linear space over the field \mathbb{Q}. For $A \subset \mathbb{R}^{k}$ $(k=1,2, \ldots), \operatorname{LIN}_{\mathbb{Q}}(A)$ denotes the linear subspace of \mathbb{R}^{k} over \mathbb{Q} generated by A. Any basis of \mathbb{R}^{k} over \mathbb{Q} will be referred to as a Hamel basis. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is

[^0]- additive $(f \in \operatorname{Add})$ if $f(x)+f(y)=f(x+y)$ for all $x, y \in \mathbb{R}$;
- linearly independent $(f \in \mathrm{LIF})$ if f is a linearly independent subset of \mathbb{R}^{2};
- Hamel function $(f \in \mathrm{HF})$ if f is a Hamel basis of \mathbb{R}^{2}.

Let $X \subset \mathbb{R}$. We will say that $f: X \rightarrow \mathbb{R}$ is PHF if it is a Hamel basis of \mathbb{R}^{2} and that it is PLIF if it is a linearly independent subset of \mathbb{R}^{2}. For $f: X \rightarrow \mathbb{R}$ and $x \in \mathbb{R}$ let

$$
\mathrm{LC}(f, x)=\left\{\sum_{i=0}^{k} p_{i} f\left(x_{i}\right): k<\omega, p_{i} \in \mathbb{Q}, x_{i} \in X, \sum_{i=0}^{k} p_{i} x_{i}=x\right\}
$$

When $x=0$ we will write LC (f).
A family \mathcal{F} of real functions $f: X \rightarrow \mathbb{R}$ is a lattice $\operatorname{iff} \min (f, g) \in \mathcal{F}$ and $\max (f, g) \in \mathcal{F}$ for $f, g \in \mathcal{F}$. If \mathcal{F} is a family of real functions, then the symbol $\mathcal{L}(\mathcal{F})$ stands for the lattice generated by \mathcal{F}, i.e. the smallest lattice of functions containing \mathcal{F}. Evidently, we have $\mathcal{L}(\mathcal{A}) \subset \mathcal{L}(\mathcal{B})$ if $\mathcal{A} \subset \mathcal{B}$ and $\mathcal{L}(\mathcal{L}(\mathcal{A}))=\mathcal{L}(\mathcal{A})$.

Let \mathcal{F} be a family of real functions. Then the symbols $\operatorname{Max}(\mathcal{F})=\{\max (g, h):$ $g, h \in \mathcal{F}\}$ and $\operatorname{Min}(\mathcal{F})=\{\min (g, h): g, h \in \mathcal{F}\}$ will stand for the maxima and minima sets for family \mathcal{F}, respectively. Obviously if $\mathcal{A} \subset \mathcal{B}$ are families of real functions, then $\operatorname{Max}(\mathcal{A}) \subset \operatorname{Max}(\mathcal{B})$ and $\operatorname{Min}(\mathcal{A}) \subset \operatorname{Min}(\mathcal{B})$.

The class of Hamel function was first introduced and researched by Płotka in papers $[7,9,8,10]$. The aim of this paper is to answer some questions concerning lattices generated by HF and LIF functions. Finding lattice generated by a family of real functions is a typical problem in real analysis (see e.g. [6]). Our main result in this topic consist of showing that $\mathcal{L}(H F)=\mathcal{L}($ LIF $)$. Another important problem is extendability of partial functions (see e.g. [3]). We prove in Theorem 8 a sufficient condition for a PLIF function to be extendable to a HF function. Next we use Theorem 8 to prove that $\mathcal{L}($ LIF $)=\mathcal{L}(\mathrm{HF})$.

2 The lattices of Hamel and linearly independent functions.

Lemma 1 ([5, Fact 2.3]). Suppose $f \in \mathrm{HF}$, then $g: \mathbb{R} \rightarrow \mathbb{R}$ defined by $g(x)=f(x)+q_{x} f(0)$ where $q_{x} \in \mathbb{Q} \backslash\{-1\}$ for $x \in \mathbb{R}$ is a Hamel function.

Lemma $2\left(\left[8\right.\right.$, Fact 6]). Suppose $X \in[\mathbb{R}]^{<\mathfrak{c}}, f: X \rightarrow \mathbb{R}, f \in$ LIF. Then f can be extended to HF function $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}$.

Definition 1. For $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ the class $\mathcal{M}_{\max }(\mathcal{F})=\left\{f \in \mathbb{R}^{\mathbb{R}}: \max \{f, g\} \in\right.$ \mathcal{F} for every $g \in \mathcal{F}\}$ is called the maximal upper family for \mathcal{F} and $\mathcal{M}_{\min }(\mathcal{F})=$ $\left\{f \in \mathbb{R}^{\mathbb{R}}: \min \{g, f\} \in \mathcal{F}\right.$ for every $\left.g \in \mathcal{F}\right\}$ is called the maximal lower family for \mathcal{F}.

Fact 1. $\mathcal{M}_{\max }(\mathrm{HF})=\mathcal{M}_{\min }(\mathrm{HF})=\mathcal{M}_{\max }(\mathrm{LIF})=\mathcal{M}_{\min }(\mathrm{LIF})=\emptyset$
Proof. We will show only the case $\mathcal{M}_{\max }(\mathrm{HF})=\emptyset$, the other equalities can be proven in a similar fashion. Let $g: \mathbb{R} \rightarrow \mathbb{R}$ be a function, we will show that there exists $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f \in \mathrm{HF}$ and $h=\max \{f, g\} \notin$ HF. Fix linearly independent vectors $x, y \in \mathbb{R}$. First suppose that $g(x)+g(y)=g(x+y)$. Fix a Hamel function f such that $f(x)<g(x), f(y)<g(y)$ and $f(x+y)<g(x+y)$. Such a function exists in virtue of Lemma 1. Then $\max \{f, g\} \notin$ LIF. Now let us assume that $g(x)+g(y) \neq g(x+y)$. Hence we get two cases. First suppose that $g(x)+g(y)>g(x+y)$. Fix $z_{1} \in(-\infty, g(x)), z_{2} \in(-\infty, g(y))$ and put $f^{\prime}=\left\{\left\langle x, z_{1}\right\rangle,\left\langle y, z_{2}\right\rangle,\langle x+y, g(x)+g(y)\rangle\right\}$. We will show that $f^{\prime} \in$ PLIF. Indeed suppose that $q_{0}\left\langle x, z_{1}\right\rangle+q_{1}\left\langle y, z_{2}\right\rangle+q_{2}\langle x+y, g(x)+g(y)\rangle=0$ for some $q_{0}, q_{1}, q_{2} \in \mathbb{Q}$. From $q_{0} x+q_{1} y+q_{2}(x+y)=0$ we get that $q_{0}=q_{1}=-q_{2}$. Hence $q_{0}\left(z_{1}+z_{2}-g(x)-g(y)\right)=0$. Hence $q_{0}=0$ or $z_{1}+z_{2}-g(x)-g(y)=0$. Notice that $z_{1}+z_{2}-g(x)-g(y)<g(x)+g(y)-g(x)-g(y)=0$, consequently $q_{0}=q_{1}=q_{2}=0$. Let $f \in$ HF be an extension of function f^{\prime}. Let $h=$ $\max \{f, g\}$, then $h(x)+h(y)-h(x+y)=g(x)+g(y)-g(x)-g(y)=0$, so $h \notin \mathrm{HF}$.

Now assume that $g(x)+g(y)<g(x+y)$, then $z=g(x+y)-g(y)>g(x)$. Choose $z_{1} \in(-\infty, g(y))$ and $z_{2} \in(-\infty, g(x+y))$ such that $z+z_{1}-z_{2} \neq 0$ and put $f^{\prime}=\left\{\langle x, z\rangle,\left\langle y, z_{1}\right\rangle,\left\langle x+y, z_{2}\right\rangle\right\}$. We will show that $f^{\prime} \in$ PLIF. Suppose $q_{0}\langle x, z\rangle+q_{1}\left\langle y, z_{1}\right\rangle+q_{2}\left\langle x+y, z_{2}\right\rangle=0$ for some $q_{0}, q_{1}, q_{2} \in \mathbb{Q}$. Then $q_{0}=q_{1}=-q_{2}$, so $q_{0}\left(z+z_{1}-z_{2}\right)=0$. Hence $q_{0}=q_{1}=q_{2}=0$. Let $f \in$ HF be an extension of function f^{\prime} and $h=\max \{f, g\}$. Then $h(x)+h(y)-h(x+y)=$ $z+g(y)-g(x+y)=0$, so $h \notin \mathrm{HF}$.

Definition 2. We will say that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is n-Hamel function if there exist sets $A_{0}, \ldots, A_{n-1} \subset \mathbb{R}$ and functions $f_{0}, \ldots, f_{n-1} \in \operatorname{HF}$ such that $\bigcup_{i=0}^{n-1} A_{i}=\mathbb{R}, A_{m} \cap A_{k}=\emptyset$ for $m, k<n$, and $f_{i \mid A_{i}}=f_{\mid A_{i}}$ for $i<n$.

Fact 2. $\operatorname{Max}(H F)=\operatorname{Min}(H F)$.
Proof. First we will show that if $f \in \operatorname{Max}(\mathrm{HF})(f \in \operatorname{Min}(\mathrm{HF}))$ then $-f \in$ $\operatorname{Max}(\mathrm{HF})(-f \in \operatorname{Min}(\mathrm{HF}))$. Pick $f \in \operatorname{Max}(\mathrm{HF})$, then there exist functions $g, h \in$ HF such that $f=\max \{g, h\}$. Define $A_{0}=\{x \in \mathbb{R}: g(x)=f(x)\}$ and $A_{1}=\left\{x \in \mathbb{R} \backslash A_{0}: h(x)=f(x)\right\}$. Put $\tilde{g}(x)= \begin{cases}-g(x) & \text { for } x \in A_{0} \\ -g(x)-q_{x} g(0) & \text { for } x \in A_{1}\end{cases}$
and $\tilde{h}(x)=\left\{\begin{array}{ll}-h(x) & \text { for } x \in A_{1} \\ -h(x)-p_{x} h(0) & \text { for } x \in A_{0}\end{array}\right.$, where $q_{x}, p_{x} \in \mathbb{Q},-g(x)-$ $q_{x} g(0)<-h(x)$ for $x \in A_{1}, q_{x} \neq-1$ and $-h(x)-p_{x} h(0)<-g(x)$ for $x \in A_{0}$, $p_{x} \neq-1$. Such p_{x}, q_{x} exist because $g(0) \neq 0 \neq h(0)$. Since $g, h \in \mathcal{N}_{\tilde{h}} \mathrm{HF}$, so $-g,-h \in \mathrm{HF}$ and consequently in virtue of Lemma 1 we get that $\tilde{g}, \tilde{h} \in$ HF. Then $-f=\max \{\tilde{g}, \tilde{h}\} \in \operatorname{Max}(\mathrm{HF})$. The case $f \in \operatorname{Min}(\mathrm{HF})$ can be proved analogously. To finish the proof notice that $f \in \operatorname{Max}(\mathrm{HF})$ iff $-f \in \operatorname{Min}(\mathrm{HF})$, hence $\operatorname{Max}(\mathrm{HF})=\operatorname{Min}(\mathrm{HF})$.

Lemma 3. If f is n-Hamel function then f is a maximum of n Hamel functions.

Proof. Fix an n-Hamel function f. Hence there exists a partition A_{0}, \ldots, A_{n-1} of \mathbb{R} and Hamel functions f_{0}, \ldots, f_{n-1} such that $f_{i \mid A_{i}}=f_{\mid A_{i}}$. Define
$\tilde{f}_{i}(x)=\left\{\begin{array}{ll}f_{i}(x) & \text { for } x \in A_{i} \\ f_{i}(x)+q_{x}^{i} f_{i}(0) & \text { for } x \notin A_{i}\end{array}\right.$, where $q_{x}^{i} \in \mathbb{Q} \backslash\{-1\}$ is such that $f_{i}(x)+q_{x}^{i} f_{i}(0)<f_{j}(x)$ for $x \in A_{j}, i \neq j$. Such q_{x}^{i} exists since $f_{i}(0) \neq 0$. By Lemma 1, $\tilde{f}_{i} \in$ HF. Fix $i<n$ and $x \in A_{i}$. Then $\tilde{f}_{j}(x)=f_{j}(x)+$ $q_{x}^{j} f_{j}(0)<f_{i}(x)=\tilde{f}_{i}(x)$ for $j \neq i$, so $f(x)=\tilde{f}_{i}(x)$, and therefore $f=$ $\max \left\{\tilde{f}_{0}, \ldots, \tilde{f}_{n-1}\right\}$.

Theorem 1. $f \in \operatorname{Max}(\mathrm{HF})$ iff f is 2-Hamel function.
Proof. \Rightarrow Fix $f \in \operatorname{Max}(\mathrm{HF})$. Then there exist $g, h \in$ HF such that $f=$ $\max \{g, h\}$. Put $A_{0}=\{x \in \mathbb{R}: g(x)<h(x)\}$ and $A_{1}=\{x \in \mathbb{R}: h(x) \leq g(x)\}$. Then $A_{0} \cap A_{1}=\emptyset$ and $A_{0} \cup A_{1}=\mathbb{R}$ and $f_{\mid A_{0}}=h_{\mid A_{0}}, f_{\mid A_{1}}=g_{\mid A_{1}}$. Hence f is 2-Hamel function.
\Leftarrow This follows from Lemma 3 for $n=2$.
Lemma 4. The set $L=\left\{f: \mathbb{R}^{\mathbb{R}}: f\right.$ is n-Hamel function for some $\left.n \in \mathbb{N}\right\}$ is a lattice.

Proof. Fix $g, h \in L$ and put $B_{0}=\{x \in \mathbb{R}: h(x) \leq g(x)\}, B_{1}=\{x \in$ $\mathbb{R}: g(x)<h(x)\}$ and $f=\max \{g, h\}$. Since $g, h \in L$, then there exist numbers $m, n \in \mathbb{N}$, sets $A_{0,0}, \ldots A_{0, m}, A_{1,0}, \ldots, A_{1, n} \subset \mathbb{R}$ and functions $g_{0}, \ldots, g_{m}, h_{0}, \ldots, h_{n} \in$ HF such that $A_{0,0}, \ldots, A_{0, m}$ and $A_{1,0}, \ldots, A_{1, n}$ are pairwise disjoint and $g_{i \mid A_{0, i}}=g_{\mid A_{0, i}}, h_{j \mid A_{1, j}}=h_{\mid A_{1, j}}$. Define $A_{i}^{0}=B_{0} \cap A_{0, i}$ for $i \leq m$ and $A_{i}^{1}=B_{1} \cap A_{1, i}$ for $i \leq n$. Then the family $\left\{A_{i}^{0}, A_{j}^{1}: i \leq m, j \leq n\right\}$ and functions $g_{0}, \ldots, g_{m}, h_{0}, \ldots, h_{n}$ witness that f is $(n+m)$-Hamel function, so $f \in L$. Similarly we show that $\min \{g, h\} \in L$.

Theorem 2. $\mathcal{L}(H F)=\left\{f \in \mathbb{R}^{\mathbb{R}}: f\right.$ is n-Hamel function for some $\left.n \in \mathbb{N}\right\}$.

Proof. In virtue of Lemma 4 we get the inclusion \subset. To prove the inclusion \supset use Lemma 3.

Notice that similarly as in the above discussion we could show that a real function $f \in \operatorname{Max}($ LIF $)$ iff there exists a decomposition of \mathbb{R} into sets A, B such that $f_{\mid A}$ and $f_{\mid B}$ are extendable to linearly independent functions. Moreover $f \in \mathcal{L}($ LIF $)$ iff there exists $n \in \mathbb{N}$ and a decomposition of \mathbb{R} into n sets A_{0}, \ldots, A_{n-1} such that $f_{\mid A_{0}}, \ldots, f_{\mid A_{n-1}}$ are extendable to linearly independent functions.

In the next theorem we will use the following notation. For $f \in \mathcal{L}(H F)$ let $n(f)$ be the minimal number such that f is $n(f)$-Hamel function, $L_{1}=\mathrm{HF}$ and, generally, $L_{n}=\{f: n(f) \leq n\}$ for $n \in \mathbb{N}$.

Theorem 3. $L_{1} \nsubseteq L_{2} \varsubsetneqq \ldots \nsubseteq L_{n} \varsubsetneqq \ldots$ and $\bigcup L_{n}=\mathcal{L}(\mathrm{HF})$.
Proof. Fix $n \in \mathbb{N}, g \in \mathrm{HF}, q_{0}=1$ and $x_{0} \in \mathbb{R} \backslash\{0\}$. Put $x_{i}=q_{i} x_{0}$ where $q_{i} \in \mathbb{Q} \backslash\{0,1\}$ are pairwise different, $1 \leq i \leq n$. Define $h: \mathbb{R} \backslash\left\{x_{1}, \ldots, x_{n}\right\} \rightarrow$ \mathbb{R} as $h=g_{\mid \mathbb{R} \backslash\left\{x_{1}, \ldots, x_{n}\right\}}$. Notice that since $\operatorname{LIN}_{\mathbb{Q}}\left(\mathbb{R} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right)=\mathbb{R}$, so $\mathrm{LC}\left(h, x_{0}\right) \neq \emptyset$. Choose $y_{0} \in \mathrm{LC}\left(h, x_{0}\right)$ and put $y_{i}=q_{i} y_{0}$ for $1 \leq i \leq n$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as $f=h \cup\left\{\left\langle x_{i}, y_{i}\right\rangle: 1 \leq i \leq n\right\}$. We will show that $f \in L_{n+1} \backslash L_{n}$. First notice that since $f_{\mid \mathbb{R} \backslash\left\{x_{1}, \ldots, x_{n}\right\}},\left\{\left\langle x_{1}, y_{1}\right\rangle\right\}, \ldots,\left\{\left\langle x_{n}, y_{n}\right\rangle\right\}$ are extendable to Hamel functions, so $f \in L_{n+1}$. Now suppose that $f \in L_{n}$, hence there exists a partition of \mathbb{R} into sets $B_{0}, \ldots B_{n-1}$ such that $f_{\mid B_{i}}$ is extendable to a Hamel function for $0 \leq i \leq n-1$. Since $\left|\left\{x_{0}, \ldots, x_{n}\right\}\right|=n+1$, so there exists i such that $\left|B_{i} \cap\left\{x_{0}, \ldots, x_{n}\right\}\right| \geq 2$. Hence there exist $k \neq l$ such that $x_{k}, x_{l} \in B_{i}$ and consequently $\left\langle x_{k}, y_{k}\right\rangle-\frac{q_{k}}{q_{l}}\left\langle x_{l}, y_{l}\right\rangle=0$, so $f_{\mid B_{i}} \notin$ PLIF, a contradiction. Hence $f \notin L_{n}$.

Remark 1. Note that $\mathcal{L}(\mathrm{HF}) \cap \mathrm{Add}=\emptyset$, because $f(0) \neq 0$ for each $f \in \mathcal{L}(\mathrm{HF})$. Similarly, if $f=\max \left\{f_{0}, f_{1}, \ldots\right\}$ for some infinite sequence $\left\langle f_{n}\right\rangle_{n \in \mathbb{N}}$ of Hamel functions, then $f(0) \neq 0$ and therefore $f \notin \operatorname{Add}$.

The following Lemma is a simple modification of [1, Lemma 7.3.10]. (See also [4] and [2].)

Lemma 5. Fix a cardinal δ and infinite regular cardinals γ, κ such that $\gamma<\kappa$ and $\delta<\gamma$. Let $|A|=\kappa,|B|=\gamma$ and $f: A \times B \rightarrow \delta$, then for every cardinal $\alpha<\delta$ there exist $B_{0} \in[B]^{\alpha}$ and $A_{0} \in[A]^{\kappa}$ such that $f\left(a_{0}, b_{0}\right)=f\left(a_{1}, b_{1}\right)$ for every $a_{0}, a_{1} \in A_{0}$ and $b_{0}, b_{1} \in B_{0}$.

Proof. Fix $\alpha<\delta$. First we will show that for every $a \in A$ there exist $B_{a} \in[B]^{\alpha}$ and $\beta_{a}<\delta$ such that $f(a, b)=\beta_{a}$ for every $b \in B_{a}$. To see this, notice that for every $a \in A$ the sets $S_{a}^{\beta}=\{b \in B: f(a, b)=\beta\}, \beta<\delta$, form
a partition of the set B. Since $|B|=\gamma$ and $\gamma>\delta$, so there exists an $\beta=\beta_{a}$ such that the set S_{a}^{β} is of power γ. Notice that $\left[S_{a}^{\beta}\right]^{\alpha} \neq \emptyset$. Fix $B_{a} \in\left[S_{a}^{\beta}\right]^{\alpha}$ and observe that $f(a, b)=\beta_{a}$ for every $b \in B_{a}$.
Now $F: A \rightarrow[B]^{\alpha} \times \delta$ be defined by $F(a)=\left\langle B_{a}, \beta_{a}\right\rangle$. Then $f(a, b)=\beta_{a}$ for every $a \in A$ and $b \in B_{a}$. The set $[B]^{\alpha} \times \delta$ has cardinality γ, so there exists $\left\langle B_{0}, \beta\right\rangle \in[B]^{\alpha} \times \delta$ such that $A_{0}=F^{-1}\left(B_{0}, \beta\right)$ has cardinality κ. Hence for every $a \in A_{0}$ and $b \in B_{0}$ we have $f(a, b)=\beta$.

Theorem 4. Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is constant on some nonempty open interval $(a, b) \subset \mathbb{R}$, then $f \notin \mathcal{L}($ LIF $)$.

Proof. Fix a partition S_{0}, \ldots, S_{n} of \mathbb{R}. Let $U \subset \mathbb{R}$ be an non-empty open interval such that $x+y \in(a, b)$ for every $x, y \in U$. Fix a Hamel basis $H \subset U$ and disjoint sets $A, B \subset H$ such that $|A|=\omega_{1}$ and $|B|=\omega$. Define g : $A \times B \rightarrow\{0, \ldots, n\}$ by $g(a, b)=m$ iff $a+b \in S_{m}$. Then in virtue of Lemma 5 for function g and $\alpha=2$ there exist $B_{0}=\left\{b_{0}, b_{1}\right\} \in[B]^{2}$ and $A_{0} \in[A]^{\omega}$ such that $b+a \in S_{k}$ for some $k \leq n$ and every $a \in A_{0}, b \in B_{0}$. Fix $a_{0}, a_{1} \in A_{0}$ and put $x=b_{0}+a_{0}, y=b_{0}+a_{1}, z=b_{1}+a_{0}$ and $t=b_{1}+a_{1}$. Notice that x, y, z, t are pairwise different, $x, y, z, t \in(a, b)$ and $x-y=z-t$. Since f is constant on (a, b), so $\langle x, f(x)\rangle-\langle y, f(y)\rangle+\langle t, f(t)\rangle-\langle z, f(z)\rangle=0$. Hence $f \notin \mathcal{L}$ (LIF) .

Problem 1. Does there exist a function $f \in \mathcal{L}(\mathrm{HF})$ such that f is continuous on some nonempty open interval?

Now we will consider maxima of countable families of functions.
Theorem 5. The Continuum Hypothesis holds iff $\mathbb{R}^{\mathbb{R}} \backslash\left\{f \in \mathbb{R}^{\mathbb{R}}: f(0)=0\right\}=$ $\left\{\max \left\{f_{0}, f_{1}, \ldots\right\}: f_{0}, f_{1}, \ldots \in \mathrm{HF}\right\}$ 。

Proof. \Rightarrow By Remark 1 it is enough to show that if $f(0) \neq 0$ then $f=$ $\max \left\{f_{0}, f_{1}, \ldots\right\}$ for some $f_{0}, f_{1}, \ldots \in$ HF. Fix $f \in \mathbb{R}^{\mathbb{R}}$ with $f(0) \neq 0$. It is well known that the continuum hypothesis holds iff the set of all non-zero reals is a union of countably many Hamel bases [2]. Hence there exist pairwise disjoint linearly independent sets $H_{\underline{1}}, H_{2}, \ldots \subset \mathbb{R}$ such that $\mathbb{R} \backslash\{0\}=$ $\bigcup_{n=1}^{\infty} H_{n}$. Put $H_{0}=\{0\}$ and define $\tilde{f}_{i}=f_{\mid H_{i}}$ for $i=0,1, \ldots$. Then $\tilde{f}_{0}, \tilde{f}_{1} \ldots$ can be extended to a Hamel functions [8, Fact 6], denote those extensions again by $\tilde{f}_{0}, \tilde{f}_{1}, \ldots$ respectively. For $i=0,1, \ldots$ define functions $f_{i}(x)=\left\{\begin{array}{ll}f(x) & \text { for } x \in H_{i} \\ \tilde{f}_{i}(x)+q_{x}^{i} \tilde{f}_{i}(0) & \text { for } x \notin H_{i}\end{array}\right.$ where $q_{x}^{i} \in \mathbb{Q} \backslash\{-1\}$ is such that $\tilde{f}_{i}(x)+q_{x}^{i} \tilde{f}_{i}(0)<f(x)$. Then $f=\max \left\{f_{0}, f_{1}, \ldots\right\}$ and $f_{0}, f_{1}, \ldots \in \mathrm{HF}$.
\Leftarrow Suppose $\mathfrak{c}>\omega_{1}$. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ as $f(x)=\left\{\begin{array}{ll}x & \text { for } x \neq 0 \\ a & \text { for } x=0\end{array}\right.$ for some $a \in \mathbb{R} \backslash\{0\}$. Hence there exists $\left(f_{n}\right)_{n \in \mathbb{N}} \subset \mathrm{HF}$ such that $f=\max \left\{f_{n}: n \in \mathbb{N}\right\}$. Define $H_{n}=\left\{x \in \mathbb{R}: f_{n}(x)=f(x)\right\} \backslash\{0\}$. Then $\mathbb{R} \backslash\{0\}=\bigcup_{n \in \mathbb{N}} H_{n}$. We will show that H_{n} is linearly independent for $n \in \mathbb{N}$. Suppose the opposite that there exists $i \in \mathbb{N}$ such that H_{i} is linearly dependent. Hence there exist different $x_{0}, \ldots, x_{n} \in H_{i}$ and $q_{0}, \ldots, q_{n} \in \mathbb{Q} \backslash\{0\}$ such that $\sum_{k=0}^{n} q_{k} x_{k}=0$, so $\sum_{k=0}^{n} q_{k}\left\langle x_{k}, f_{i}\left(x_{k}\right)\right\rangle=0$, a contradiction. Fix a Hamel basis H and $A, B \subset H$, $A \cap B=\emptyset$, such that $\mathfrak{c} \geq|A|>|B|>\omega$. Define function $g: A \times B \rightarrow \omega$ by $g(a, b)=m$ iff $a+b \in H_{m}$. Hence there exist sets A_{0} and B_{0} as in Lemma 5 for function g and $\alpha=2$. Choose different $a_{0}, a_{1} \in A_{0}, b_{0}, b_{1} \in B_{0}$ and put $x_{i j}=a_{i}+b_{j}$ for $i, j<2$. Then $x_{i j}$ are different numbers all belonging to the same H_{n}. On the other hand we have $x_{00}-x_{10}=x_{01}-x_{11}$, a contradiction with the fact that H_{n} is linearly independent.

Remark 2. Notice that by similar reasoning as in Theorem 5 if we assume $\mathrm{ZFC}+\neg \mathrm{CH}$ then no constant function is a maxima of a countable family of Hamel functions.

3 Extensions of Hamel functions.

Fact 3. Suppose $f: X \rightarrow \mathbb{R}$. Then $\operatorname{LIN}_{\mathbb{Q}}(f)=\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$ iff there exists $a \in \operatorname{LIN}_{\mathbb{Q}}(X)$ such that $\mathrm{LC}(f, a)=\mathbb{R}$.

Proof. \Rightarrow Fix $a \in \operatorname{LIN}_{\mathbb{Q}}(X)$. Then $\{a\} \times \operatorname{LC}(f, a)=\operatorname{LIN}_{\mathbb{Q}}(f) \cap(\{a\} \times \mathbb{R})$ and since $\operatorname{LIN}_{\mathbb{Q}}(f)=\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$, so $\operatorname{LC}(f, a)=\mathbb{R}$.
\Leftarrow The inclusion \subset is clear. To see \supset, pick $\langle x, y\rangle \in \operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$ and $a \in \operatorname{LIN}_{\mathbb{Q}}(X)$ such that $\operatorname{LC}(f, a)=\mathbb{R}$. Since $x-a \in \operatorname{LIN}_{\mathbb{Q}}(X)$, so there exist $q_{0}, \ldots, q_{n} \in \mathbb{Q} \backslash\{0\}$ and $x_{0}, \ldots, x_{n} \in X$ such that $\sum_{i=0}^{n} q_{i} x_{i}=x-a$. Put $z=\sum_{i=0}^{n} q_{i} f\left(x_{i}\right)$. Since $\operatorname{LC}(f, a)=\mathbb{R}$, so $y-z \in \operatorname{LC}(f, a)$. Hence there exist $p_{0}, \ldots, p_{m} \in \mathbb{Q} \backslash\{0\}$ and $y_{0}, \ldots, y_{m} \in X$ such that $\sum_{i=0}^{m} p_{i}\left\langle y_{i}, f\left(y_{i}\right)\right\rangle=$ $\langle a, y-z\rangle$. Hence we get

$$
\langle x, y\rangle=\langle a, y-z\rangle+\langle x-a, z\rangle=\sum_{i=0}^{m} p_{i}\left\langle y_{i}, f\left(y_{i}\right)\right\rangle+\sum_{i=0}^{n} q_{i}\left\langle x_{i}, f\left(x_{i}\right)\right\rangle .
$$

Consequently, $\langle x, y\rangle \in \operatorname{LIN}_{\mathbb{Q}}(f)$.
Remark 3. Suppose $f: X \rightarrow \mathbb{R}$ is linearly independent, $|\mathbb{R} \backslash X|<\omega$ and $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right)=|\mathbb{R} \backslash X|$. Then f can be extended to a Hamel function \tilde{f}.

Proof. Order $\mathbb{R} \backslash X=\left\{x_{k}: k \leq n\right\}$. We will define a function $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}$ by induction. For $x \in X$ put $\tilde{f}(x)=f(x)$. Suppose, for $l<k$, a function \tilde{f} is defined for points x_{l} such that $f_{l}=f \cup \bigcup_{l<k}\left\{\left\langle x_{l}, \tilde{f}\left(x_{l}\right)\right\rangle\right\}$ is linearly independent. Since $l<k \leq n$, so $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}\left(f_{l}\right)\right)=n-l>n-k \geq 0$. ${\underset{\sim}{N}}^{\text {Note that }} \operatorname{LIN}_{\mathbb{Q}}(X)=\underset{\sim}{\mathbb{R}}$, hence by Fact 3 there exists $y \notin \mathrm{LC}\left(f_{l}, x_{k}\right)$. Put $\tilde{f}\left(x_{k}\right)=y$. Notice that $\tilde{f} \in \operatorname{HF}$.

Theorem 6. Suppose $X \subset \mathbb{R}, \operatorname{LIN}_{\mathbb{Q}}(X)=\mathbb{R}$ and $f: X \rightarrow \mathbb{R}$ is PLIF. Then f is extendable to a HF function iff $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right)=|\mathbb{R} \backslash X|$.
Proof. \Rightarrow Let $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}$ be an HF extension of the function f. Then $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right)=|\tilde{f} \backslash f|=|\operatorname{dom}(\tilde{f}) \backslash \operatorname{dom}(f)|=|\mathbb{R} \backslash X|$.
\Leftarrow Without loss of generality we can assume that $|\mathbb{R} \backslash X|=\kappa \geq \omega$. Pick a Hamel basis $H \subset \mathbb{R}^{2}$ such that $f \subset H$. Well order $\mathbb{R} \backslash X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ and $H \backslash f=\left\{\left\langle a_{\alpha}, b_{\alpha}\right\rangle: \alpha<\kappa\right\}$. For $\alpha<\kappa$ we will construct partial functions f_{α} such that
(i) $f \subset f_{\beta} \subset f_{\alpha}$ for $\beta<\alpha$ and $\left|f_{\alpha}\right| \leq|f|+|\alpha|$;
(ii) $f_{\alpha} \in \mathrm{PLIF}$;
(iii) $x_{\alpha} \in \operatorname{dom}\left(f_{\alpha+1}\right)$;
(iv) $\left\langle a_{\alpha}, b_{\alpha}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left(f_{\alpha+1}\right)$.

Then $\tilde{f}=\bigcup_{\alpha<\kappa} f_{\alpha}$ is a HF extension of the function f. Suppose that for $\beta<\gamma$ functions f_{β} are constructed. If γ is a limit ordinal then $f_{\gamma}=\bigcup_{\beta<\gamma} f_{\beta}$. Otherwise there exists α such that $\gamma=\alpha+1$.
Step 1. If $x_{\alpha} \in \operatorname{dom}\left(f_{\alpha}\right)$ then $f_{\alpha}^{\prime}=f_{\alpha}$. Otherwise, since $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}\left(f_{\alpha}\right)\right)=\kappa$, so $f_{\alpha} \notin$ PHF. Hence in virtue of Fact 3 there exists $y \in \mathbb{R} \backslash \mathrm{LC}\left(f_{\alpha}, x_{\alpha}\right)$. Put $f_{\alpha}^{\prime}=f_{\alpha} \cup\left\{\left\langle x_{\alpha}, y\right\rangle\right\}$. Then obviously $f_{\alpha}^{\prime} \in$ PLIF.
Step 2. If $\left\langle a_{\alpha}, b_{\alpha}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left(f_{\alpha}^{\prime}\right)$ then $f_{\alpha+1}=f_{\alpha}^{\prime}$. Otherwise we get two cases. If $a_{\alpha} \notin \operatorname{dom}\left(f_{\alpha}^{\prime}\right)$ then define $f_{\alpha+1}=f_{\alpha}^{\prime} \cup\left\{\left\langle a_{\alpha}, b_{\alpha}\right\rangle\right\}$. Then, since $\left\langle a_{\alpha}, b_{\alpha}\right\rangle \notin \operatorname{LIN}_{\mathbb{Q}}\left(f_{\alpha}^{\prime}\right), f_{\alpha+1} \in \operatorname{PLIF}$. Now suppose that $a_{\alpha} \in \operatorname{dom}\left(f_{\alpha}^{\prime}\right)$. Pick $x \notin \operatorname{dom}\left(f_{\alpha}^{\prime}\right)$. Since $\operatorname{LIN}_{\mathbb{Q}}\left(\operatorname{dom}\left(f_{\alpha}^{\prime}\right)\right)=\mathbb{R}$, so there exist $q_{0}, \ldots, q_{n} \in$ $\mathbb{Q} \backslash\{0\}$ and $x_{0}, \ldots, x_{n} \in \operatorname{dom}\left(f_{\alpha}^{\prime}\right)$ such that $-x=\sum_{i \leq n} q_{i} x_{i}$. Define $y=$ $\sum_{i \leq n} q_{i} f_{\alpha}^{\prime}\left(x_{i}\right)$ and $f_{\gamma}=f_{\alpha}^{\prime} \cup\left\{\left\langle x, b_{\alpha}-f_{\alpha}^{\prime}\left(a_{\alpha}\right)-y\right\rangle\right\}$. We will show that $f_{\gamma} \in$ PLIF. This fact follows easily from

$$
\begin{gathered}
\left\langle a_{\alpha}, b_{\alpha}\right\rangle=\left\langle a_{\alpha}, f_{\alpha}^{\prime}\left(a_{\alpha}\right)\right\rangle+\left\langle 0, b_{\alpha}-f_{\alpha}^{\prime}\left(a_{\alpha}\right)\right\rangle= \\
\left\langle a_{\alpha}, f_{\alpha}^{\prime}\left(a_{\alpha}\right)\right\rangle+\langle-x, y\rangle+\left\langle x, b_{\alpha}-f_{\alpha}^{\prime}\left(a_{\alpha}\right)-y\right\rangle \notin \operatorname{LIN}_{\mathbb{Q}}\left(f_{\alpha}^{\prime}\right)
\end{gathered}
$$

and since $\left\langle a_{\alpha}, f_{\alpha}^{\prime}\left(a_{\alpha}\right)\right\rangle,\langle-x, y\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left(f_{\alpha}^{\prime}\right)$, so we get that $\left\langle x, b_{\alpha}-f_{\alpha}^{\prime}\left(a_{\alpha}\right)-y\right\rangle \notin$ $\operatorname{LIN}_{\mathbb{Q}}\left(f_{\alpha}^{\prime}\right)$. Hence $f_{\alpha+1} \in \operatorname{PLIF}$ and $\left\langle a_{\alpha}, b_{\alpha}\right\rangle \in \operatorname{LIN}_{\mathbb{Q}}\left(f_{\alpha+1}\right)$.

Theorem 7.

1. If $|X|<\mathfrak{c}$, then any $f: X \rightarrow \mathbb{R}, f \in \mathrm{PLIF}$ can be extended to $a \mathrm{HF}$ function.
2. Suppose $|X|=\mathfrak{c}$. Then there exists $f_{X}: \operatorname{LIN}_{\mathbb{Q}}(X) \rightarrow \mathbb{R}, f_{X} \in \operatorname{PLIF}$ such that $\operatorname{LIN}_{\mathbb{Q}}\left(f_{X}\right)=\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$.
3. If we additionally assume in (2) that $\operatorname{LIN}_{\mathbb{Q}}(X) \neq \mathbb{R}$, then f_{X} is not extendable to a LIF function.

Proof. (1) follows from [5, Lemma 2.3].
(2) Fix $X \in[\mathbb{R}]^{\mathfrak{c}}$ and let $\varphi: \mathbb{R} \rightarrow \operatorname{LIN}_{\mathbb{Q}}(X)$ be a linear isomorphism. Define $\Phi: \mathbb{R}^{2} \rightarrow \operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$ by $\Phi(x, y)=\langle\varphi(x), y\rangle$. Then Φ is a linear isomorphism. Furthermore Φ preserves functions i.e. if $f: \mathbb{R} \rightarrow \mathbb{R}$ is a function, then $\Phi(f)$ is also a function. Hence for every $f \in$ HF the function $\Phi(f): \operatorname{LIN}_{\mathbb{Q}}(X) \rightarrow \mathbb{R}$ is a basis of the space $\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$. Set $f_{X}=\Phi(f)$.
(3) We will show that any extension of f_{X} on \mathbb{R} is linearly dependent. Fix a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is an extension of function f_{X}. Let $Y \subset$ X be a basis of $\operatorname{LIN}_{\mathbb{Q}}(X)$ and $H \subset \mathbb{R}$ a Hamel basis such that $Y \subset H$. Define $\tilde{f}: \operatorname{LIN}_{\mathbb{Q}}(X) \cup H \rightarrow \mathbb{R}$ as the restriction $f_{\mid \operatorname{LIN}}^{\mathbb{Q}}(X) \cup H$. Notice that $f_{X} \subset \tilde{f}$ and since $\mathrm{LC}\left(f_{X}\right)=\mathbb{R}$, so $\mathrm{LC}(\tilde{f})=\mathbb{R}$. Hence in virtue of Fact 3, $\operatorname{LIN}_{\mathbb{Q}}(\tilde{f})=\operatorname{LIN}_{\mathbb{Q}}(Y \cup H) \times \mathbb{R}=\mathbb{R}^{2}$. On the other hand, $H \cup \operatorname{LIN}_{\mathbb{Q}}(X) \nsubseteq \mathbb{R}$, so any extension of \tilde{f} is linearly dependent and consequently f is linearly dependent.

Lemma 6. Suppose $f: X \rightarrow \mathbb{R}$ is PLIF. Then $\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right) \geq$ $\operatorname{codim}_{\mathbb{R}}(\mathrm{LC}(f))$.

Proof. Fix a basis $Y \subset \mathbb{R}$ of subspace $\mathrm{LC}(f)$ and a set $A \subset \mathbb{R}$ such that $Y \cup A$ is a Hamel basis of \mathbb{R}. Since $\mathrm{LC}(f)$ is linearly isomorphic to $\operatorname{LIN}_{\mathbb{Q}}(f) \cap(\{0\} \times \mathbb{R})$, so $f \cup(\{0\} \times A)$ is a linearly independent set. Finally $\operatorname{LIN}_{\mathbb{Q}}(f \cup(\{0\} \times A)) \subset \operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}, \operatorname{soc}_{\operatorname{codim}_{\operatorname{LiN}_{\mathbb{Q}}(X) \times \mathbb{R}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right) \geq}$ $\operatorname{codim}_{\mathbb{R}}(\mathrm{LC}(f))$.

Theorem 8. Suppose $X \subset \mathbb{R}$ and $f: X \rightarrow \mathbb{R}$ is linearly independent. Then f is extendable to $a \mathrm{HF}$ function iff $\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right)=|\mathbb{R} \backslash X|$.

Proof. First notice that in virtue of Theorem 6 and Lemma 2 without loss of generality we can assume that $\operatorname{LIN}_{\mathbb{Q}}(X) \neq \mathbb{R}$ and $|X|=\mathfrak{c}$.
\Rightarrow Let $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}$ be a HF extension of a function f and $Y \subset X$ be a basis of the space $\operatorname{LIN}_{\mathbb{Q}}(X)$. Fix a Hamel basis $H \subset \mathbb{R}$ such that $Y \subset H$ and define
$F: X \cup H \rightarrow \mathbb{R}$, by $F=\tilde{f}_{\mid(X \cup H)}$.
Claim 1. $\operatorname{codim}_{\mathbb{R}}(\mathrm{LC}(F))=\mathfrak{c}$.
Well order $\mathbb{R} \backslash(X \cup H)=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. Notice that

$$
\mathrm{LC}(F) \nsubseteq \mathrm{LC}\left(F \cup\left\{\left\langle x_{0}, \tilde{f}\left(x_{0}\right)\right\rangle\right\}\right) \nsubseteq \ldots \nsubseteq \mathrm{LC}(\tilde{f})
$$

Indeed, fix $\alpha<\mathfrak{c}$. There exist different $x_{0}^{\alpha}, \ldots, x_{n}^{\alpha} \in X \cup H$ and $q_{0}^{\alpha}, \ldots, q_{n}^{\alpha} \in$ $\mathbb{Q} \backslash\{0\}$ such that $\sum_{i=0}^{n} q_{i}^{\alpha} x_{i}^{\alpha}=-x_{\alpha}$. Let $y=\sum_{i=0}^{n} q_{i}^{\alpha} \tilde{f}\left(x_{i}^{\alpha}\right)+\tilde{f}\left(x_{\alpha}\right)$. Then

$$
y \in \mathrm{LC}\left(F \cup \bigcup_{\gamma \leq \alpha}\left\{\left\langle x_{\gamma}, \tilde{f}\left(x_{\gamma}\right)\right\rangle\right\}\right)
$$

\tilde{f} is a linearly independent set, so $y \notin \mathrm{LC}\left(F \cup \bigcup_{\gamma<\alpha}\left\{\left\langle x_{\gamma}, \tilde{f}\left(x_{\gamma}\right)\right\rangle\right\}\right)$. Recall that LC $\left(F \cup \bigcup_{\gamma \leq \alpha}\left\{\left\langle x_{\gamma}, \tilde{f}\left(x_{\gamma}\right)\right\rangle\right\}\right)$ is a linear subspace of \mathbb{R} for every $\alpha<\mathfrak{c}$. Hence

$$
\operatorname{codim}_{\mathbb{R}}(\operatorname{LC}(F))=|\mathbb{R} \backslash(X \cup H)|=\mathfrak{c}
$$

Claim 2. $\mathrm{LC}(F)=\mathrm{LC}(f)$.
Since $f \subset F, \mathrm{LC}(f) \subset \mathrm{LC}(F)$. Fix $y \in \operatorname{LC}(F)$, so $\langle 0, y\rangle=\sum_{i=0}^{n} q_{i}\left\langle x_{i}, f\left(x_{i}\right)\right\rangle+$ $\sum_{j=0}^{m} p_{j}\left\langle y_{j}, F\left(y_{j}\right)\right\rangle$, for some $p_{j}, q_{i} \in \mathbb{Q}$ and different $x_{i} \in X, y_{j} \in H \backslash Y$ for $i \leq n$ and $j \leq m$. Since $\operatorname{LIN}_{\mathbb{Q}}\left(\left\{x_{i}: i \leq n\right\}\right) \cap \operatorname{LIN}_{\mathbb{Q}}\left(\left\{y_{j}: i \leq m\right\}\right)=\{0\}$, so $\sum_{i=0}^{n} q_{i} x_{i}=0$ and $\sum_{j=0}^{m} p_{j} y_{j}=0$. Because $H \backslash X$ is a linearly independent set, so $p_{j}=0$ for $j \leq m$. Hence $y \in \mathrm{LC}(f)$.

Hence in virtue of Lemma 6 we get that

$$
\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right) \geq \operatorname{codim}_{\mathbb{R}}(\operatorname{LC}(f))=\mathfrak{c}
$$

\Leftarrow Again we start with showing that $\operatorname{codim}_{\mathbb{R}}(\operatorname{LC}(f))=\mathfrak{c}$. To see this fix $x \in \mathbb{R} \backslash \operatorname{LIN}_{\mathbb{Q}}(X)$. Notice that since $|X|=\mathfrak{c}$, so $\left|\operatorname{LIN}_{\mathbb{Q}}(X \cup\{x\}) \backslash \operatorname{LIN}_{\mathbb{Q}}(X)\right|=$ c. Put $Y=\operatorname{LIN}_{\mathbb{Q}}(X \cup\{x\})$ and well order $Y=\left\{x_{\alpha}: \alpha<\mathfrak{c}\right\}$. We define partial functions $f_{\alpha}, \alpha<\mathfrak{c}$, such that
(i) $f \subset f_{\beta} \subset f_{\alpha}$ for $\beta<\alpha$;
(ii) $f_{\alpha} \in$ PLIF;
(iii) $x_{\alpha} \in \operatorname{dom}\left(f_{\alpha+1}\right)$.

If α is a limit ordinal, then $f_{\alpha}=\bigcup_{\gamma<\alpha} f_{\gamma}$. Otherwise $\alpha=\beta+1$. Since $\mathfrak{c}=\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}}\left(\operatorname{LIN}_{\mathbb{Q}}\left(f_{\beta}\right)\right) \leq \operatorname{codim}_{\mathrm{Y} \times \mathbb{R}}\left(\operatorname{LIN}_{\mathbb{Q}}\left(f_{\beta}\right)\right)$ and $\alpha<\mathfrak{c}$, so in
virtue of Fact 3 there exists $y \in \mathbb{R} \backslash \operatorname{LC}\left(f_{\beta}, x_{\alpha}\right)$. Put $f_{\alpha}=f_{\beta} \cup\left\{\left\langle x_{\alpha}, y\right\rangle\right\}$. It is easy to notice that

$$
\mathrm{LC}(f)=\mathrm{LC}\left(f_{0}\right) \varsubsetneqq \mathrm{LC}\left(f_{1}\right) \varsubsetneqq \ldots \varsubsetneqq \mathrm{LC}\left(f_{\mathfrak{c}}\right)
$$

Since LC $\left(f_{\alpha}\right), \alpha<\mathfrak{c}$, is a linear subspace of \mathbb{R}, so $\operatorname{codim}_{\mathbb{R}}(\mathrm{LC}(f)) \geq \mathfrak{c}$.
Fix a basis Y of the space $\operatorname{LIN}_{\mathbb{Q}}(X)$ such that $Y \subset X$ and a Hamel basis H such that $Y \subset H$. Define $\tilde{f}: X \cup H \rightarrow \mathbb{R}$ by $\tilde{f}(x)=\left\{\begin{array}{ll}f(x) & \text { for } x \in X \\ 0 & \text { for } x \in H \backslash X\end{array}\right.$. Obviously LC $(\tilde{f})=\mathrm{LC}(f)$. In virtue of Lemma 6

$$
\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}(\tilde{f})\right) \geq \operatorname{codim}_{\mathbb{R}}(\operatorname{LC}(\tilde{f}))=\operatorname{codim}_{\mathbb{R}}(\mathrm{LC}(f))=\mathfrak{c}
$$

so in virtue of Theorem $6, \tilde{f}$ can be extended to a Hamel function.
Corollary 1. Suppose $f: X \rightarrow \mathbb{R}$ is a PLIF function. Then f is extendable to $a \operatorname{LIF}$ function iff $\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right) \geq|\mathbb{R} \backslash X|$.
Proof. \Rightarrow Assume the opposite that $\operatorname{codim}_{\operatorname{LiN}_{\mathbb{Q}}(X) \times \mathbb{R}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right)<|\mathbb{R} \backslash X|$. But then any function $\tilde{f}: \mathbb{R} \rightarrow \mathbb{R}, f \subset \tilde{f}$, has to be linearly dependent, a contradiction.
\Leftarrow First notice that if $|\mathbb{R} \backslash X|=\mathfrak{c}$ then $\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right)=\mathfrak{c}$. Hence from Theorem 8, f can be extended to a HF function. Now assume that $|\mathbb{R} \backslash X|=\kappa<\mathfrak{c}$. Well order $\mathbb{R} \backslash X=\left\{x_{\alpha}: \alpha<\kappa\right\}$ and define $\tilde{f}(x)=$ $\left\{\begin{array}{ll}f(x) & \text { for } x \in X \\ y_{\alpha} & \text { for } x=x_{\alpha}\end{array}\right.$, where $y_{\alpha} \in \mathbb{R} \backslash \operatorname{LC}\left(f \cup \bigcup_{\beta<\alpha}\left\{\left\langle x_{\beta}, y_{\beta}\right\rangle\right\}, x_{\alpha}\right)$. Such a choice is possible since $\alpha<\kappa$ and $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}(f)\right)>\kappa$. Then $\tilde{f} \in \operatorname{LIF}$ and $f \subset \tilde{f}$.

Next we apply the obtained extension theorem to prove a result concerning the lattice of Hamel functions.

Theorem 9. $\operatorname{Max}(\mathrm{HF})=\operatorname{Max}($ LIF $)$.
Proof. Since $\mathrm{HF} \subset \mathrm{LIF}$, so the inclusion \subset is obvious.
\supset Fix $f \in \operatorname{Max}($ LIF $)$. Hence there exist $g, h \in \operatorname{LIF}$ such that $f=\max \{g, h\}$. Let $A=\{x \in \mathbb{R}: g(x)=f(x)\}$ and $B=\{x \in \mathbb{R} \backslash A: h(x)=f(x)\}$. Since $A \cup B=\mathbb{R}$, so $|A|=\mathfrak{c}$ or $|B|=\mathfrak{c}$. Hence we get two cases.

First suppose that $|A|=\mathfrak{c}$ and $|B|<\mathfrak{c}$. Notice that $\operatorname{LIN}_{\mathbb{Q}}(A)=\mathbb{R}$. Fix disjoint Hamel bases $H_{1}, H_{2} \subset \mathbb{R} \backslash B$ and a linearly independent set $X \subset H_{1}$ such that $\operatorname{LIN}_{\mathbb{Q}}(X) \cap \operatorname{LIN}_{\mathbb{Q}}(B)=\emptyset$ and $\operatorname{LIN}_{\mathbb{Q}}(B \cup X)=\mathbb{R}$. First
notice that $f_{\mid(A \backslash X)}$ is extendable to a HF function. Indeed, since $f_{\mid A}$ is a linearly independent set, so $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}\left(f_{\mid A \backslash X}\right)\right) \geq|X|=\mathfrak{c}=\mid \mathbb{R} \backslash(A \backslash$ $X) \mid$. Furthermore $H_{2} \subset A \backslash X$, so $\operatorname{LIN}_{\mathbb{Q}}(A \backslash X)=\mathbb{R}$. Hence in virtue of Theorem 6, $f_{\mid A \backslash X}$ is extendable to a HF function. It is easy to see that $f_{\mid(B \cup X)} \in \operatorname{PLIF}$ and LC $\left(f_{\mid(B \cup X)}\right)=\operatorname{LC}\left(f_{\mid B}\right)$. Since $|B|<\mathfrak{c}$, so $\left|\mathrm{LC}\left(f_{\mid B}\right)\right|<$ \mathfrak{c} and consequently $\operatorname{codim}_{\mathbb{R}}\left(\mathrm{LC}\left(f_{\mid B}\right)\right)=\mathfrak{c}$. Hence $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}\left(f_{\mid B \cup X}\right)\right) \geq$ $\operatorname{codim}_{\mathbb{R}}\left(\mathrm{LC}\left(f_{\mid B \cup X}\right)\right)=\mathfrak{c}=|\mathbb{R} \backslash(B \cup X)|$, so in virtue of Theorem $6, f_{\mid B \cup X}$ can be extended to a HF function and by Theorem $1, f \in \operatorname{Max}(\mathrm{HF})$.

Now assume that $|A|=|B|=\mathfrak{c}$. Notice that since $f_{\mid A}$ and $f_{\mid B}$ are extendable to LIF functions, so codim $\mathbb{R}^{2}\left(\operatorname{LIN}_{\mathbb{Q}}\left(f_{\mid A}\right)\right) \geq|B|=\mathfrak{c}$ and $\operatorname{codim}_{\mathbb{R}^{2}}\left(\operatorname{LIN}_{\mathbb{Q}}\left(f_{\mid B}\right)\right) \geq|A|=\mathfrak{c}$. Hence both $f_{\mid A}$ and $f_{\mid B}$ are extendable to Hamel functions and as above, $f \in \operatorname{Max}(\mathrm{HF})$.

Corollary 2. $\mathcal{L}(\mathrm{HF})=\mathcal{L}($ LIF $)$.
Proof. The inclusion \subset is obvious. To see the other inclusion notice that in virtue of Theorem 9, LIF $\subset \mathcal{L}(H F)$. Hence $\mathcal{L}(L I F) \subset \mathcal{L}(H F)$.

References

[1] K. Ciesielski, Set theory for the working mathematician, London Mathematical Society Student Texts, 39, Cambridge University Press, Cambridge 1997.
[2] P. Erdős and S. Kakutani, On non-denumerable graphs, Bull. Am. Math. Soc., 49 (1943), 457-461.
[3] A. B. Kharazishvili and A. Kirtadze, On extensions of partial functions, Expo. Math., 25(4) (2007), 345-353.
[4] P. Komjáth, New trends in discrete and computational geometry, volume Algorithms and Combinatorics volume 10 chapter XII, SpringerVerlag, 1993.
[5] G. Matusik and T. Natkaniec, Algebraic properties of Hamel functions, Acta Math. Hung., (2009), to appear.
[6] T. Natkaniec, On the maximum and the minimum of quasi-continuous functions, Math. Slovaca, 42(1) (1992), 103-110.
[7] K. Płotka, On functions whose graph is a Hamel basis, Proc. Am. Math. Soc., 131(4) (2003), 1031-1041.
[8] K. Płotka, Darboux-like functions within the class of Hamel functions, Real Anal. Exchange, 34(1) (2008), 115-126.
[9] K. Płotka, On functions whose graph is a Hamel basis II, Can. Math. Bull., 52(2) (2009), 295-302.
[10] K. Płotka and I. Recław, Finitely continuous Hamel functions, Real Anal. Exchange, 30(2) (2005), 867-870.

[^0]: Mathematical Reviews subject classification: Primary: 15A03, 54C40; Secondary: 26A21, 54C30

 Key words: additive function, Hamel function, Hamel basis, linearly independent function, lattice

 Received by the editors November 11, 2009
 Communicated by: Krzysztof Ciesielski

