Grzegorz Matusik, Department of Mathematics, University of Gdańsk, Wita Stwosza 57, 80-952 Gdańsk, Poland. email: gmatusik@mat.ug.edu.pl

ON THE LATTICE GENERATED BY HAMEL FUNCTIONS

Abstract

We say that $f : \mathbb{R} \to \mathbb{R}$ is LIF if it is linearly independent over \mathbb{Q} as a subset of \mathbb{R}^2 and that it is a Hamel function (HF) if it is a Hamel basis of \mathbb{R}^2 . In this paper we present a discussion on the lattices generated by the classes HF and LIF. We also investigate extensions of partial LIF functions to HF and LIF functions defined on whole \mathbb{R} .

1 Introduction.

Let us establish some of the terminology to be used. Symbols \mathbb{R} and \mathbb{Q} stand for the set of real and rational numbers, respectively. Ordinal numbers will be identified with the set of their predecessors and cardinal numbers with the initial ordinals. The symbol |X| denotes the cardinality of a set X. In particular, the symbol \mathfrak{c} stands for $|\mathbb{R}|$ and $|\mathbb{Q}| = \omega$. For a set X and a cardinal κ , $[X]^{\kappa}$ is the family of all subsets of X with cardinality κ . Similarly we define the family $[X]^{<\kappa}$. No distinction is made between a function and its graph. For any function $f: X \to Y$ symbols rng(f) and dom(f) denote the range and the domain of f respectively. The symbol $f_{|A|}$ denotes the restriction of f to A. Suppose V is linear space over some field K and $W \subset V$ is a linear subspace. Then the symbol $\operatorname{codim}_V(W) = \dim(V/W)$ will stand for the codimension of the subspace W.

We will consider \mathbb{R} (\mathbb{R}^2) as a linear space over the field \mathbb{Q} . For $A \subset \mathbb{R}^k$ (k = 1, 2, ...), LIN_Q (A) denotes the linear subspace of \mathbb{R}^k over \mathbb{Q} generated by A. Any basis of \mathbb{R}^k over \mathbb{Q} will be referred to as a Hamel basis. A function $f: \mathbb{R} \to \mathbb{R}$ is

Communicated by: Krzysztof Ciesielski

Mathematical Reviews subject classification: Primary: 15A03, 54C40; Secondary: 26A21,

 $^{54\}mathrm{C30}_{\mathrm{Key}}$ words: additive function, Hamel function, Hamel basis, linearly independent function tion, lattice Received by the editors November 11, 2009

- additive $(f \in Add)$ if f(x) + f(y) = f(x+y) for all $x, y \in \mathbb{R}$;
- linearly independent ($f \in LIF$) if f is a linearly independent subset of \mathbb{R}^2 ;
- Hamel function $(f \in HF)$ if f is a Hamel basis of \mathbb{R}^2 .

Let $X \subset \mathbb{R}$. We will say that $f : X \to \mathbb{R}$ is PHF if it is a Hamel basis of \mathbb{R}^2 and that it is PLIF if it is a linearly independent subset of \mathbb{R}^2 . For $f : X \to \mathbb{R}$ and $x \in \mathbb{R}$ let

$$\operatorname{LC}(f, x) = \left\{ \sum_{i=0}^{k} p_i f(x_i) : k < \omega, p_i \in \mathbb{Q}, x_i \in X, \sum_{i=0}^{k} p_i x_i = x \right\}.$$

When x = 0 we will write LC (f).

A family \mathcal{F} of real functions $f : X \to \mathbb{R}$ is a lattice iff $\min(f,g) \in \mathcal{F}$ and $\max(f,g) \in \mathcal{F}$ for $f,g \in \mathcal{F}$. If \mathcal{F} is a family of real functions, then the symbol $\mathcal{L}(\mathcal{F})$ stands for the lattice generated by \mathcal{F} , i.e. the smallest lattice of functions containing \mathcal{F} . Evidently, we have $\mathcal{L}(\mathcal{A}) \subset \mathcal{L}(\mathcal{B})$ if $\mathcal{A} \subset \mathcal{B}$ and $\mathcal{L}(\mathcal{L}(\mathcal{A})) = \mathcal{L}(\mathcal{A})$.

Let \mathcal{F} be a family of real functions. Then the symbols $\operatorname{Max}(\mathcal{F}) = {\operatorname{max}(g, h) : g, h \in \mathcal{F}}$ and $\operatorname{Min}(\mathcal{F}) = {\operatorname{min}(g, h) : g, h \in \mathcal{F}}$ will stand for the maxima and minima sets for family \mathcal{F} , respectively. Obviously if $\mathcal{A} \subset \mathcal{B}$ are families of real functions, then $\operatorname{Max}(\mathcal{A}) \subset \operatorname{Max}(\mathcal{B})$ and $\operatorname{Min}(\mathcal{A}) \subset \operatorname{Min}(\mathcal{B})$.

The class of Hamel function was first introduced and researched by Płotka in papers [7, 9, 8, 10]. The aim of this paper is to answer some questions concerning lattices generated by HF and LIF functions. Finding lattice generated by a family of real functions is a typical problem in real analysis (see e.g. [6]). Our main result in this topic consist of showing that $\mathcal{L}(HF) = \mathcal{L}(LIF)$. Another important problem is extendability of partial functions (see e.g. [3]). We prove in Theorem 8 a sufficient condition for a PLIF function to be extendable to a HF function. Next we use Theorem 8 to prove that $\mathcal{L}(LIF) = \mathcal{L}(HF)$.

2 The lattices of Hamel and linearly independent functions.

Lemma 1 ([5, Fact 2.3]). Suppose $f \in \text{HF}$, then $g : \mathbb{R} \to \mathbb{R}$ defined by $g(x) = f(x) + q_x f(0)$ where $q_x \in \mathbb{Q} \setminus \{-1\}$ for $x \in \mathbb{R}$ is a Hamel function.

Lemma 2 ([8, Fact 6]). Suppose $X \in [\mathbb{R}]^{<\mathfrak{c}}$, $f : X \to \mathbb{R}$, $f \in \text{LIF}$. Then f can be extended to HF function $\tilde{f} : \mathbb{R} \to \mathbb{R}$.

Definition 1. For $\mathcal{F} \subset \mathbb{R}^{\mathbb{R}}$ the class $\mathcal{M}_{\max}(\mathcal{F}) = \{f \in \mathbb{R}^{\mathbb{R}} : \max\{f, g\} \in \mathcal{F} \text{ for every } g \in \mathcal{F}\}$ is called the maximal upper family for \mathcal{F} and $\mathcal{M}_{\min}(\mathcal{F}) = \{f \in \mathbb{R}^{\mathbb{R}} : \min\{g, f\} \in \mathcal{F} \text{ for every } g \in \mathcal{F}\}$ is called the maximal lower family for \mathcal{F} .

Fact 1. $\mathcal{M}_{max}(HF) = \mathcal{M}_{min}(HF) = \mathcal{M}_{max}(LIF) = \mathcal{M}_{min}(LIF) = \emptyset$

PROOF. We will show only the case $\mathcal{M}_{max}(HF) = \emptyset$, the other equalities can be proven in a similar fashion. Let $q: \mathbb{R} \to \mathbb{R}$ be a function, we will show that there exists $f : \mathbb{R} \to \mathbb{R}$ such that $f \in HF$ and $h = \max\{f, g\} \notin HF$. Fix linearly independent vectors $x, y \in \mathbb{R}$. First suppose that g(x) + g(y) = g(x+y). Fix a Hamel function f such that f(x) < g(x), f(y) < g(y) and f(x+y) < g(x+y). Such a function exists in virtue of Lemma 1. Then $\max\{f, g\} \notin \text{LIF}$. Now let us assume that $g(x) + g(y) \neq g(x+y)$. Hence we get two cases. First suppose that g(x) + g(y) > g(x+y). Fix $z_1 \in (-\infty, g(x)), z_2 \in (-\infty, g(y))$ and put $f' = \{\langle x, z_1 \rangle, \langle y, z_2 \rangle, \langle x + y, g(x) + g(y) \rangle\}$. We will show that $f' \in \text{PLIF}$. Indeed suppose that $q_0 \langle x, z_1 \rangle + q_1 \langle y, z_2 \rangle + q_2 \langle x + y, g(x) + g(y) \rangle = 0$ for some $q_0, q_1, q_2 \in \mathbb{Q}$. From $q_0 x + q_1 y + q_2 (x + y) = 0$ we get that $q_0 = q_1 = -q_2$. Hence $q_0(z_1 + z_2 - g(x) - g(y)) = 0$. Hence $q_0 = 0$ or $z_1 + z_2 - g(x) - g(y) = 0$. Notice that $z_1 + z_2 - g(x) - g(y) < g(x) + g(y) - g(x) - g(y) = 0$, consequently $q_0 = q_1 = q_2 = 0$. Let $f \in HF$ be an extension of function f'. Let h = $\max\{f, g\}$, then h(x) + h(y) - h(x + y) = g(x) + g(y) - g(x) - g(y) = 0, so $h \notin HF.$

Now assume that g(x) + g(y) < g(x+y), then z = g(x+y) - g(y) > g(x). Choose $z_1 \in (-\infty, g(y))$ and $z_2 \in (-\infty, g(x+y))$ such that $z + z_1 - z_2 \neq 0$ and put $f' = \{\langle x, z \rangle, \langle y, z_1 \rangle, \langle x+y, z_2 \rangle\}$. We will show that $f' \in \text{PLIF}$. Suppose $q_0 \langle x, z \rangle + q_1 \langle y, z_1 \rangle + q_2 \langle x+y, z_2 \rangle = 0$ for some $q_0, q_1, q_2 \in \mathbb{Q}$. Then $q_0 = q_1 = -q_2$, so $q_0(z+z_1-z_2) = 0$. Hence $q_0 = q_1 = q_2 = 0$. Let $f \in \text{HF}$ be an extension of function f' and $h = \max\{f, g\}$. Then h(x) + h(y) - h(x+y) =z + g(y) - g(x+y) = 0, so $h \notin \text{HF}$.

Definition 2. We will say that a function $f : \mathbb{R} \to \mathbb{R}$ is n-Hamel function if there exist sets $A_0, \ldots, A_{n-1} \subset \mathbb{R}$ and functions $f_0, \ldots, f_{n-1} \in \text{HF}$ such that $\bigcup_{i=0}^{n-1} A_i = \mathbb{R}, A_m \cap A_k = \emptyset$ for m, k < n, and $f_{i|A_i} = f_{|A_i|}$ for i < n.

Fact 2. Max(HF) = Min(HF).

PROOF. First we will show that if $f \in Max(HF)$ $(f \in Min(HF))$ then $-f \in Max(HF)$ $(-f \in Min(HF))$. Pick $f \in Max(HF)$, then there exist functions $g, h \in HF$ such that $f = max\{g, h\}$. Define $A_0 = \{x \in \mathbb{R} : g(x) = f(x)\}$ and $A_1 = \{x \in \mathbb{R} \setminus A_0 : h(x) = f(x)\}$. Put $\tilde{g}(x) = \begin{cases} -g(x) & \text{for } x \in A_0 \\ -g(x) - q_x g(0) & \text{for } x \in A_1 \end{cases}$

and $\tilde{h}(x) = \begin{cases} -h(x) & \text{for } x \in A_1 \\ -h(x) - p_x h(0) & \text{for } x \in A_0 \end{cases}$, where $q_x, p_x \in \mathbb{Q}, -g(x) - q_x g(0) < -h(x)$ for $x \in A_1, q_x \neq -1$ and $-h(x) - p_x h(0) < -g(x)$ for $x \in A_0, p_x \neq -1$. Such p_x, q_x exist because $g(0) \neq 0 \neq h(0)$. Since $g, h \in \text{HF}$, so $-g, -h \in \text{HF}$ and consequently in virtue of Lemma 1 we get that $\tilde{g}, \tilde{h} \in \text{HF}$. Then $-f = \max\{\tilde{g}, \tilde{h}\} \in \text{Max}(\text{HF})$. The case $f \in \text{Min}(\text{HF})$ can be proved analogously. To finish the proof notice that $f \in \text{Max}(\text{HF})$ iff $-f \in \text{Min}(\text{HF})$, hence Max(HF) = Min(HF).

Lemma 3. If f is n-Hamel function then f is a maximum of n Hamel functions.

PROOF. Fix an *n*-Hamel function *f*. Hence there exists a partition A_0, \ldots, A_{n-1} of \mathbb{R} and Hamel functions f_0, \ldots, f_{n-1} such that $f_{i|A_i} = f_{|A_i}$. Define $\tilde{f}_i(x) = \begin{cases} f_i(x) & \text{for } x \in A_i \\ f_i(x) + q_x^i f_i(0) & \text{for } x \notin A_i \end{cases}$, where $q_x^i \in \mathbb{Q} \setminus \{-1\}$ is such that $f_i(x) + q_x^i f_i(0) < f_j(x)$ for $x \in A_j, i \neq j$. Such q_x^i exists since $f_i(0) \neq 0$. By Lemma 1, $\tilde{f}_i \in \text{HF}$. Fix i < n and $x \in A_i$. Then $\tilde{f}_j(x) = f_j(x) + q_x^i f_j(0) < f_i(x) = \tilde{f}_i(x)$ for $j \neq i$, so $f(x) = \tilde{f}_i(x)$, and therefore $f = \max\{\tilde{f}_0, \ldots, \tilde{f}_{n-1}\}$.

Theorem 1. $f \in Max(HF)$ iff f is 2-Hamel function.

PROOF. \Rightarrow Fix $f \in Max(HF)$. Then there exist $g, h \in HF$ such that $f = \max\{g, h\}$. Put $A_0 = \{x \in \mathbb{R} : g(x) < h(x)\}$ and $A_1 = \{x \in \mathbb{R} : h(x) \leq g(x)\}$. Then $A_0 \cap A_1 = \emptyset$ and $A_0 \cup A_1 = \mathbb{R}$ and $f_{|A_0} = h_{|A_0}, f_{|A_1} = g_{|A_1}$. Hence f is 2-Hamel function.

 $\Leftarrow \text{ This follows from Lemma 3 for } n = 2.$

Lemma 4. The set $L = \{f : \mathbb{R}^{\mathbb{R}} : f \text{ is } n\text{-Hamel function for some } n \in \mathbb{N}\}$ is a lattice.

PROOF. Fix $g, h \in L$ and put $B_0 = \{x \in \mathbb{R} : h(x) \leq g(x)\}, B_1 = \{x \in \mathbb{R} : g(x) < h(x)\}$ and $f = \max\{g, h\}$. Since $g, h \in L$, then there exist numbers $m, n \in \mathbb{N}$, sets $A_{0,0}, \ldots, A_{0,m}, A_{1,0}, \ldots, A_{1,n} \subset \mathbb{R}$ and functions $g_0, \ldots, g_m, h_0, \ldots, h_n \in \mathrm{HF}$ such that $A_{0,0}, \ldots, A_{0,m}$ and $A_{1,0}, \ldots, A_{1,n}$ are pairwise disjoint and $g_{i|A_{0,i}} = g_{|A_{0,i}}, h_{j|A_{1,j}} = h_{|A_{1,j}}$. Define $A_i^0 = B_0 \cap A_{0,i}$ for $i \leq m$ and $A_i^1 = B_1 \cap A_{1,i}$ for $i \leq n$. Then the family $\{A_i^0, A_j^1 : i \leq m, j \leq n\}$ and functions $g_0, \ldots, g_m, h_0, \ldots, h_n$ witness that f is (n+m)-Hamel function, so $f \in L$. Similarly we show that $\min\{g, h\} \in L$.

Theorem 2. $\mathcal{L}(HF) = \{ f \in \mathbb{R}^{\mathbb{R}} : f \text{ is } n \text{-Hamel function for some } n \in \mathbb{N} \}.$

PROOF. In virtue of Lemma 4 we get the inclusion \subset . To prove the inclusion \supset use Lemma 3.

Notice that similarly as in the above discussion we could show that a real function $f \in \text{Max}(\text{LIF})$ iff there exists a decomposition of \mathbb{R} into sets A, B such that $f_{|A}$ and $f_{|B}$ are extendable to linearly independent functions. Moreover $f \in \mathcal{L}(\text{LIF})$ iff there exists $n \in \mathbb{N}$ and a decomposition of \mathbb{R} into n sets A_0, \ldots, A_{n-1} such that $f_{|A_0}, \ldots, f_{|A_{n-1}}$ are extendable to linearly independent functions.

In the next theorem we will use the following notation. For $f \in \mathcal{L}(\mathrm{HF})$ let n(f) be the minimal number such that f is n(f)-Hamel function, $L_1 = \mathrm{HF}$ and, generally, $L_n = \{f : n(f) \leq n\}$ for $n \in \mathbb{N}$.

Theorem 3. $L_1 \subsetneq L_2 \subsetneq \ldots \subsetneq L_n \subsetneq \ldots$ and $\bigcup L_n = \mathcal{L}(HF)$.

PROOF. Fix $n \in \mathbb{N}$, $g \in \mathrm{HF}$, $q_0 = 1$ and $x_0 \in \mathbb{R} \setminus \{0\}$. Put $x_i = q_i x_0$ where $q_i \in \mathbb{Q} \setminus \{0, 1\}$ are pairwise different, $1 \leq i \leq n$. Define $h : \mathbb{R} \setminus \{x_1, \ldots, x_n\} \to \mathbb{R}$ as $h = g_{|\mathbb{R} \setminus \{x_1, \ldots, x_n\}}$. Notice that since $\mathrm{LIN}_{\mathbb{Q}} (\mathbb{R} \setminus \{x_1, \ldots, x_n\}) = \mathbb{R}$, so $\mathrm{LC}(h, x_0) \neq \emptyset$. Choose $y_0 \in \mathrm{LC}(h, x_0)$ and put $y_i = q_i y_0$ for $1 \leq i \leq n$. Define $f : \mathbb{R} \to \mathbb{R}$ as $f = h \cup \{\langle x_i, y_i \rangle : 1 \leq i \leq n\}$. We will show that $f \in L_{n+1} \setminus L_n$. First notice that since $f_{|\mathbb{R} \setminus \{x_1, \ldots, x_n\}}, \{\langle x_1, y_1 \rangle\}, \ldots, \{\langle x_n, y_n \rangle\}$ are extendable to Hamel functions, so $f \in L_{n+1}$. Now suppose that $f \in L_n$, hence there exists a partition of \mathbb{R} into sets B_0, \ldots, B_{n-1} such that $f_{|B_i}$ is extendable to a Hamel function for $0 \leq i \leq n-1$. Since $|\{x_0, \ldots, x_n\}| = n+1$, so there exists i such that $|B_i \cap \{x_0, \ldots, x_n\}| \geq 2$. Hence there exist $k \neq l$ such that $x_k, x_l \in B_i$ and consequently $\langle x_k, y_k \rangle - \frac{q_k}{q_l} \langle x_l, y_l \rangle = 0$, so $f_{|B_i} \notin \mathrm{PLIF}$, a contradiction. Hence $f \notin L_n$.

Remark 1. Note that $\mathcal{L}(\mathrm{HF}) \cap \mathrm{Add} = \emptyset$, because $f(0) \neq 0$ for each $f \in \mathcal{L}(\mathrm{HF})$. Similarly, if $f = \max\{f_0, f_1, \ldots\}$ for some infinite sequence $\langle f_n \rangle_{n \in \mathbb{N}}$ of Hamel functions, then $f(0) \neq 0$ and therefore $f \notin \mathrm{Add}$.

The following Lemma is a simple modification of [1, Lemma 7.3.10]. (See also [4] and [2].)

Lemma 5. Fix a cardinal δ and infinite regular cardinals γ, κ such that $\gamma < \kappa$ and $\delta < \gamma$. Let $|A| = \kappa$, $|B| = \gamma$ and $f : A \times B \to \delta$, then for every cardinal $\alpha < \delta$ there exist $B_0 \in [B]^{\alpha}$ and $A_0 \in [A]^{\kappa}$ such that $f(a_0, b_0) = f(a_1, b_1)$ for every $a_0, a_1 \in A_0$ and $b_0, b_1 \in B_0$.

PROOF. Fix $\alpha < \delta$. First we will show that for every $a \in A$ there exist $B_a \in [B]^{\alpha}$ and $\beta_a < \delta$ such that $f(a, b) = \beta_a$ for every $b \in B_a$. To see this, notice that for every $a \in A$ the sets $S_a^{\beta} = \{b \in B : f(a, b) = \beta\}, \beta < \delta$, form

a partition of the set B. Since $|B| = \gamma$ and $\gamma > \delta$, so there exists an $\beta = \beta_a$ such that the set S_a^{β} is of power γ . Notice that $[S_a^{\beta}]^{\alpha} \neq \emptyset$. Fix $B_a \in [S_a^{\beta}]^{\alpha}$ and observe that $f(a, b) = \beta_a$ for every $b \in B_a$.

Now $F: A \to [B]^{\alpha} \times \delta$ be defined by $F(a) = \langle B_a, \beta_a \rangle$. Then $f(a, b) = \beta_a$ for every $a \in A$ and $b \in B_a$. The set $[B]^{\alpha} \times \delta$ has cardinality γ , so there exists $\langle B_0, \beta \rangle \in [B]^{\alpha} \times \delta$ such that $A_0 = F^{-1}(B_0, \beta)$ has cardinality κ . Hence for every $a \in A_0$ and $b \in B_0$ we have $f(a, b) = \beta$.

Theorem 4. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is constant on some nonempty open interval $(a, b) \subset \mathbb{R}$, then $f \notin \mathcal{L}(\text{LIF})$.

PROOF. Fix a partition S_0, \ldots, S_n of \mathbb{R} . Let $U \subset \mathbb{R}$ be an non-empty open interval such that $x + y \in (a, b)$ for every $x, y \in U$. Fix a Hamel basis $H \subset U$ and disjoint sets $A, B \subset H$ such that $|A| = \omega_1$ and $|B| = \omega$. Define g : $A \times B \to \{0, \ldots, n\}$ by g(a, b) = m iff $a + b \in S_m$. Then in virtue of Lemma 5 for function g and $\alpha = 2$ there exist $B_0 = \{b_0, b_1\} \in [B]^2$ and $A_0 \in [A]^{\omega}$ such that $b + a \in S_k$ for some $k \leq n$ and every $a \in A_0, b \in B_0$. Fix $a_0, a_1 \in A_0$ and put $x = b_0 + a_0, y = b_0 + a_1, z = b_1 + a_0$ and $t = b_1 + a_1$. Notice that x, y, z, t are pairwise different, $x, y, z, t \in (a, b)$ and x - y = z - t. Since f is constant on (a, b), so $\langle x, f(x) \rangle - \langle y, f(y) \rangle + \langle t, f(t) \rangle - \langle z, f(z) \rangle = 0$. Hence $f \notin \mathcal{L}(\text{LIF})$.

Problem 1. Does there exist a function $f \in \mathcal{L}(HF)$ such that f is continuous on some nonempty open interval?

Now we will consider maxima of countable families of functions.

Theorem 5. The Continuum Hypothesis holds iff $\mathbb{R}^{\mathbb{R}} \setminus \{f \in \mathbb{R}^{\mathbb{R}} : f(0) = 0\} = \{\max\{f_0, f_1, \ldots\} : f_0, f_1, \ldots \in \mathrm{HF}\}.$

PROOF. \Rightarrow By Remark 1 it is enough to show that if $f(0) \neq 0$ then $f = \max\{f_0, f_1, \ldots\}$ for some $f_0, f_1, \ldots \in$ HF. Fix $f \in \mathbb{R}^{\mathbb{R}}$ with $f(0) \neq 0$. It is well known that the continuum hypothesis holds iff the set of all non-zero reals is a union of countably many Hamel bases [2]. Hence there exist pairwise disjoint linearly independent sets $H_1, H_2, \ldots \subset \mathbb{R}$ such that $\mathbb{R} \setminus \{0\} = \bigcup_{n=1}^{\infty} H_n$. Put $H_0 = \{0\}$ and define $\tilde{f}_i = f_{|H_i}$ for $i = 0, 1, \ldots$. Then $\tilde{f}_0, \tilde{f}_1 \ldots$ can be extended to a Hamel functions [8, Fact 6], denote those extensions again by $\tilde{f}_0, \tilde{f}_1, \ldots$ respectively. For $i = 0, 1, \ldots$ define functions $f_i(x) = \begin{cases} f(x) & \text{for } x \in H_i \\ \tilde{f}_i(x) + q_x^i \tilde{f}_i(0) & \text{for } x \notin H_i \end{cases}$ where $q_x^i \in \mathbb{Q} \setminus \{-1\}$ is such that $\tilde{f}_i(x) + q_x^i \tilde{f}_i(0) < f(x)$. Then $f = \max\{f_0, f_1, \ldots\}$ and $f_0, f_1, \ldots \in$ HF.

 $\label{eq:suppose } \mathfrak{c} > \omega_1. \text{ Define } f: \mathbb{R} \to \mathbb{R} \text{ as } f(x) = \left\{ \begin{array}{ll} x & \text{for } x \neq 0 \\ a & \text{for } x = 0 \end{array} \right. \text{ for some } a \in \mathbb{R} \setminus \{0\}. \text{ Hence there exists } (f_n)_{n \in \mathbb{N}} \subset \text{HF such that } f = \max\{f_n : n \in \mathbb{N}\}. \text{ Define } H_n = \{x \in \mathbb{R} : f_n(x) = f(x)\} \setminus \{0\}. \text{ Then } \mathbb{R} \setminus \{0\} = \bigcup_{n \in \mathbb{N}} H_n. \text{ We will show that } H_n \text{ is linearly independent for } n \in \mathbb{N}. \text{ Suppose the opposite that there exists } i \in \mathbb{N} \text{ such that } H_i \text{ is linearly dependent. Hence there exist different } x_0, \ldots, x_n \in H_i \text{ and } q_0, \ldots, q_n \in \mathbb{Q} \setminus \{0\} \text{ such that } \sum_{k=0}^n q_k x_k = 0, \text{ so } \sum_{k=0}^n q_k \langle x_k, f_i(x_k) \rangle = 0, \text{ a contradiction. Fix a Hamel basis } H \text{ and } A, B \subset H, A \cap B = \emptyset, \text{ such that } \mathfrak{c} \geq |A| > |B| > \omega. \text{ Define function } g: A \times B \to \omega \text{ by } g(a, b) = m \text{ iff } a + b \in H_m. \text{ Hence there exist sets } A_0 \text{ and } B_0 \text{ as in Lemma 5 for function } g \text{ and } \alpha = 2. \text{ Choose different } a_0, a_1 \in A_0, b_0, b_1 \in B_0 \text{ and put } x_{ij} = a_i + b_j \text{ for } i, j < 2. \text{ Then } x_{ij} \text{ are different numbers all belonging to the same } H_n. \text{ On the other hand we have } x_{00} - x_{10} = x_{01} - x_{11}, \text{ a contradiction } with \text{ the fact that } H_n \text{ is linearly independent.} \$

Remark 2. Notice that by similar reasoning as in Theorem 5 if we assume $ZFC + \neg CH$ then no constant function is a maxima of a countable family of Hamel functions.

3 Extensions of Hamel functions.

Fact 3. Suppose $f : X \to \mathbb{R}$. Then $\text{LIN}_{\mathbb{Q}}(f) = \text{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$ iff there exists $a \in \text{LIN}_{\mathbb{Q}}(X)$ such that $\text{LC}(f, a) = \mathbb{R}$.

PROOF. \Rightarrow Fix $a \in \text{LIN}_{\mathbb{Q}}(X)$. Then $\{a\} \times \text{LC}(f, a) = \text{LIN}_{\mathbb{Q}}(f) \cap (\{a\} \times \mathbb{R})$ and since $\text{LIN}_{\mathbb{Q}}(f) = \text{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$, so $\text{LC}(f, a) = \mathbb{R}$.

 $\begin{array}{l} \leftarrow \text{ The inclusion }\subset \text{ is clear. To see }\supset, \text{ pick } \langle x,y\rangle \in \mathrm{LIN}_{\mathbb{Q}}\left(X\right)\times \mathbb{R} \text{ and } \\ a\in \mathrm{LIN}_{\mathbb{Q}}\left(X\right) \text{ such that }\mathrm{LC}(f,a)=\mathbb{R}. \text{ Since } x-a\in \mathrm{LIN}_{\mathbb{Q}}\left(X\right), \text{ so there exist } \\ q_{0},\ldots,q_{n}\in\mathbb{Q}\setminus\{0\} \text{ and } x_{0},\ldots,x_{n}\in X \text{ such that } \sum_{i=0}^{n}q_{i}x_{i}=x-a. \text{ Put } \\ z=\sum_{i=0}^{n}q_{i}f(x_{i}). \text{ Since }\mathrm{LC}(f,a)=\mathbb{R}, \text{ so } y-z\in\mathrm{LC}(f,a). \text{ Hence there } \\ \text{exist } p_{0},\ldots,p_{m}\in\mathbb{Q}\setminus\{0\} \text{ and } y_{0},\ldots,y_{m}\in X \text{ such that } \sum_{i=0}^{m}p_{i}\left\langle y_{i},f(y_{i})\right\rangle = \\ \langle a,y-z\rangle. \text{ Hence we get} \end{array}$

$$\langle x, y \rangle = \langle a, y - z \rangle + \langle x - a, z \rangle = \sum_{i=0}^{m} p_i \langle y_i, f(y_i) \rangle + \sum_{i=0}^{n} q_i \langle x_i, f(x_i) \rangle.$$

Consequently, $\langle x, y \rangle \in \text{LIN}_{\mathbb{Q}}(f)$.

Remark 3. Suppose $f : X \to \mathbb{R}$ is linearly independent, $|\mathbb{R} \setminus X| < \omega$ and $\operatorname{codim}_{\mathbb{R}^2}(\operatorname{LIN}_{\mathbb{Q}}(f)) = |\mathbb{R} \setminus X|$. Then f can be extended to a Hamel function \tilde{f} .

PROOF. Order $\mathbb{R} \setminus X = \{x_k : k \leq n\}$. We will define a function $\tilde{f} : \mathbb{R} \to \mathbb{R}$ by induction. For $x \in X$ put $\tilde{f}(x) = f(x)$. Suppose, for l < k, a function \tilde{f} is defined for points x_l such that $f_l = f \cup \bigcup_{l < k} \left\{ \left\langle x_l, \tilde{f}(x_l) \right\rangle \right\}$ is linearly independent. Since $l < k \leq n$, so $\operatorname{codim}_{\mathbb{R}^2} (\operatorname{LIN}_{\mathbb{Q}}(f_l)) = n - l > n - k \geq 0$. Note that $\operatorname{LIN}_{\mathbb{Q}}(X) = \mathbb{R}$, hence by Fact 3 there exists $y \notin \operatorname{LC}(f_l, x_k)$. Put $\tilde{f}(x_k) = y$. Notice that $\tilde{f} \in \operatorname{HF}$.

Theorem 6. Suppose $X \subset \mathbb{R}$, $\text{LIN}_{\mathbb{Q}}(X) = \mathbb{R}$ and $f : X \to \mathbb{R}$ is PLIF. Then f is extendable to a HF function iff $\text{codim}_{\mathbb{R}^2}(\text{LIN}_{\mathbb{Q}}(f)) = |\mathbb{R} \setminus X|$.

PROOF. \Rightarrow Let $\tilde{f} : \mathbb{R} \to \mathbb{R}$ be an HF extension of the function f. Then $\operatorname{codim}_{\mathbb{R}^2}(\operatorname{LIN}_{\mathbb{Q}}(f)) = |\tilde{f} \setminus f| = |\operatorname{dom}(\tilde{f}) \setminus \operatorname{dom}(f)| = |\mathbb{R} \setminus X|.$

 \Leftarrow Without loss of generality we can assume that $|\mathbb{R} \setminus X| = \kappa \ge \omega$. Pick a Hamel basis $H \subset \mathbb{R}^2$ such that $f \subset H$. Well order $\mathbb{R} \setminus X = \{x_\alpha : \alpha < \kappa\}$ and $H \setminus f = \{\langle a_\alpha, b_\alpha \rangle : \alpha < \kappa\}$. For $\alpha < \kappa$ we will construct partial functions f_α such that

- (i) $f \subset f_{\beta} \subset f_{\alpha}$ for $\beta < \alpha$ and $|f_{\alpha}| \leq |f| + |\alpha|$;
- (ii) $f_{\alpha} \in \text{PLIF};$
- (iii) $x_{\alpha} \in \operatorname{dom}(f_{\alpha+1});$
- (iv) $\langle a_{\alpha}, b_{\alpha} \rangle \in \text{LIN}_{\mathbb{Q}}(f_{\alpha+1}).$

Then $\tilde{f} = \bigcup_{\alpha < \kappa} f_{\alpha}$ is a HF extension of the function f. Suppose that for $\beta < \gamma$ functions f_{β} are constructed. If γ is a limit ordinal then $f_{\gamma} = \bigcup_{\beta < \gamma} f_{\beta}$. Otherwise there exists α such that $\gamma = \alpha + 1$.

Step 1. If $x_{\alpha} \in \text{dom}(f_{\alpha})$ then $f'_{\alpha} = f_{\alpha}$. Otherwise, since

 $\operatorname{codim}_{\mathbb{R}^2}(\operatorname{LIN}_{\mathbb{Q}}(f_\alpha)) = \kappa$, so $f_\alpha \notin \operatorname{PHF}$. Hence in virtue of Fact 3 there exists $y \in \mathbb{R} \setminus \operatorname{LC}(f_\alpha, x_\alpha)$. Put $f'_\alpha = f_\alpha \cup \{\langle x_\alpha, y \rangle\}$. Then obviously $f'_\alpha \in \operatorname{PLIF}$.

Step 2. If $\langle a_{\alpha}, b_{\alpha} \rangle \in \text{LIN}_{\mathbb{Q}}(f'_{\alpha})$ then $f_{\alpha+1} = f'_{\alpha}$. Otherwise we get two cases. If $a_{\alpha} \notin \text{dom}(f'_{\alpha})$ then define $f_{\alpha+1} = f'_{\alpha} \cup \{\langle a_{\alpha}, b_{\alpha} \rangle\}$. Then, since $\langle a_{\alpha}, b_{\alpha} \rangle \notin \text{LIN}_{\mathbb{Q}}(f'_{\alpha}), f_{\alpha+1} \in \text{PLIF}$. Now suppose that $a_{\alpha} \in \text{dom}(f'_{\alpha})$. Pick $x \notin \text{dom}(f'_{\alpha})$. Since $\text{LIN}_{\mathbb{Q}}(\text{dom}(f'_{\alpha})) = \mathbb{R}$, so there exist $q_0, \ldots, q_n \in \mathbb{Q} \setminus \{0\}$ and $x_0, \ldots, x_n \in \text{dom}(f'_{\alpha})$ such that $-x = \sum_{i \leq n} q_i x_i$. Define $y = \sum_{i \leq n} q_i f'_{\alpha}(x_i)$ and $f_{\gamma} = f'_{\alpha} \cup \{\langle x, b_{\alpha} - f'_{\alpha}(a_{\alpha}) - y \rangle\}$. We will show that $f_{\gamma} \in \text{PLIF}$. This fact follows easily from

$$\langle a_{\alpha}, b_{\alpha} \rangle = \langle a_{\alpha}, f_{\alpha}'(a_{\alpha}) \rangle + \langle 0, b_{\alpha} - f_{\alpha}'(a_{\alpha}) \rangle =$$

$$\langle a_{\alpha}, f_{\alpha}'(a_{\alpha}) \rangle + \langle -x, y \rangle + \langle x, b_{\alpha} - f_{\alpha}'(a_{\alpha}) - y \rangle \notin \text{LIN}_{\mathbb{Q}}(f_{\alpha}')$$

and since $\langle a_{\alpha}, f_{\alpha}'(a_{\alpha}) \rangle$, $\langle -x, y \rangle \in \text{LIN}_{\mathbb{Q}}(f_{\alpha}')$, so we get that $\langle x, b_{\alpha} - f_{\alpha}'(a_{\alpha}) - y \rangle \notin \text{LIN}_{\mathbb{Q}}(f_{\alpha}')$. Hence $f_{\alpha+1} \in \text{PLIF}$ and $\langle a_{\alpha}, b_{\alpha} \rangle \in \text{LIN}_{\mathbb{Q}}(f_{\alpha+1})$.

Theorem 7.

- 1. If $|X| < \mathfrak{c}$, then any $f : X \to \mathbb{R}$, $f \in \text{PLIF}$ can be extended to a HF function.
- 2. Suppose $|X| = \mathfrak{c}$. Then there exists $f_X : \operatorname{LIN}_{\mathbb{Q}}(X) \to \mathbb{R}, f_X \in \operatorname{PLIF}$ such that $\operatorname{LIN}_{\mathbb{Q}}(f_X) = \operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$.
- 3. If we additionally assume in (2) that $\text{LIN}_{\mathbb{Q}}(X) \neq \mathbb{R}$, then f_X is not extendable to a LIF function.

PROOF. (1) follows from [5, Lemma 2.3].

(2) Fix $X \in [\mathbb{R}]^{c}$ and let $\varphi : \mathbb{R} \to \operatorname{LIN}_{\mathbb{Q}}(X)$ be a linear isomorphism. Define $\Phi : \mathbb{R}^{2} \to \operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$ by $\Phi(x, y) = \langle \varphi(x), y \rangle$. Then Φ is a linear isomorphism. Furthermore Φ preserves functions i.e. if $f : \mathbb{R} \to \mathbb{R}$ is a function, then $\Phi(f)$ is also a function. Hence for every $f \in \operatorname{HF}$ the function $\Phi(f) : \operatorname{LIN}_{\mathbb{Q}}(X) \to \mathbb{R}$ is a basis of the space $\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$. Set $f_{X} = \Phi(f)$.

(3) We will show that any extension of f_X on \mathbb{R} is linearly dependent. Fix a function $f : \mathbb{R} \to \mathbb{R}$ which is an extension of function f_X . Let $Y \subset X$ be a basis of $\operatorname{LIN}_{\mathbb{Q}}(X)$ and $H \subset \mathbb{R}$ a Hamel basis such that $Y \subset H$. Define $\tilde{f} : \operatorname{LIN}_{\mathbb{Q}}(X) \cup H \to \mathbb{R}$ as the restriction $f_{|\operatorname{LIN}_{\mathbb{Q}}(X)\cup H}$. Notice that $f_X \subset \tilde{f}$ and since $\operatorname{LC}(f_X) = \mathbb{R}$, so $\operatorname{LC}(\tilde{f}) = \mathbb{R}$. Hence in virtue of Fact 3, $\operatorname{LIN}_{\mathbb{Q}}(\tilde{f}) = \operatorname{LIN}_{\mathbb{Q}}(Y \cup H) \times \mathbb{R} = \mathbb{R}^2$. On the other hand, $H \cup \operatorname{LIN}_{\mathbb{Q}}(X) \subsetneq \mathbb{R}$, so any extension of \tilde{f} is linearly dependent and consequently f is linearly dependent.

Lemma 6. Suppose $f : X \to \mathbb{R}$ is PLIF. Then $\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}} (\operatorname{LIN}_{\mathbb{Q}}(f)) \geq \operatorname{codim}_{\mathbb{R}} (\operatorname{LC}(f)).$

PROOF. Fix a basis $Y \subset \mathbb{R}$ of subspace $\mathrm{LC}(f)$ and a set $A \subset \mathbb{R}$ such that $Y \cup A$ is a Hamel basis of \mathbb{R} . Since $\mathrm{LC}(f)$ is linearly isomorphic to $\mathrm{LIN}_{\mathbb{Q}}(f) \cap (\{0\} \times \mathbb{R})$, so $f \cup (\{0\} \times A)$ is a linearly independent set. Finally $\mathrm{LIN}_{\mathbb{Q}}(f \cup (\{0\} \times A)) \subset \mathrm{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}$, so $\mathrm{codim}_{\mathrm{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}}(\mathrm{LIN}_{\mathbb{Q}}(f)) \geq \mathrm{codim}_{\mathbb{R}}(\mathrm{LC}(f))$.

Theorem 8. Suppose $X \subset \mathbb{R}$ and $f : X \to \mathbb{R}$ is linearly independent. Then f is extendable to a HF function iff $\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}} (\operatorname{LIN}_{\mathbb{Q}}(f)) = |\mathbb{R} \setminus X|$.

PROOF. First notice that in virtue of Theorem 6 and Lemma 2 without loss of generality we can assume that $\text{LIN}_{\mathbb{Q}}(X) \neq \mathbb{R}$ and $|X| = \mathfrak{c}$.

 \Rightarrow Let $f : \mathbb{R} \to \mathbb{R}$ be a HF extension of a function f and $Y \subset X$ be a basis of the space $\text{LIN}_{\mathbb{Q}}(X)$. Fix a Hamel basis $H \subset \mathbb{R}$ such that $Y \subset H$ and define

 $\begin{aligned} F: X \cup H \to \mathbb{R}, \, \text{by } F &= \tilde{f}_{|(X \cup H)}.\\ \textbf{Claim 1. } \operatorname{codim}_{\mathbb{R}} \left(\operatorname{LC} \left(F \right) \right) &= \mathfrak{c}.\\ \text{Well order } \mathbb{R} \setminus (X \cup H) &= \{ x_{\alpha} : \alpha < \mathfrak{c} \}. \text{ Notice that} \end{aligned}$

$$\operatorname{LC}(F) \subsetneq \operatorname{LC}\left(F \cup \left\{\left\langle x_0, \tilde{f}(x_0)\right\rangle\right\}\right) \subsetneq \ldots \subsetneq \operatorname{LC}\left(\tilde{f}\right).$$

Indeed, fix $\alpha < \mathfrak{c}$. There exist different $x_0^{\alpha}, \ldots, x_n^{\alpha} \in X \cup H$ and $q_0^{\alpha}, \ldots, q_n^{\alpha} \in \mathbb{Q} \setminus \{0\}$ such that $\sum_{i=0}^n q_i^{\alpha} x_i^{\alpha} = -x_{\alpha}$. Let $y = \sum_{i=0}^n q_i^{\alpha} \tilde{f}(x_i^{\alpha}) + \tilde{f}(x_{\alpha})$. Then

$$y \in \operatorname{LC}\left(F \cup \bigcup_{\gamma \leq \alpha} \left\{ \left\langle x_{\gamma}, \tilde{f}(x_{\gamma}) \right\rangle \right\} \right)$$

 \tilde{f} is a linearly independent set, so $y \notin \operatorname{LC}\left(F \cup \bigcup_{\gamma < \alpha} \left\{\left\langle x_{\gamma}, \tilde{f}(x_{\gamma})\right\rangle\right\}\right)$. Recall that $\operatorname{LC}\left(F \cup \bigcup_{\gamma \leq \alpha} \left\{\left\langle x_{\gamma}, \tilde{f}(x_{\gamma})\right\rangle\right\}\right)$ is a linear subspace of \mathbb{R} for every $\alpha < \mathfrak{c}$. Hence

$$\operatorname{codim}_{\mathbb{R}}\left(\operatorname{LC}\left(F\right)\right) = |\mathbb{R} \setminus (X \cup H)| = \mathfrak{c}.$$

Claim 2. LC (F) = LC(f).

Since $f \,\subset F$, LC $(f) \,\subset$ LC (F). Fix $y \in$ LC (F), so $\langle 0, y \rangle = \sum_{i=0}^{n} q_i \langle x_i, f(x_i) \rangle + \sum_{j=0}^{m} p_j \langle y_j, F(y_j) \rangle$, for some $p_j, q_i \in \mathbb{Q}$ and different $x_i \in X, y_j \in H \setminus Y$ for $i \leq n$ and $j \leq m$. Since $\text{LIN}_{\mathbb{Q}}(\{x_i : i \leq n\}) \cap \text{LIN}_{\mathbb{Q}}(\{y_j : i \leq m\}) = \{0\}$, so $\sum_{i=0}^{n} q_i x_i = 0$ and $\sum_{j=0}^{m} p_j y_j = 0$. Because $H \setminus X$ is a linearly independent set, so $p_j = 0$ for $j \leq m$. Hence $y \in$ LC (f).

Hence in virtue of Lemma 6 we get that

$$\operatorname{codim}_{\mathbb{R}^{2}}(\operatorname{LIN}_{\mathbb{Q}}(f)) \geq \operatorname{codim}_{\mathbb{R}}(\operatorname{LC}(f)) = \mathfrak{c}.$$

 \leftarrow Again we start with showing that $\operatorname{codim}_{\mathbb{R}} (\operatorname{LC} (f)) = \mathfrak{c}$. To see this fix $x \in \mathbb{R} \setminus \operatorname{LIN}_{\mathbb{Q}} (X)$. Notice that since $|X| = \mathfrak{c}$, so $|\operatorname{LIN}_{\mathbb{Q}} (X \cup \{x\}) \setminus \operatorname{LIN}_{\mathbb{Q}} (X)| = \mathfrak{c}$. Put $Y = \operatorname{LIN}_{\mathbb{Q}} (X \cup \{x\})$ and well order $Y = \{x_{\alpha} : \alpha < \mathfrak{c}\}$. We define partial functions $f_{\alpha}, \alpha < \mathfrak{c}$, such that

- (i) $f \subset f_{\beta} \subset f_{\alpha}$ for $\beta < \alpha$;
- (ii) $f_{\alpha} \in \text{PLIF};$
- (iii) $x_{\alpha} \in \operatorname{dom}(f_{\alpha+1}).$

If α is a limit ordinal, then $f_{\alpha} = \bigcup_{\gamma < \alpha} f_{\gamma}$. Otherwise $\alpha = \beta + 1$. Since $\mathfrak{c} = \operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}} (\operatorname{LIN}_{\mathbb{Q}}(f_{\beta})) \leq \operatorname{codim}_{Y \times \mathbb{R}} (\operatorname{LIN}_{\mathbb{Q}}(f_{\beta}))$ and $\alpha < \mathfrak{c}$, so in

virtue of Fact 3 there exists $y \in \mathbb{R} \setminus \mathrm{LC}(f_{\beta}, x_{\alpha})$. Put $f_{\alpha} = f_{\beta} \cup \{\langle x_{\alpha}, y \rangle\}$. It is easy to notice that

$$\operatorname{LC}(f) = \operatorname{LC}(f_0) \subsetneq \operatorname{LC}(f_1) \subsetneq \ldots \subsetneq \operatorname{LC}(f_{\mathfrak{c}}).$$

Since LC (f_{α}) , $\alpha < \mathfrak{c}$, is a linear subspace of \mathbb{R} , so $\operatorname{codim}_{\mathbb{R}} (\operatorname{LC} (f)) \ge \mathfrak{c}$. Fix a basis Y of the space $\operatorname{LIN}_{\mathbb{Q}} (X)$ such that $Y \subset X$ and a Hamel basis H such that $Y \subset H$. Define $\tilde{f} : X \cup H \to \mathbb{R}$ by $\tilde{f}(x) = \begin{cases} f(x) & \text{for } x \in X \\ 0 & \text{for } x \in H \setminus X \end{cases}$.

Obviously $LC\left(\tilde{f}\right) = LC(f)$. In virtue of Lemma 6

$$\operatorname{codim}_{\mathbb{R}^2}\left(\operatorname{LIN}_{\mathbb{Q}}\left(\widetilde{f}\right)\right) \ge \operatorname{codim}_{\mathbb{R}}\left(\operatorname{LC}\left(\widetilde{f}\right)\right) = \operatorname{codim}_{\mathbb{R}}\left(\operatorname{LC}\left(f\right)\right) = \mathfrak{c},$$

so in virtue of Theorem 6, \tilde{f} can be extended to a Hamel function.

Corollary 1. Suppose $f : X \to \mathbb{R}$ is a PLIF function. Then f is extendable to a LIF function iff $\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}} (\operatorname{LIN}_{\mathbb{Q}}(f)) \ge |\mathbb{R} \setminus X|$.

PROOF. \Rightarrow Assume the opposite that $\operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X)\times\mathbb{R}}(\operatorname{LIN}_{\mathbb{Q}}(f)) < |\mathbb{R} \setminus X|$. But then any function $\tilde{f} : \mathbb{R} \to \mathbb{R}, f \subset \tilde{f}$, has to be linearly dependent, a contradiction.

 $\begin{array}{l} \leftarrow \text{ First notice that if } |\mathbb{R} \setminus X| = \mathfrak{c} \text{ then } \operatorname{codim}_{\operatorname{LIN}_{\mathbb{Q}}(X) \times \mathbb{R}} (\operatorname{LIN}_{\mathbb{Q}}(f)) = \mathfrak{c}. \\ \text{Hence from Theorem 8, } f \text{ can be extended to a HF function. Now assume that } |\mathbb{R} \setminus X| = \kappa < \mathfrak{c}. \\ \text{ Well order } \mathbb{R} \setminus X = \{x_{\alpha} : \alpha < \kappa\} \text{ and define } \tilde{f}(x) = \\ \begin{cases} f(x) & \text{for } x \in X \\ y_{\alpha} & \text{for } x = x_{\alpha} \end{cases}, \text{ where } y_{\alpha} \in \mathbb{R} \setminus \operatorname{LC}(f \cup \bigcup_{\beta < \alpha}\{\langle x_{\beta}, y_{\beta} \rangle\}, x_{\alpha}). \\ \text{Such a choice is possible since } \alpha < \kappa \text{ and } \operatorname{codim}_{\mathbb{R}^{2}}(\operatorname{LIN}_{\mathbb{Q}}(f)) > \kappa. \\ \end{array}$

Next we apply the obtained extension theorem to prove a result concerning the lattice of Hamel functions.

Theorem 9. Max(HF) = Max(LIF).

PROOF. Since $HF \subset LIF$, so the inclusion \subset is obvious.

 \supset Fix $f \in Max(LIF)$. Hence there exist $g, h \in LIF$ such that $f = max\{g, h\}$. Let $A = \{x \in \mathbb{R} : g(x) = f(x)\}$ and $B = \{x \in \mathbb{R} \setminus A : h(x) = f(x)\}$. Since $A \cup B = \mathbb{R}$, so $|A| = \mathfrak{c}$ or $|B| = \mathfrak{c}$. Hence we get two cases.

First suppose that $|A| = \mathfrak{c}$ and $|B| < \mathfrak{c}$. Notice that $\operatorname{LIN}_{\mathbb{Q}}(A) = \mathbb{R}$. Fix disjoint Hamel bases $H_1, H_2 \subset \mathbb{R} \setminus B$ and a linearly independent set $X \subset H_1$ such that $\operatorname{LIN}_{\mathbb{Q}}(X) \cap \operatorname{LIN}_{\mathbb{Q}}(B) = \emptyset$ and $\operatorname{LIN}_{\mathbb{Q}}(B \cup X) = \mathbb{R}$. First

notice that $f_{|(A \setminus X)}$ is extendable to a HF function. Indeed, since $f_{|A}$ is a linearly independent set, so $\operatorname{codim}_{\mathbb{R}^2} \left(\operatorname{LIN}_{\mathbb{Q}} \left(f_{|A \setminus X} \right) \right) \geq |X| = \mathfrak{c} = |\mathbb{R} \setminus (A \setminus X)|$. Furthermore $H_2 \subset A \setminus X$, so $\operatorname{LIN}_{\mathbb{Q}} \left(A \setminus X \right) = \mathbb{R}$. Hence in virtue of Theorem 6, $f_{|A \setminus X}$ is extendable to a HF function. It is easy to see that $f_{|(B \cup X)} \in \operatorname{PLIF}$ and $\operatorname{LC} \left(f_{|(B \cup X)} \right) = \operatorname{LC} \left(f_{|B} \right)$. Since $|B| < \mathfrak{c}$, so $|\operatorname{LC} \left(f_{|B} \right)| < \mathfrak{c}$ and consequently $\operatorname{codim}_{\mathbb{R}} \left(\operatorname{LC} \left(f_{|B} \right) \right) = \mathfrak{c}$. Hence $\operatorname{codim}_{\mathbb{R}^2} \left(\operatorname{LIN}_{\mathbb{Q}} \left(f_{|B \cup X} \right) \right) \geq \operatorname{codim}_{\mathbb{R}} \left(\operatorname{LC} \left(f_{|B \cup X} \right) \right) = \mathfrak{c} = |\mathbb{R} \setminus (B \cup X)|$, so in virtue of Theorem 6, $f_{|B \cup X}$ can be extended to a HF function and by Theorem 1, $f \in \operatorname{Max}(\operatorname{HF})$.

Now assume that $|A| = |B| = \mathfrak{c}$. Notice that since $f_{|A}$ and $f_{|B}$ are extendable to LIF functions, so $\operatorname{codim}_{\mathbb{R}^2} (\operatorname{LIN}_{\mathbb{Q}} (f_{|A})) \ge |B| = \mathfrak{c}$ and $\operatorname{codim}_{\mathbb{R}^2} (\operatorname{LIN}_{\mathbb{Q}} (f_{|B})) \ge |A| = \mathfrak{c}$. Hence both $f_{|A}$ and $f_{|B}$ are extendable to Hamel functions and as above, $f \in \operatorname{Max}(\operatorname{HF})$.

Corollary 2. $\mathcal{L}(HF) = \mathcal{L}(LIF)$.

PROOF. The inclusion \subset is obvious. To see the other inclusion notice that in virtue of Theorem 9, LIF $\subset \mathcal{L}(HF)$. Hence $\mathcal{L}(LIF) \subset \mathcal{L}(HF)$.

References

- K. Ciesielski, Set theory for the working mathematician, London Mathematical Society Student Texts, 39, Cambridge University Press, Cambridge 1997.
- [2] P. Erdős and S. Kakutani, On non-denumerable graphs, Bull. Am. Math. Soc., 49 (1943), 457–461.
- [3] A. B. Kharazishvili and A. Kirtadze, On extensions of partial functions, Expo. Math., 25(4) (2007), 345–353.
- [4] P. Komjáth, New trends in discrete and computational geometry, volume Algorithms and Combinatorics volume 10 chapter XII, SpringerVerlag, 1993.
- [5] G. Matusik and T. Natkaniec, Algebraic properties of Hamel functions, Acta Math. Hung., (2009), to appear.
- [6] T. Natkaniec, On the maximum and the minimum of quasi-continuous functions, Math. Slovaca, 42(1) (1992), 103–110.
- [7] K. Płotka, On functions whose graph is a Hamel basis, Proc. Am. Math. Soc., 131(4) (2003), 1031–1041.

- [8] K. Płotka, Darboux-like functions within the class of Hamel functions, Real Anal. Exchange, 34(1) (2008), 115–126.
- [9] K. Płotka, On functions whose graph is a Hamel basis II, Can. Math. Bull., 52(2) (2009), 295–302.
- [10] K. Płotka and I. Recław, Finitely continuous Hamel functions, Real Anal. Exchange, 30(2) (2005), 867–870.

Grzegorz Matusik